首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neonatal islet-specific expression of IL-10 in nonobese diabetic (NOD) mice accelerates the onset of diabetes, whereas systemic treatment of young NOD mice with IL-10 prevents diabetes. The mechanism for acceleration of diabetes in IL-10-NOD mice is not known. Here we show, by adoptive transfers, that prediabetic or diabetic NOD splenocytes upon encountering IL-10 in the pancreatic islets readily promoted diabetes. This outcome suggests that the compartment of exposure, not the timing, confers proinflammatory effects on this molecule. Moreover, injection of IL-10-deficient NOD splenocytes into transgenic IL-10-NOD.scid/scid mice elicited accelerated disease, demonstrating that pancreatic IL-10 but not endogenous IL-10 is sufficient for the acceleration of diabetes. Immunohistochemical analysis revealed hyperexpression of ICAM-1 on the vascular endothelium of IL-10-NOD mice. The finding suggests that IL-10 may promote diabetes via an ICAM-1-dependent pathway. We found that introduction of ICAM-1 deficiency into IL-10-NOD mice as well as into NOD mice prevented accelerated insulitis and diabetes. Failure to develop insulitis and diabetes was preceded by the absence of GAD65-specific T cell responses. The data suggest that ICAM-1 plays a role in the formation of the "immunological synapse", thereby affecting the generation and/or expansion of islet-specific T cells. In addition, ICAM-1 also played a role in the effector phase of autoimmune diabetes because adoptive transfer of diabetogenic BDC2.5 T cells failed to elicit clinical disease in ICAM-1-deficient IL-10-NOD and NOD mice. These findings provide evidence that pancreatic IL-10 is sufficient to drive pathogenic autoimmune responses and accelerates diabetes via an ICAM-1-dependent pathway.  相似文献   

2.
In both humans and NOD mice, particular MHC genes are primary contributors to development of the autoreactive CD4+ and CD8+ T cell responses against pancreatic beta cells that cause type 1 diabetes (T1D). Association studies have suggested, but not proved, that the HLA-A*0201 MHC class I variant is an important contributor to T1D in humans. In this study, we show that transgenic expression in NOD mice of HLA-A*0201, in the absence of murine class I MHC molecules, is sufficient to mediate autoreactive CD8+ T cell responses contributing to T1D development. CD8+ T cells from the transgenic mice are cytotoxic to murine and human HLA-A*0201-positive islet cells. Hence, the murine and human islets must present one or more peptides in common. Islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP) is one of several important T1D autoantigens in standard NOD mice. Three IGRP-derived peptides were identified as targets of diabetogenic HLA-A*0201-restricted T cells in our NOD transgenic stock. Collectively, these results indicate the utility of humanized HLA-A*0201-expressing NOD mice in the identification of T cells and autoantigens of potential relevance to human T1D. In particular, the identified antigenic peptides represent promising tools to explore the potential importance of IGRP in the development of human T1D.  相似文献   

3.
Heat shock protein 60 (hsp60) is a target antigen in autoimmune diabetes and injections of human hsp60 for tolerance induction were found to protect non-obese diabetic (NOD) mice, an animal model of human type 1 diabetes, from disease development. We tested whether innate immune cells of NOD mice exhibit an abnormal response to extracellular hsp60. Bone marrow derived macrophages (BMM) were grown from NOD, C57BL/6J, non-obese non-diabetic (NON) mice, and NOD-related congenic variants differing in the Idd-3, Idd-10/18, or major histocompatibility complex (MHC) region. Hsp60-stimulated BMM of NOD mice were found to produce high levels of interleukin (IL)-12(p70). The addition of IL-10 downregulated, whereas cyclooxygenase inhibitors elevated, IL-12(p70) production of activated BMM. BMM of NON, NON-NOD-H-2(g7) as well as of NOD-NON-H-2(nbl) mice produced significantly less IL-12(p70) than BMM of NOD mice, indicating that an interaction between the MHC haplotype and non-MHC genes of the NOD mouse is required for hyperresponsiveness to hsp60.  相似文献   

4.
Natural development of diabetes in nonobese diabetic (NOD) mice requires both CD4 and CD8 T cells. Transgenic NOD mice carrying alphabeta TCR genes from a class I MHC (Kd)-restricted, pancreatic beta cell Ag-specific T cell clone develop diabetes significantly faster than nontransgenic NOD mice. In these TCR transgenic mice, a large fraction of T cells express both transgene derived and endogenous TCR beta chains. Only T cells expressing two TCR showed reactivity to the islet Ag. Development of diabetogenic T cells is inhibited in mice with no endogenous TCR expression due to the SCID mutation. These results demonstrate that the expression of two TCRs is necessary for the autoreactive diabetogenic T cells to escape thymic negative selection in the NOD mouse. Further analysis with MHC congenic NOD mice revealed that diabetes development in the class I MHC-restricted islet Ag-specific TCR transgenic mice is still dependent on the presence of the homozygosity of the NOD MHC class II I-Ag7.  相似文献   

5.
BACKGROUND: Type 1 diabetes (T1D) is a T-cell-dependent autoimmune disease resulting from destructive inflammation (insulitis) of the insulin-producing pancreatic beta-cells. Transgenic expression of proinsulin II by a MHC class II promoter or transfer of bone marrow from these transgenic mice protects NOD mice from insulitis and diabetes. We assessed the feasibility of gene therapy in the NOD mouse as an approach to treat T1D by ex vivo genetic manipulation of normal hematopoietic stem cells (HSCs) with proinsulin II followed by transfer to recipient mice. METHODS: HSCs were isolated from 6-8-week-old NOD female mice and transduced in vitro with retrovirus encoding enhanced green fluorescent protein (EGFP) and either proinsulin II or control autoantigen. Additional control groups included mice transferred with non-manipulated bone marrow and mice which did not receive bone marrow transfer. EGFP-sorted or non-sorted HSCs were transferred into pre-conditioned 3-4-week-old female NOD mice and insulitis was assessed 8 weeks post-transfer. RESULTS: Chimerism was established in all major lymphoid tissues, ranging from 5-15% in non-sorted bone marrow transplants to 20-45% in EGFP-sorted bone marrow transplants. The incidence and degree of insulitis was significantly reduced in mice receiving proinsulin II bone marrow compared to controls. However, the incidence of sialitis in mice receiving proinsulin II bone marrow and control mice was not altered, indicating protection from insulitis was antigen specific. CONCLUSIONS: We show for the first time that ex vivo genetic manipulation of HSCs to express proinsulin II followed by transplantation to NOD mice can establish molecular chimerism and protect from destructive insulitis in an antigen-specific manner.  相似文献   

6.
Nonobese diabetic (NOD) mice spontaneously develop diabetes as a consequence of an autoimmune process that can be inhibited by immunotherapy with the 60-kDa heat shock protein (hsp60), with its mycobacterial counterpart 65-kDa (hsp65), or with other Ags such as insulin and glutamic acid decarboxylase (GAD). Microbial infection and innate signaling via LPS or CpG motifs can also inhibit the spontaneous diabetogenic process. In addition to the spontaneous disease, however, NOD mice can develop a more robust cyclophosphamide-accelerated diabetes (CAD). In this work, we studied the effect on CAD of DNA vaccination with constructs encoding the Ags human hsp60 (phsp60) or mycobacterial hsp65 (phsp65). Vaccination with phsp60 protected NOD mice from CAD. In contrast, vaccination with phsp65, with an empty vector, or with a CpG-positive oligonucleotide was not effective, suggesting that the efficacy of the phsp60 construct might be based on regulatory hsp60 epitopes not shared with its mycobacterial counterpart, hsp65. Vaccination with phsp60 modulated the T cell responses to hsp60 and also to the GAD and insulin autoantigens; T cell proliferative responses were significantly reduced, and the pattern of cytokine secretion to hsp60, GAD, and insulin showed an increase in IL-10 and IL-5 secretion and a decrease in IFN-gamma secretion, compatible with a shift from a Th1-like toward a Th2-like autoimmune response. Our results extend the role of specific hsp60 immunomodulation in the control of beta cell autoimmunity and demonstrate that immunoregulatory networks activated by specific phsp60 vaccination can spread to other Ags targeted during the progression of diabetes, like insulin and GAD.  相似文献   

7.
The MHC determines susceptibility and resistance to type 1 diabetes in humans and nonobese diabetic (NOD) mice. To investigate how a disease-associated MHC molecule shapes the T cell repertoire in NOD mice, we generated a series of tetramers from I-A(g7)/class II-associated invariant chain peptide precursors by peptide exchange. No CD4 T cell populations could be identified for two glutamic acid decarboxylase 65 peptides, but tetramers with a peptide mimetic recognized by the BDC-2.5 and other islet-specific T cell clones labeled a distinct population in the thymus of young NOD mice. Tetramer-positive cells were identified in the immature CD4(+)CD8(low) population that arises during positive selection, and in larger numbers in the more mature CD4(+)CD8(-) population. Tetramer labeling was specific based on the use of multiple control tetramers, including one with a single amino acid analog peptide in which a critical TCR contact residue was substituted. The T cell population was already present in the thymus of 2-wk-old NOD mice before the typical onset of insulitis and was detected in B10 mice congenic for the NOD MHC locus, but not B10 control mice. These results demonstrate that a T cell population can expand in the thymus of NOD mice to levels that are at least two to three orders of magnitude higher than estimated for a given specificity in the naive T cell pool. Based on these data, we propose a model in which I-A(g7) confers susceptibility to type 1 diabetes by biasing positive selection in the thymus and later presenting peptides from islet autoantigens to such T cells in the periphery.  相似文献   

8.
IL-12 administration to nonobese diabetic (NOD) mice induces IFN-gamma-secreting type 1 T cells and high circulating IFN-gamma levels and accelerates insulin-dependent diabetes mellitus (IDDM). Here we show that IL-12-induced IFN-gamma production is dispensable for diabetes acceleration, because exogenous IL-12 could enhance IDDM development in IFN-gamma-deficient as well as in IFN-gamma-sufficient NOD mice. Both in IFN-gamma(+/-) and IFN-gamma(-/-) NOD mice, IL-12 administration generates a massive and destructive insulitis characterized by T cells, macrophages, and CD11c(+) dendritic cells, and increases the number of pancreatic CD4(+) cells secreting IL-2 and TNF-alpha. Surprisingly, IL-12-induced IFN-gamma hinders pancreatic B cell infiltration and inhibits the capacity of APCs to activate T cells. Although pancreatic CD4(+) T cells from IL-12-treated IFN-gamma(-/-) mice fail to up-regulate the P-selectin ligand, suggesting that their entry into the pancreas may be impaired, T cell expansion is favored in these mice compared with IL-12-treated IFN-gamma(+/-) mice because IL-12 administration in the absence of IFN-gamma leads to enhanced cell proliferation and reduced T cell apoptosis. NO, an effector molecule in beta cell destruction, is produced ex vivo in high quantity by pancreas-infiltrating cells through a mechanism involving IL-12-induced IFN-gamma. Conversely, in IL-12-treated IFN-gamma-deficient mice, other pathways of beta cell death appear to be increased, as indicated by the up-regulated expression of Fas ligand on Th1 cells in the absence of IFN-gamma. These data demonstrate that IFN-gamma has a dual role, pathogenic and protective, in IDDM development, and its deletion allows IL-12 to establish alternative pathways leading to diabetes acceleration.  相似文献   

9.
IL-10 exterts profound immunostimulatory and immunoinhibitory effects. To explore the role of IL-10 in autoimmune diabetes of nonobese diabetic (NOD) mice, we generated IL-10-deficient NOD mice. In contrast to our previous results with neutralizing antibodies to IL-10, IL-10-deficient NOD mice developed insulitis and their splenocytes readily responded to islet antigen glutamic acid decarboxylase 65. IL-10-deficient NOD mice did not develop accelerated spontaneous diabetes. On the other hand, IL-10-deficient NOD mice developed accelerated disease following cyclophosphamide (CYP) injection. These findings demonstrate that IL-10 is dispensable for autoimmune diabetes. IL-10's absence fails to accelerate endogenous diabetes but potentiates CYP-induced diabetes.  相似文献   

10.
Cross-presentation of self Ags by APCs is key to the initiation of organ-specific autoimmunity. As MHC class I molecules are essential for the initiation of diabetes in nonobese diabetic (NOD) mice, we sought to determine whether the initial insult that allows cross-presentation of beta cell autoantigens in diabetes is caused by cognate interactions between naive CD8(+) T cells and beta cells. Naive splenic CD8(+) T cells from transgenic NOD mice expressing a diabetogenic TCR killed peptide-pulsed targets in the absence of APCs. To ascertain the role of CD8(+) T cell-induced beta cell lysis in the initiation of diabetes, we expressed a rat insulin promoter (RIP)-driven adenovirus E19 transgene in NOD mice. RIP-E19 expression inhibited MHC class I transport exclusively in beta cells and rendered these cells resistant to lysis by CD8(+) (but not CD4(+)) T cells, both in vitro and in vivo. Surprisingly, RIP-E19 expression impaired the accumulation of CD8(+) T cells in islets and delayed the onset of islet inflammation, without affecting the timing or magnitude of T cell cross-priming in the pancreatic lymph nodes, which is the earliest known event in diabetogenesis. These results suggest that access of beta cell autoantigens to the cross-presentation pathway in diabetes is T cell independent, and reveal a previously unrecognized function of MHC class I molecules on target cells in autoimmunity: local retention of disease-initiating clonotypes.  相似文献   

11.
In type 1 diabetes, T cell-mediated death of pancreatic beta cells produces insulin deficiency. However, what attracts or restricts broadly autoreactive lymphocyte pools to the pancreas remains unclear. We report that TRPV1(+) pancreatic sensory neurons control islet inflammation and insulin resistance. Eliminating these neurons in diabetes-prone NOD mice prevents insulitis and diabetes, despite systemic persistence of pathogenic T cell pools. Insulin resistance and beta cell stress of prediabetic NOD mice are prevented when TRPV1(+) neurons are eliminated. TRPV1(NOD), localized to the Idd4.1 diabetes-risk locus, is a hypofunctional mutant, mediating depressed neurogenic inflammation. Delivering the neuropeptide substance P by intra-arterial injection into the NOD pancreas reverses abnormal insulin resistance, insulitis, and diabetes for weeks. Concordantly, insulin sensitivity is enhanced in trpv1(-/-) mice, whereas insulitis/diabetes-resistant NODxB6Idd4-congenic mice, carrying wild-type TRPV1, show restored TRPV1 function and insulin sensitivity. Our data uncover a fundamental role for insulin-responsive TRPV1(+) sensory neurons in beta cell function and diabetes pathoetiology.  相似文献   

12.
Tolerance induction of autoreactive T cells against pancreatic beta cell-specific autoantigens such as glutamic acid decarboxylase 65 (GAD65) and insulin has been attempted as a method to prevent autoimmune diabetes. In this study, we investigate whether adenoassociated virus (AAV) gene delivery of multiple immunodominant epitopes expressing GAD(500-585) could induce potent immune tolerance and persistently suppress autoimmune diabetes in NOD mice. A single muscle injection of 7-wk-old female NOD mice with rAAV/GAD(500-585) (3 x 10(11) IU/mouse) quantitatively reduced pancreatic insulitis and efficiently prevented the development of overt type I diabetes. This prevention was marked by the inactivation of GAD(500-585)-responsive T lymphocytes, the enhanced GAD(500-585)-specific Th2 response (characterized by increased IL-4, IL-10 production, and decreased IFN-gamma production; especially elevated anti-GAD(500-585) IgG1 titer; and relatively unchanged anti-GAD(500-585) IgG2b titer), the increased secretion of TGF-beta, and the production of protective regulatory cells. Our studies also revealed that peptides 509-528, 570-585, and 554-546 in the region of GAD(500-585) played important roles in rAAV/GAD(500-585) immunization-induced immune tolerance. These data indicate that using AAV, a vector with advantage for therapeutic gene delivery, to transfer autoantigen peptide GAD(500-585), can induce immunological tolerance through active suppression of effector T cells and prevent type I diabetes in NOD mice.  相似文献   

13.
Several death-signaling or death-inducing molecules have been implicated in beta cell destruction, including Fas, perforin, and TNFR-1. In this study, we examined the role of each death-signaling molecule in the IL-10-accelerated diabetes of nonobese diabetic (NOD) mice. Groups of IL-10-NOD mice, each deficient in either Fas, perforin, or TNFR-1 molecules, readily developed insulitis, and subsequently succumbed to diabetes with an accelerated kinetics and incidence similar to that observed in their wild-type or heterozygous IL-10-NOD littermates. Similarly, a TNFR-2 deficiency did not block accelerated diabetes in IL-10-NOD mice and spontaneous diabetes in NOD mice. These results demonstrate that pancreatic IL-10 promotes diabetes independent of Fas, perforin, TNFR-1, and TNFR-2 molecules. Subsequently, when cyclophosphamide, a diabetes-inducing agent, was injected into insulitis-free NOD. lpr/lpr mice, none of these mice developed insulitis or diabetes. Our data suggest that cyclophosphamide- but not IL-10-induced diabetes is Fas dependent. Overall, these findings provide evidence that pancreatic expression of IL-10 promotes diabetes independent of the major death pathways and provide impetus for identification of novel death pathways precipitating autoimmune destruction of insulin-producing beta cells.  相似文献   

14.
Activated protein C (aPC) is a natural anticoagulant with strong cyto-protective and anti-inflammatory properties. aPC inhibits pancreatic inflammation and preserves functional islets after intraportal transplantation in mice. Whether aPC prevents the onset or development of type 1 diabetes (T1D) is unknown. In this study, when human recombinant aPC was delivered intraperitoneally, twice weekly for 10 weeks (from week 6 to 15) to non-obese diabetic (NOD) mice, a model for T1D, the incidence of diabetes was reduced from 70% (saline control) to 7.6% by 26 weeks of age. Islets of aPC-treated mice exhibited markedly increased expression of insulin, aPC/protein C, endothelial protein C receptor, and matrix metalloproteinase (MMP)-2 when examined by immunostaining. The insulitis score in aPC-treated mice was 50% less than that in control mice. T regulatory cells (Tregs) in the spleen, pancreatic islets, and pancreatic lymph nodes were increased 37, 53, and 59%, respectively, in NOD mice following aPC treatment. These Tregs had potent suppressor function and, after adoptive transfer, delayed diabetes onset in NOD.severe combined immunodeficiency mice. The culture of NOD mouse spleen cells with aPC reduced the secretion of inflammatory cytokines interleukin (IL)-1β and interferon-γ but increased IL-2 and transforming growth factor-β1, two cytokines required for Treg differentiation. In summary, our results indicate that aPC prevents T1D in the NOD mouse. The aPC mechanism of action is complex, involving induction of Treg differentiation, inhibition of inflammation, and possibly direct cyto-protective effects on β cells.  相似文献   

15.
Suppression of autoimmune diabetes by viral IL-10 gene transfer   总被引:11,自引:0,他引:11  
Th1 cell activation and cytokine production shift the balance between Th1 and Th2, favoring the up-regulation of proinflammatory activity that leads to destruction of insulin-producing pancreatic beta cells in type 1 diabetes. Th2-type cytokines, such as IL-10, have immune regulatory function. Administration of IL-10, or IL-10 gene transfer, prevents autoimmune diabetes in nonobese diabetic (NOD) mice. However, constant administration of purified rIL-10 is not practical for long-term therapy to prevent diabetes. In this study, we transferred the BCRF-1 gene, an open reading frame in the Epstein-Barr viral genome with remarkable homology to mouse IL-10 (viral IL-10 or vIL-10), by an adeno-associated viral (AAV) vector to NOD mice to attain sustained vIL-10 gene expression. Like endogenous mouse IL-10, vIL-10 has potent immunoregulatory and immunosuppressive functions, but can be specifically distinguished from endogenous mouse IL-10 for monitoring of the transgene expression. A single systemic administration of AAV vIL-10 significantly reduced insulitis and prevented diabetes development in NOD mice. This protective effect correlated with sustained transgene expression and protein production. Moreover, splenocytes from the treated mice blocked diabetes transfer to NOD recipients, suggesting that vIL-10 induces an active suppression of autoimmunity. This study provides evidence to support the possibility of using vIL-10 gene therapy to prevent type 1 diabetes.  相似文献   

16.
BALB/c mice that express IL-10 as a transgene in their pancreatic beta cells (Ins-IL-10 mice) do not develop diabetes, even after crossing to nonobese diabetic (NOD) mice ((Ins-IL-10 x NOD)F(1) mice). However, backcross of F(1) mice to NOD mice (NOD.Ins-IL-10 mice) results in N2 and N3 generations that develop accelerated diabetes. In this study, we found that NOD.Ins-IL-10 mice that expressed BALB/c-derived MHC molecules (NOD.Ins-IL-10(H-2(g7/d)) mice) were protected from diabetes. This protection associated with peri-islet infiltration and preserved beta cell function. Moreover, expression of I-A(d) and I-E(d) MHC class II molecules of BALB/c origin was not responsible for protection, but NOD.Ins-IL-10 mice that expressed BALB/c MHC class I D(d) molecules (NOD.Ins-IL-10(H-2(g7/d)) mice) did not develop diabetes. To directly test the possibility of a protective role of H-2D(d) in the development of accelerated diabetes, we generated transgenic mice expressing D(d) under the control of the MHC class I promoter. We found that double transgenic NOD.Ins-IL-10-D(d) mice developed accelerated diabetes in a fashion similar to NOD.Ins-IL-10 mice that were D(d) negative. Microsatellite analysis of H-2D(d)-linked loci confirmed association between BALB/c-derived alleles and protection of NOD.Ins-IL-10(H-2(g7/d)) mice. These results suggest a control of H-2D(d)-linked gene(s) on IL-10-mediated acceleration of autoimmune diabetes and dominant protection of the D(d) region in NOD.Ins-IL-10 mice.  相似文献   

17.
Type 1 diabetes acceleration in nonobese diabetic (NOD) mice through coxsackievirus B4 (CVB4) infection requires a preexisting critical mass of autoreactive T cells in pancreatic islets, and in the absence of this insulitic threshold, CVB4 infection leads to long-term disease protection. To understand this acceleration and protection process, we challenged 8- and 12-week-old NOD mice containing a disruption in interleukin-4 (IL-4) or gamma interferon (IFN-gamma) genes (NOD IL-4-/- and NOD IFN-gamma-/-, respectively) with a diabetogenic, pancreatropic Edwards strain of CVB4. The elimination of IL-4 did not alter the rate of insulitis or diabetes development in NOD mice, while the elimination of IFN-gamma delayed these events several weeks. CVB4 infection in 8-week-old mice only significantly accelerated the onset of diabetes in a subset of standard, but not IL-4- or IFN-gamma-deficient, NOD mice. Long-term diabetes protection was established in standard NOD mice as well as in the NOD IFN-gamma-/- mice that did not rapidly develop disease following CVB4 infection at 8 weeks of age. When mice were infected at 12 weeks of age, the onset of diabetes was accelerated in NOD IL-4-/- mice, while neither acceleration nor long-term protection was elicited in NOD IFN-gamma-/- mice. No differences were observed in the kinetics of CVB4 clearance in pancreases from NOD, NOD IL-4-/-, and NOD IFN-gamma-/- mice. Collectively, these results suggest that at the insulitis threshold at which CVB4 infection can first accelerate the onset of diabetes in NOD mice, IL-4 as well as IFN-gamma contributes to this pathogenic process. The protective mechanism against diabetes elicited in NOD mice infected with CVB4 prior to the development of a critical threshold level of insulitis requires neither IL-4 nor IFN-gamma.  相似文献   

18.
Expression of IL-10 transgene (tg) in pancreatic beta cells failed to induce autoimmune insulitis and diabetes in (BALB/c x NOD)F1 mice. However, IL-10-expressing tg littermates from backcrosses (N2 and N3) with NOD mice became diabetic at 5 to 10 weeks of age in an MHC-dependent manner. In this study, we tested the possibility that enhancement in frequency of islet antigen (Ag)-specific T cells overrides the protective effects of a diabetes-resistant genetic background and promotes diabetes in IL-10 tg (BALB/c x NOD)F1 mice. For this test, we introduced the IL-10 transgene into tg BDC2.5 mice expressing the islet Ag-specific Vbeta4 T cell repertoire by breeding Ins-IL-10+/BALB/c mice with BDC2.5 mice. The progeny (Ins-IL-10+/BALB/c x BDC2.5+)F1 mice doubly tg for IL-10 and Vbeta4 (BDC2.5) T cell repertoire, developed diabetes at 10 to 18 weeks of age with a much more aggressive T cell infiltrate in the pancreatic islets than in single tg mice. Surprisingly, these diabetic mice were free from acute pancreatitis but had apoptotic beta cells in the islet infiltrate. Conversely, mice tg for Vbeta4 (BDC2.5) T cell repertoire but not IL-10 had no diabetes and no apoptotic beta cells in the islet infiltrate. Therefore, an increase in the frequency of islet-specific T cells apparently overcomes the protection from diabetes by a resistant genetic background. Interestingly, N2 backcross mice doubly tg for Vbeta4 (BDC2.5) T cell repertoire and IL-10, compared to N2 backcross mice tg for IL-10 only, eventually became diabetic but with a delayed onset and reduced incidence of disease. These findings demonstrate that, along with IL-10, an increase in frequency of islet antigen-specific T cells (a) overrides the protective effect of genetic resistance to autoimmune diabetes in F1 mice and (b) delays the onset of an otherwise accelerated diabetes in (Ins-IL-10+/NOD)N2 backcross mice.  相似文献   

19.
The nonobese diabetic (NOD) mouse, a model of spontaneous insulin-dependent diabetes mellitus (IDDM), fails to express surface MHC class II I-Eg7 molecules due to a deletion in the E alpha gene promoter. E alpha-transgenic NOD mice express the E alpha E beta g7 dimer and fail to develop either insulitis or IDDM. A number of hypotheses have been proposed to explain the mechanisms of protection, most of which require peptide binding to I-Eg7. To define the requirements for peptide binding to I-Eg7, we first identified an I-Eg7-restricted T cell epitope corresponding to the sequence 4-13 of Mycobacterium tuberculosis 65-kDa heat shock protein (hsp). Single amino acid substitutions at individual positions revealed a motif for peptide binding to I-Eg7 characterized by two primary anchors at relative position (p) 1 and 4, and two secondary anchors at p6 and p9. This motif is present in eight of nine hsp peptides that bind to I-Eg7 with high affinity. The I-Eg7 binding motif displays a unique p4 anchor compared with the other known I-E motifs, and major differences are found between I-Eg7 and I-Ag7 binding motifs. Analysis of peptide binding to I-Eg7 and I-Ag7 molecules as well as proliferative responses of draining lymph node cells from hsp-primed NOD and E alpha-transgenic NOD mice to overlapping hsp peptides revealed that the two MHC molecules bind different peptides. Of 80 hsp peptides tested, none bind with high affinity to both MHC molecules, arguing against some of the mechanisms hypothesized to explain protection from IDDM in E alpha-transgenic NOD mice.  相似文献   

20.
NOD mice spontaneously develop diabetic syndrome similar to that of insulin-dependent diabetes mellitus in man. Insulitis, i.e., lymphocytic infiltration into the pancreatic islets is the etiologic pathological lesion in the development of diabetes mellitus in NOD mice. In the present study, we examined the role of the T cell in the development of insulitis and overt diabetes in NOD mice using NOD athymic and euthymic congenic mice. None of the NOD athymic mice developed insulitis at 9 weeks of age or overt diabetes up to 30 weeks of age. In contrast, NOD euthymic littermates showed almost the same incidences of insulitis and overt diabetes as those of NOD mice. These observations suggest that T cells are essential for the development of insulitis and overt diabetes in NOD mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号