首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most patients with rheumatoid arthritis (RA) express HLA-DR4, HLA-DR1 or HLA-DR10. These alleles share a common amino acid motif in their third hypervariable regions: the shared epitope. In normals and patients with RA, HLA-DR genes exert a major influence on the CD4 alpha beta T-cell repertoire, as shown by studies of AV and BV gene usage and by BV BJ gene usage by peripheral blood CD4 alpha beta T-cells. However, the rheumatoid T-cell repertoire is not entirely under HLA-DR influence, as demonstrated by discrepancies in VB JB gene usage between identical twins discordant for RA and by contraction of the CD4 alpha beta T-cell repertoire in RA patients. Shared epitope positive HLA-DR alleles may shape the T-cell repertoire by presenting self peptides to CD4 T cells in the thymus. Peptides processed from HLA-DR molecules and encompassing the shared epitope may also be presented by HLA-DQ and select CD4 alpha beta T cells in the thymus. Thus, shared epitope-positive alleles impose a frame on the T-cell repertoire. This predisposing frame is further modified (by unknown factors) to obtain the contracted rheumatoid repertoire.  相似文献   

2.
Several HLA-DR alleles are genetically associated with rheumatoid arthritis. DRB1*0401 predominates in Northern Europe and has a characteristic (70)QKRAA motif. This sequence contacts bound peptides and the TCR. Further interactions have been suggested with additional proteins during Ag loading. We explored the much stronger processing/presentation of full-length recombinant human acetylcholine receptor alpha subunit to a specific T cell clone by APC from DRB1*0401+ than *0408+ donors. Using DR*04 transfectants, we show that this difference results largely from the single Lys71<-->Arg interchange (0401<-->0408), which scarcely affects epitope binding, rather than from any other associated polymorphism. Furthermore, we proved our recombinant polypeptides to contain the Escherichia coli 70-kDa heat shock protein molecule DnaK and its requirement for efficient processing and presentation of the epitope by DRB1*0401+ cells. According to a recent report, 70-kDa heat shock protein chaperones preferentially bind to the QKRAA, rather than the QRRAA, motif. Variations between the shared epitope motifs QKRAA and QRRAA are emphasized by underlining. We propose that such interactions enhance the intracellular epitope loading of *0401 molecules. They may thus broaden immune responses to pathogens and at least partially explain the distinct contributions of DRB1*0401 and other alleles to disease predisposition.  相似文献   

3.
Most patients with rheumatoid arthritis (RA) express HLA-DR4, HLA-DR1 or HLA-DR10. These alleles share a common amino acid motif in their third hypervariable regions: the shared epitope. In normals and patients with RA, HLA-DR genes exert a major influence on the CD4 αβ T-cell repertoire, as shown by studies of AV and BV gene usage and by BV BJ gene usage by peripheral blood CD4 αβ T-cells. However, the rheumatoid T-cell repertoire is not entirely under HLA-DR influence, as demonstrated by discrepancies in VB JB gene usage between identical twins discordant for RA and by contraction of the CD4 αβ T-cell repertoire in RA patients. Shared epitope positive HLA-DR alleles may shape the T-cell repertoire by presenting self peptides to CD4 T cells in the thymus. Peptides processed from HLA-DR molecules and encompassing the shared epitope may also be presented by HLA-DQ and select CD4 αβ T cells in the thymus. Thus, shared epitope-positive alleles impose a frame on the T-cell repertoire. This predisposing frame is further modified (by unknown factors) to obtain the contracted rheumatoid repertoire.  相似文献   

4.

Introduction  

Rheumatoid arthritis (RA) is a complex polygenic disease of unknown etiology. HLA-DRB1 alleles encoding the shared epitope (SE) (RAA amino acid pattern in positions 72 to 74 of the third hypervariable region of the DRβ1 chain) are associated with RA susceptibility. A new classification of HLA-DRB1 SE alleles has been developed by Tezenas du Montcel and colleagues to refine the association between HLA-DRB1 and RA. In the present study, we used RA samples collected worldwide to investigate the relevance of this new HLA-DRB1 classification in terms of RA susceptibility across various Caucasoid and non-Caucasoid patients.  相似文献   

5.
Rheumatoid arthritis (RA) is genetically associated with MHC class II molecules that contain the shared epitope. These MHC molecules may participate in disease pathogenesis by selectively binding arthritogenic peptides for presentation to autoreactive CD4(+) T cells. The nature of the arthritogenic Ag is not known, but recent work has identified posttranslationally modified proteins containing citrulline (deiminated arginine) as specific targets of the IgG Ab response in RA patients. To understand how citrulline might evoke an autoimmune reaction, we have studied T cell responses to citrulline-containing peptides in HLA-DRB1*0401 transgenic (DR4-IE tg) mice. In this study, we demonstrate that the conversion of arginine to citrulline at the peptide side-chain position interacting with the shared epitope significantly increases peptide-MHC affinity and leads to the activation CD4(+) T cells in DR4-IE tg mice. These results reveal how DRB1 alleles with the shared epitope could initiate an autoimmune response to citrullinated self-Ags in RA patients.  相似文献   

6.

Introduction  

The revised shared epitope (SE) concept in rheumatoid arthritis (RA) is based on the presence (S) or absence (X) of the SE RAA amino acid motif at positions 72 to 74 of the third hypervariable region of the various human leucocyte antigen (HLA)-DRB1 alleles. The purpose of this study was to investigate SE subtypes on the basis of the American College of Rheumatology 1987 revised criteria for the classification of RA in a cohort of South African RA patients (n = 143) and their association with clinical and circulating biomarkers of disease activity (autoantibodies, acute phase reactants and cytokines).  相似文献   

7.
Exogenously delivered antigenic peptides complexed to heat shock proteins (HSPs) are able to enter the endogenous Ag-processing pathway and prime CD8+ CTL. It was determined previously that a hybrid peptide containing a MHC class I-binding epitope and HSP70-binding sequence Javelin (J0) in complex with HSP70 could induce cytotoxic T cell responses in vivo that were more robust than those induced by the minimal epitope complexed with HSP70. The present study introduces a novel, higher-affinity HSP70-binding sequence (J1) that significantly enhances binding of various antigenic peptides to HSP70. A competition binding assay revealed a dissociation constant that was 15-fold lower for the H2-K(b) OVA epitope SIINFEKL-J1 compared with SIINFEKL-J0, indicating a substantially higher affinity for HSP70. Further, modifying the orientation of the hybrid epitope and introducing a cleavable linker sequence between the Javelin and the epitope results in even greater immunogenicity, presumably by greater efficiency of epitope processing. The enhanced immunogenicity associated with Javelin J1 and the cleavable linker is consistently observed with multiple mouse and human epitopes. Thus, by creating a series of epitopes with uniform, high-affinity binding to HSP70, successful multiple epitope immunizations are possible, with equal delivery of each antigenic epitope to the immune system via HSP70. These modified epitopes have the potential for creating successful multivalent vaccines for immunotherapy of both infectious disease and cancer.  相似文献   

8.
APCs process mammalian heat shock protein (HSP):peptide complexes to present HSP-chaperoned peptides on class I MHC (MHC-I) molecules to CD8(+) T cells. HSPs are also expressed in prokaryotes and chaperone microbial peptides, but the ability of prokaryotic HSPs to contribute chaperoned peptides for Ag presentation is unknown. Our studies revealed that exogenous bacterial HSPs (Escherichia coli DnaK and Mycobacterium tuberculosis HSP70) delivered an extended OVA peptide for processing and MHC-I presentation by both murine macrophages and dendritic cells. HSP-enhanced MHC-I peptide presentation occurred only if peptide was complexed to the prokaryotic HSP and was dependent on CD91, establishing CD91 as a receptor for prokaryotic as well as mammalian HSPs. Inhibition of cytosolic processing mechanisms (e.g., by transporter for Ag presentation deficiency or brefeldin A) blocked HSP-enhanced peptide presentation in dendritic cells but not macrophages. Thus, prokaryotic HSPs deliver chaperoned peptide for alternate MHC-I Ag processing and cross-presentation via cytosolic mechanisms in dendritic cells and vacuolar mechanisms in macrophages. Prokaryotic HSPs are a potential source of microbial peptide Ags during phagocytic processing of bacteria during infection and could potentially be incorporated in vaccines to enhance presentation of peptides to CD8(+) T cells.  相似文献   

9.
The three-dimensional structure for the substrate-binding domain of the mammalian chaperone protein Hsc70 of the 70 kDa heat shock class (HSP70) is presented. This domain includes residues 383-540 (18 kDa) and is necessary for the binding of the chaperone with substrate proteins and peptides. The high-resolution NMR solution structure is based on 4150 experimental distance constraints leading to an average root-mean-square precision of 0.38 A for the backbone atoms and 0.76 A for all atoms in the beta-sandwich sub-domain. The protein is observed to bind residue Leu539 in its hydrophobic substrate-binding groove by intramolecular interaction. The position of a helical latch differs dramatically from what is observed in the crystal and solution structures of the homologous prokaryotic chaperone DnaK. In the Hsc70 structure, the helix lies in a hydrophobic groove and is anchored by a buried salt-bridge. Residues involved in this salt-bridge appear to be important for the allosteric functioning of the protein. A mechanism for interdomain allosteric modulation of substrate-binding is proposed. It involves large-scale movements of the helical domain, redefining the location of the hinge area that enables such motions.  相似文献   

10.
Interaction between heat shock proteins and antimicrobial peptides   总被引:14,自引:0,他引:14  
Drosocin, pyrrhocoricin, and apidaecin, representing the short (18-20 amino acid residues) proline-rich antibacterial peptide family, originally isolated from insects, were shown to act on a target bacterial protein in a stereospecific manner. Native pyrrhocoricin and one of its analogues designed for this purpose protect mice from bacterial challenge and, therefore, may represent alternatives to existing antimicrobial drugs. Furthermore, this mode of action can be a basis for the design of a completely novel set of antibacterial compounds, peptidic or peptidomimetic, if the interacting bacterial biopolymers are known. Recently, apidaecin was shown to enter Escherichia coli and subsequently kill bacteria through sequential interactions with diverse target macromolecules. In this paper report, we used biotin- and fluorescein-labeled pyrrhocoricin, drosocin, and apidaecin analogues to identify biopolymers that bind to these peptides and are potentially involved in the above-mentioned multistep killing process. Through use of a biotin-labeled pyrrhocoricin analogue, we isolated two interacting proteins from E. coli. According to mass spectrometry, Western blot, and fluorescence polarization, the short, proline-rich peptides bound to DnaK, the 70-kDa bacterial heat shock protein, both in solution and on the solid-phase. GroEL, the 60-kDa chaperonin, also bound in solution. Control experiments with an unrelated labeled peptide showed that while binding to DnaK was specific for the antibacterial peptides, binding to GroEL was not specific for these insect sequences. The killing of bacteria and DnaK binding are related events, as an inactive pyrrhocoricin analogue made of all-D-amino acids failed to bind. The pharmaceutical potential of the insect antibacterial peptides is underscored by the fact that pyrrhocoricin did not bind to Hsp70, the human equivalent of DnaK. Competition assay with unlabeled pyrrhocoricin indicated differences in GroEL and DnaK binding and a probable two-site interaction with DnaK. In addition, all three antibacterial peptides strongly interacted with two bacterial lipopolysaccharide (LPS) preparations in solution, indicating that the initial step of the bacterial killing cascade proceeds through LPS-mediated cell entry.  相似文献   

11.
In order to investigate the HLA component involved in rheumatoid arthritis (RA), we tested genetic models by the marker association-segregation chi 2 (MASC) method, using the HLA genotypic distribution observed in a sample of 97 RA patients. First we tested models assuming the involvement of a susceptibility gene linked to the DR locus. We showed that the present data are compatible with a simple model assuming the effect of a recessive allele of a biallelic locus linked to the DR locus and without any assumption of synergistic effect. Then we considered models assuming the direct involvement of the DR allele products, and we tested the unifying-shared-epitope hypothesis, which has been proposed. Under this hypothesis the DR alleles are assumed to be directly involved in the susceptibility to the disease because of the presence of similar or identical amino acid sequences in position 70-74 of the third hypervariable region of the DRBI molecules, shared by the RA-associated DR alleles DR4Dw4, DR4Dw14, and DR1. This hypothesis was strongly rejected with the present data. In the case of the direct involvement of the DR alleles, hypotheses more complex than the unifying-shared-epitope hypothesis would have to be considered.  相似文献   

12.
Certain HLA-DR alleles confer strong susceptibility to the autoimmune disease rheumatoid arthritis (RA). We compared RA-associated alleles, HLA-DR*0401, HLA-DR*0404, and HLA-DR*0405, with closely related, non-RA-associated alleles, HLA-DR*0402 and HLA-DR*0403, to determine whether they differ in their interactions with the class II chaperone, invariant chain (Ii). Ii binds to class II molecules in the endoplasmic reticulum, inhibits binding of other ligands, and directs class II-Ii complexes to endosomes, where Ii is degraded to class II-associated Ii peptide (CLIP). To evaluate the interaction of Ii and CLIP with these DR4 alleles, we introduced HLA-DR*0401, *0402, and *0404 alleles into a human B cell line that lacked endogenous HLA-DR or HLA-DM molecules. In a similar experiment, we introduced HLA-DR*0403 and *0405 into an HLA-DM-expressing B cell line, 8.1.6, and its DM-negative derivative, 9.5.3. Surface abundance of DR4-CLIP peptide complexes and their susceptibility to SDS-induced denaturation suggested that the different DR4-CLIP complexes had different stabilities. Pulse-chase experiments showed CLIP dissociated more rapidly from RA-associated DR molecules in B cell lines. In vitro assays using soluble rDR4 molecules showed that DR-CLIP complexes of DR*0401 and DR*0404 were less stable than complexes of DR*0402. Using CLIP peptide variants, we mapped the reduced CLIP interaction of RA-associated alleles to the shared epitope region. The reduced interaction of RA-associated HLA-DR4 molecules with CLIP may contribute to the pathophysiology of autoimmunity in RA.  相似文献   

13.
APCs process heat shock protein (HSP):peptide complexes to present HSP-chaperoned peptides on class I MHC molecules, but the ability of HSPs to contribute chaperoned peptides for class II MHC (MHC-II) Ag processing and presentation is unclear. Our studies revealed that exogenous bacterial HSPs (Escherichia coli DnaK and Mycobacterium tuberculosis HSP70) delivered an extended OVA peptide for processing and MHC-II presentation, as detected by T hybridoma cells. Bacterial HSPs enhanced MHC-II presentation only if peptide was complexed to the HSP, suggesting that the key HSP function was enhanced delivery or processing of chaperoned peptide Ag rather than generalized enhancement of APC function. HSP-enhanced processing was intact in MyD88 knockout cells, which lack most TLR signaling, further suggesting the effect was not due to TLR-induced induction of accessory molecules. Bacterial HSPs enhanced uptake of peptide, which may contribute to increased MHC-II presentation. In addition, HSPs enhanced binding of peptide to MHC-II molecules at pH 5.0 (the pH of vacuolar compartments), but not at pH 7.4, indicating another mechanism for enhancement of MHC-II Ag processing. Bacterial HSPs are a potential source of microbial peptide Ags during phagocytic processing of bacteria during infection and could potentially be incorporated in vaccines to enhance presentation of peptides to CD4+ T cells.  相似文献   

14.
Mitochondrial heat shock protein 70 (mt-hsp70) functions as a molecular chaperone in mitochondrial biogenesis. The chaperone in co-operation with its co-proteins acts as a translocation motor pulling the mitochondrial precursor into the matrix. Mt-hsp70s are highly conserved when compared to the bacterial hsp70 homologue, DnaK. Here we have used DnaK as a model to study the interaction of mitochondrial presequences with mt-hsp70 applying a DnaK-binding algorithm, computer modeling and biochemical investigations. DnaK-binding motifs have been analysed on all available, statistically relevant mitochondrial presequences found in the OWL database by running the algorithm. A total of 87 % of mammalian, 97 % of plant, 71 % of yeast and 100 % of Neurospora crassa presequences had at least one DnaK binding site. Based on the prediction, five 13-mer presequence peptides have been synthesized and their inhibitory effect on the molecular chaperone (DnaK/DnaJ/GrpE) assisted refolding of luciferase has been analysed. The peptide with the highest predicted binding likelihood showed the strongest inhibitory effect, whereas the peptide with no predicted binding capacity showed no inhibitory effect. A 3D structure of the pea mt-hsp70 has been constructed using homology modeling. The binding affinities of the 13-mer presequence peptides and additional control peptides to DnaK and pea mt-hsp70 have been theoretically estimated by calculating the buried hydrophobic surface area of the peptides docked to DnaK and to the mt-hsp70 structural model. These results suggest that mitochondrial presequences interact with the mt-hsp70 during or after mitochondrial protein import.  相似文献   

15.
Background: Allergic and autoimmune diseases are forms of altered immune responses directed respectively against exogenous and endogenous antigens. A growing body of experimental evidence exists to support a com-mon pathogenetic link between allergy and autoimmunity. Identification of shared antigens might thus be usefully exploited in the therapy of both conditions. The allergy to cat allergens is very common and fre-quently associated with asthma. Sequences of the main cat allergen Fel d1, containing overlapping T cell epitopes that bind to HLA molecules, have been used as an effective allergen-specific peptide vaccine. It has been observed that human proteins identified as cross-reactive auto-antigens with structural homology with environmental allergens often belong to evolutionarily conserved proteins.Heat shock proteins (HSPs) are among the most conserved proteins and some of them have been recog-nized as antigens in autoimmune diseases and also as the main proteins of environmental allergens. We performed an extensive “in silico” analysis to test the hypothesis that the human HSPs Grp94, Grp78, HSP90, HSP71 and HSP60 could show similarity with both Fel d1 and other common allergens, thus serv-ing as a source of peptides in a broad-spectrum allergen-specific immuno-therapy.Results: An extensive structural similarity was observed between Fel d1 and sequences of HSP71, Grp78, HSP90 and Grp94. These HSP sequences contained T-cell epitopes with binding capacity to HLA alleles better than that displayed by corresponding similar Fel d1-derived peptides employed so far as therapeutic vac-cines. A significant similarity was also found between these HSP sequences and other aeroallergens, not shared by Fel d1-derived peptides. HLA alleles involved in binding HSP sequences were mostly those as-sociated with an increased predisposition to both allergy and autoimmune diseases.Conclusion: Results support the possibility that HSP-derived immuno-dominant epitopes are exploitable as therapeutic peptides in allergies other than cat allergy.  相似文献   

16.
In humans, HLA-DR alleles sharing amino acids at the third hypervariable region with DRB1*0401(shared epitope) are associated with a predisposition to rheumatoid arthritis, whereas DRB1*0402 is not associated with such a predisposition. Both DRB1*0402 and DRB1*0401 occur in linkage with DQ8 (DQB1*0302). We have previously shown that transgenic (Tg) mice expressing HLA-DRB1*0401 develop collagen-induced arthritis. To delineate the role of "shared epitope" and gene complementation between DR and DQ in arthritis, we generated DRB1*0402, DRB1*0401.DQ8, and DRB1*0402.DQ8 Tg mice lacking endogenous class II molecules, AE(o). DRB1*0402 mice are resistant to develop arthritis. In double-Tg mice, the DRB1*0401 gene contributes to the development of collagen-induced arthritis, whereas DRB1*0402 prevents the disease. Humoral response to type II collagen is not defective in resistant mice, although cellular response to type II collagen is lower in *0402 mice compared with *0401 mice. *0402 mice have lower numbers of T cells in thymus compared with *0401 mice, suggesting that the protective effect could be due to deletion of autoreactive T cells. Additionally, DRB1*0402 mice have a higher number of regulatory T cells and show increased activation-induced cell death, which might contribute toward protection. In DRB1*0401.DQ8 mice, activated CD4(+) T cells express class II genes and can present DR4- and DQ8-restricted peptides in vitro, suggesting a role of class II(+) CD4 T cells locally in the joints. The data suggest that polymorphism in DRB1 genes determines predisposition to develop arthritis by shaping the T cell repertoire in thymus and activating autoreactive or regulatory T cells.  相似文献   

17.
This issue of Arthritis Research and Therapy contains a succinct and elegant paper by Michou and colleagues that advances our understanding of the genetic basis of rheumatoid arthritis (RA) by reclassifying the contribution of RA susceptibility alleles according to their structure. This line of research is potentially important in our conceptualization of the mechanism of disease in RA, in predicting disease course and severity, and as a model for further studies on this topic. The author's approach to reassessing the molecular structure of the shared epitope redirects attention to using the binding properties of the major histocompatibility complex molecules associated with susceptibility to search for the peptides driving the autoimmune process underlying rheumatoid arthritis  相似文献   

18.
J Krska  T Elthon    P Blum 《Journal of bacteriology》1993,175(20):6433-6440
The isolation and characterization of a monoclonal antibody (MAb 2G5) specific for the bacterial DnaK (HSP70) protein is described. The 2G5 MAb was initially selected because of its ability to bind to DnaK under denaturing conditions. Isotype analyses indicated that 2G5 was an immunoglobulin G2a. Dose-response Western blot (immunoblot) experiments with purified but unconcentrated 2G5 permitted detection of 10 ng of pure DnaK protein. The DnaK epitope was determined by Western blot analysis of a series of truncated DnaK fragments overproduced in Escherichia coli using 5' and 3' dnaK-deleted expression plasmids. The epitope mapped to a 22-amino-acid region spanning DnaK residues 288 and 310. Phylogenetic distribution of the epitope was examined by Western blot analysis of a wide variety of bacterial species and indicated that the epitope was uniquely present in gram-negative organisms. The proximity of the epitope to the presumed DnaK ATP-binding pocket suggested that MAb binding might inhibit DnaK ATPase activity. In vitro analysis supported this prediction and demonstrated that MAb-mediated inhibition of ATPase activity was antibody specific and occurred at stoichiometric molar ratios of MAb to DnaK. Possible mechanisms to explain the ability of the 2G5 MAb to inhibit DnaK activity are discussed.  相似文献   

19.
We have cloned a human gene encoding the 70,000-dalton heat shock protein (HSP70) from a human genomic library, using the Drosophila HSP70 gene as a heterologous hybridization probe. The human recombinant clone hybridized to a 2.6-kilobase polyadenylated mRNA from HeLa cells exposed to 43 degrees C for 2 h. The 2.6-kilobase mRNA was shown to direct the translation in vitro of a 70,000-dalton protein similar in electrophoretic mobility to the HSP70 synthesized in vivo. From the analysis of S1 nuclease-resistant mRNA-DNA hybrids, the HSP70 gene appears to be transcribed as an uninterrupted mRNA of 2.3 kilobases. We show that the cloned HSP70 gene contains the sequences necessary for heat shock-induced expression by two criteria. First, hamster cells transfected with a subclone containing the HSP70 gene and flanking sequences synthesized a HSP70-like protein upon heat shock. Second, human cells transfected with a chimeric gene containing the 5' flanking sequences of the HSP70 gene and the coding sequences of the bacterial chloramphenicol acetyltransferase gene transcribed the chimeric gene upon heat shock. We show that the HSP70 mRNA transcribed in an adenovirus 5 transformed human cell line (293 cells) is identical to the HSP70 mRNA induced by heat shock.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号