首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Excision repair was studied in normal human and ataxia telangiectasia (AT) cells proficient in repair of UV and its mimetic chemicals, and in xeroderma pigmentosum group C (XP C) cells (deficient in repair of UV and its mimetics), after treatment with several combinations of chemical carcinogens, by the photolysis of bromodeoxyuridine incorporated into parental DNA during repair. Results indicate that repair was additive in AT, and XP C cells treated with N-acetoxy-2-acetylaminofluorene (AAAF) plus ethyl methanesulfonate (EMS) or methyl methanesulfonate (MMS) indicating that there are different rate limiting steps for removal of both types of damage. Data on the combinations of 4-nitroquinoline 1-oxide (4NQO) plus MMS or EMS are difficult to interpret, but they do not indicate inhibition of DNA repair.Research carried out under the auspices of the U.S. Dept. of Energy  相似文献   

2.
Neural retinas of 6-day-old chick embryos synthesize DNA and are able to carry out DNA excision repair. However, in contrast to the situation in human cells, the maximum rate of repair induced by N-acetoxy acetylaminofluorene (AAAF) is no greater than that induced by methyl methanesulfonate (MMS). With advancing differentiation of the retina in the embryo, cell multiplication and DNA synthesis decline and cease, and concurrently the cells lose the ability to carry out DNA excision repair. Thus, in 15-16-day embryos, in which the level of DNA synthesis is very low, DNA repair is barely detectable. If retinas from 14-day embryos are dissociated with trypsin and the cell suspension is plated in growth- promoting medium, DNA synthesis is reinitiated; however, in these cultures there is no detectable repair of MMS-induced damage, and only low levels of repair are observed after treatment with AAAF. A cell line was produced, by repeated passaging of these cultures, in which the cell population reached a steady state of DNA replication. However, the cell population remained deficient in the ability to repair MMS-induced damage. This cell line most likely predominantly comprises cells of retino-glial origin. Possible correlations between deficiency in DNA repair mechanisms in replicating cells and carcinogenesis in neural tissues are discussed.  相似文献   

3.
The regulation of nucleotide excision repair and base excision repair by normal and repair deficient human cells was determined. Synchronous cultures of WI-38 normal diploid fibroblasts and Xeroderma pigmentosum fibroblasts (complementation group D) (XP-D) were used to investigate whether DNA repair pathways were modulated during the cell cycle. Two criteria were used: (1) unscheduled DNA synthesis (UDS) in the presence of hydroxyurea (HU) after exposure to UV light or after exposure to N-acetoxy-acetylaminofluorene (N-AcO-AAF) to quantitate nucleotide excision repair or UDS after exposure to methylmethane sulfonate (MMS) to measure base excision repair; (2) repair replication into parental DNA in the absence of HU after exposure to UV light. Nucleotide excision repair after UV irradiation was induced in WI-38 fibroblasts during the cell cycle reaching a maximum in cultures exposed 14–15 h after cell stimulation. Similar results were observed after exposure to N-AcO-AAF. DNA repair was increased 2–4-fold after UV exposure and was increased 3-fold after N-AcO-AAF exposure. In either instance nucleotide excision repair was sequentially stimulated prior to the enhancement of base excision repair which was stimulated prior to the induction of DNA replication. In contrast XP-D failed to induce nucleotide excision repair after UV irradiation at any interval in the cell cycle. However, base excision repair and DNA replication were stimulated comparable to that enhancement observed in WI-38 cells. The distinctive induction of nucleotide excision repair and base excision repair prior to the onset of DNA replication suggests that separate DNA repair complexes may be formed during the eucaryotic cell cycle.  相似文献   

4.
Lymphoblastoid cell lines (LCLs) established from chromosomal breakage syndromes or related genetic disorders have been used to study the effects of mutagens on human lymphoid cells. The disorders studied include xeroderma pigmentosum, ataxia telangiectasia, Fanconi's anemia, Bloom's syndrome and Cockayne's syndrome. Three approaches were used to assess the cells' ability to cope with a particular mutagen: (1) assaying recovery of DNA snythetic capabilities as measured by [3H]thymidine (dT) incorporation; (2) measurements of classical excision DNA repair by isopyknic sedimentation of DNA density labeled with 5-bromo-2-deoxyuridine (BrdU); (3) determining cell survival by colony formation in microtiter plates. LCLs established from xeroderma pigmentosum showed increased sensitivities to ultraviolet (354 nm) light and N-acetoxy-2-acetylaminofluorene (AAAF) as determined by DNA synthesis or colony formation and had diminished levels of excision-repair. Cockayne's syndrome LCLs, on the other hand, had increased sensitivities to ultraviolet (UV) light, AAAF and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) while showing near normal levels of DNA-repair after treatment with each agent. An LCL established from ataxia telangiectasia had decreased DNA repair synthesis and defective colony-forming ability following treatment with MNNG. LCLs, in addition to ease of establishment, appear likely to provide useful material for the study of DNA repair replication and its relationship to carcinogenesis.  相似文献   

5.
Poly(ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme that is activated by binding to DNA breaks induced by ionizing radiation or through repair of altered bases in DNA by base excision repair. Mice lacking PARP-1 and, in certain cases, the cells derived from these mice exhibit hypersensitivity to ionizing radiation and alkylating agents. In this study we investigated base excision repair in cells lacking PARP-1 in order to elucidate whether their augmented sensitivity to DNA damaging agents is due to an impairment of the base excision repair pathway. Extracts prepared from wild-type cells or cells lacking PARP-1 were similar in their ability to repair plasmid DNA damaged by either X-rays (single-strand DNA breaks) or by N-methyl-N′-nitro-N-nitrosoguanidine (methylated bases). In addition, we demonstrated in vivo that PARP-1-deficient cells treated with N-methyl-N′-nitro-N-nitrosoguanidine repaired their genomic DNA as efficiently as wild-type cells. Therefore, we conclude that cells lacking PARP-1 have a normal capacity to repair single-strand DNA breaks inflicted by X-irradiation or breaks formed during the repair of modified bases. We propose that the hypersensitivity of PARP-1 null mutant cells to γ-irradiation and alkylating agents is not directly due to a defect in DNA repair itself, but rather results from greatly reduced poly(ADP-ribose) formation during base excision repair in these cells.  相似文献   

6.
DNA polymerase beta is required in mammalian cells for the predominant pathway of base excision repair involving single nucleotide gap filling DNA synthesis. Here we examine the relationship between oxidative stress, cellular levels of DNA polymerase beta and base excision repair capacity in vitro , using mouse monocytes and either wild-type mouse fibroblasts or those deleted of the DNA polymerase beta gene. Treatment with an oxidative stress-inducing agent such as hydrogen peroxide, 3-morpholinosydnonimine, xanthine/xanthine oxidase or lipopolysaccharide was found to increase the level of DNA polymerase beta in both monocytes and fibroblasts. Base excision repair capacity in vitro , as measured in crude cell extracts, was also increased by lipopolysaccharide treatment in both cell types. In monocytes lipopolysaccharide-mediated up-regulation of the base excision repair system correlated with increased resistance to the monofunctional DNA alkylating agent methyl methanesulfonate. By making use of a quantitative PCR assay to detect lesions in genomic DNA we show that lipopolysaccharide treatment of fibroblast cells reduces the incidence of spontaneous DNA lesions. This effect may be due to the enhanced DNA polymerase beta-dependent base excision repair capacity of the cells, because a similar decrease in DNA lesions was not observed in cells deficient in base excision repair by virtue of DNA polymerase beta gene deletion. Similarly, fibroblasts treated with lipopolysaccharide were more resistant to methyl methanesulfonate than untreated cells. This effect was not observed in cells deleted of the DNA polymerase beta gene. These results suggest that the DNA polymerase beta-dependent base excision repair pathway can be up-regulated by oxidative stress-inducing agents in mouse cell lines.  相似文献   

7.
Poly(ADP-ribose) polymerase (PARP-1) is an abundant nuclear protein with a high affinity for single- and double-strand DNA breaks. Its binding to strand breaks promotes catalysis of the covalent modification of nuclear proteins with poly(ADP-ribose) synthesised from NAD(+). PARP-1-knockout cells are extremely sensitive to alkylating agents, suggesting the involvement of PARP-1 in base excision repair; however, its role remains unclear. We investigated the dependence of base excision repair pathways on PARP-1 and NAD(+) using whole cell extracts derived from normal and PARP-1 deficient mouse cells and DNA substrates containing abasic sites. In normal extracts the rate of repair was highly dependent on NAD(+). We found that in the absence of NAD(+) repair was slowed down 4-6-fold after incision of the abasic site. We also established that in extracts from PARP-1 deficient mouse cells, repair of both regular and reduced abasic sites was increased with respect to normal extracts and was NAD(+)-independent, suggesting that in both short- and long-patch BER PARP-1 slows down, rather than stimulates, the repair reaction. Our data support the proposal that PARP-1 does not play a major role in catalysis of DNA damage processing via either base excision repair pathway.  相似文献   

8.
Benzoylated naphthoylated DEAE-cellulose columns can be used to separate DNA growing point regions from the bulk of the DNA. We used the columns to estimate DNA excision repair in both fractions. Repair induced by acetoxy acetyl aminofluorene (AAAF), bromomethyl benz(alpha) anthracene (BMBA), and methyl methanesulfonate (MMS) occurs to an equal extent in growing point and non-replicating regions of the DNA. Excision repair induced by methyl nitrosourea (MNNU) and methyl nitronitrosoguanidine (MNNG) occurs to a greater extent in growing point regions of the DNA. The overall amount of methyl nitronitrosoguanidine-induced alkylation is the same for replicating and non-replicating regions of the DNA treated in vitro. We conclude that there is some special interaction between methyl-nitronitrosoguanidine and the growing point region in vivo. We suppose that strand displacement and branch migration return DNA lesions at the growing point to a double stranded configuration at which repair is possible.  相似文献   

9.
DNA polymerase lambda (pol lambda) is a member of the X family of DNA polymerases that has been implicated in both base excision repair and non-homologous end joining through in vitro studies. However, to date, no phenotype has been associated with cells deficient in this DNA polymerase. Here we show that pol lambda null mouse fibroblasts are hypersensitive to oxidative DNA damaging agents, suggesting a role of pol lambda in protection of cells against the cytotoxic effects of oxidized DNA. Additionally, pol lambda co-immunoprecipitates with an oxidized base DNA glycosylase, single-strand-selective monofunctional uracil-DNA glycosylase (SMUG1), and localizes to oxidative DNA lesions in situ. From these data, we conclude that pol lambda protects cells against oxidative stress and suggest that it participates in oxidative DNA damage base excision repair.  相似文献   

10.
The repair kinetics for rejoining of DNA single- and double-strand breaks after exposure to UVC or gamma radiation was measured in cells with deficiencies in DNA ligase activities and in their normal counterparts. Human 46BR cells were deficient in DNA ligase I. Hamster EM9 and EM-C11 cells were deficient in DNA ligase III activity as a consequence of mutations in the XRCC1 gene. Hamster XR-1 cells had mutation in the XRCC4 gene, whose product stimulates DNA ligase IV activity. DNA single- and double-strand breaks were assessed by the comet assay in alkaline conditions and by the technique of graded-field gel electrophoresis in neutral conditions, respectively. 46BR cells, which are known to re-ligate at a reduced rate the DNA single-strand breaks incurred during processing of damage induced by UVC but not gamma radiation, were shown to have a normal repair of radiation-induced DNA double-strand breaks. EM9 cells exhibited a reduced rate of rejoining of DNA single-strand breaks after exposure to ionizing radiation, as reported previously, as well as UVC radiation. EM-C11 cells were deficient in the repair of radiation-induced-DNA single-strand breaks but, in contrast to EM9 cells, demonstrated the same kinetics as the parental cell line in the resealing of DNA breaks resulting from exposure to UVC radiation. Both EM9 and EM-C11 cells displayed a significant defect in rejoining of radiation-induced-DNA double-strand breaks. XR-1 cells were confirmed to be highly deficient in the repair of radiation-induced DNA double-strand breaks but appeared to rejoin DNA single-strand breaks after UVC and gamma irradiation at rates close to normal. Taken together these results indicate that: (1) DNA ligase I is involved only in nucleotide excision repair; (2) DNA ligase IV plays an important role only in repair of DNA double-strand breaks; and (3) DNA ligase III is implicated in base excision repair and in repair of DNA double-strand breaks, but probably not in nucleotide excision repair.  相似文献   

11.
Cells deficient in the Werner syndrome protein (WRN) or BRCA1 are hypersensitive to DNA interstrand cross-links (ICLs), whose repair requires nucleotide excision repair (NER) and homologous recombination (HR). However, the roles of WRN and BRCA1 in the repair of DNA ICLs are not understood and the molecular mechanisms of ICL repair at the processing stage have not yet been established. This study demonstrates that WRN helicase activity, but not exonuclease activity, is required to process DNA ICLs in cells and that WRN cooperates with BRCA1 in the cellular response to DNA ICLs. BRCA1 interacts directly with WRN and stimulates WRN helicase and exonuclease activities in vitro. The interaction between WRN and BRCA1 increases in cells treated with DNA cross-linking agents. WRN binding to BRCA1 was mapped to BRCA1 452–1079 amino acids. The BRCA1/BARD1 complex also associates with WRN in vivo and stimulates WRN helicase activity on forked and Holliday junction substrates. These findings suggest that WRN and BRCA1 act in a coordinated manner to facilitate repair of DNA ICLs.  相似文献   

12.
13.
Bifunctional alkylating agents are used in tumor chemotherapy to induce the death of malignant cells through blockage of DNA replication. Nitrogen mustards are commonly used chemotherapeutic agents that can bind mono- or bifunctionally to guanines in DNA. Mustard HN1 is considered a monofunctional analog of bifunctional mustard HN2 (mechlorethamine). Escherichia coli K12 mutant strains deficient in nucleotide excision repair (NER) or base excision repair (BER) were submitted to increasing concentrations of HN2 or HN1, and the results revealed that damage induced by each chemical demands different DNA repair pathways. Damage induced by HN2 demands the activity of NER with a minor requirement of the BER pathway, while HN1 damage repair depends on BER action, without any requirement of NER function. Taken together, our data suggest that HN1 and HN2 seem to induce different types of damage, since their repair depends on distinct pathways in E. coli.  相似文献   

14.
《The Journal of cell biology》1984,99(4):1275-1281
The regulation of DNA repair during serum stimulation of quiescent cells was examined in normal human cells, in fibroblasts from three xeroderma pigmentosum complementation groups (A, C, and D), in xeroderma pigmentosum variant cells, and in ataxia telangiectasia cells. The regulation of nucleotide excision repair was examined by exposing cells to ultraviolet irradiation at discrete intervals after cell stimulation. Similarly, base excision repair was quantitated after exposure to methylmethane sulfonate. WI-38 normal human diploid fibroblasts, xeroderma pigmentosum variant cells, as well as ataxia telangiectasia cells enhanced their capacity for both nucleotide excision repair and for base excision repair prior to their enhancement of DNA synthesis. Further, in each cell strain, the base excision repair enzyme uracil DNA glycosylase was increased prior to the induction of DNA polymerase using the identical cells to quantitate each activity. In contrast, each of the three xeroderma complementation groups that were examined failed to increase their capacity for nucleotide excision repair above basal levels at any interval examined. This result was observed using either unscheduled DNA synthesis in the presence of 10 mM hydroxyurea or using repair replication in the absence of hydroxyurea to quantitate DNA repair. However, each of the three complementation groups normally regulated the enhancement of base excision repair after methylmethane sulfonate exposure and each induced the uracil DNA glycosylase prior to DNA synthesis. These results suggest that there may be a relationship between the sensitivity of xeroderma pigmentosum cells from each complementation group to specific DNA damaging agents and their inability to regulate nucleotide excision repair during cell stimulation.  相似文献   

15.
An isogenic series of Escherichia coli strains deficient in various combinations of three 5' leads to 3' exonucleases (exonuclease V, exonuclease VII, and the 5' leads to 3' exonuclease of DNA polymerase I) was constructed and examined for the ability to excise pyrimidine dimers after UV irradiation. Although the recB and recC mutations (deficient in exonuclease V) proved to be incompatible with the polA(Ex) mutation (deficient in the 5' leads to 3' exonuclease of DNA polymerase I), it was possible to reduce the level of the recB,C exonuclease by the use of temperature-sensitive recB270 recC271 mutants. It was found that, by employing strains deficient in exonuclease V, postirradiation DNA degradation could be reduced and dimer excision measurements could be facilitated. Mutants deficient in exonuclease V were found to excise dimers at a rate comparable to that of the wild type. Mutants deficient in exonuclease V and the 5' leads to 3' exonuclease of DNA polymerase I are slightly slower than the wild type at removing dimers accumulated after doses in excess of 40 J/m2. However, although strains with reduced levels of exonuclease VII excised dimers at the same rate as the wild type, the addition of an exonuclease VII deficiency to a strain with reduced levels of exonuclease V and the 5' leads to 3' exonuclease of DNA polymerase I caused a marked decrease in the rate and extent of dimer excision. These observations support previous indications that the 5' leads to 3' exonuclease of DNA polymerase I is important in dimer removal and also suggest a role for exonuclease VII in the excision repair process.  相似文献   

16.
Excision repair of DNA damage was measured by the photolysis of bromodeoxy-uridine incorporated during repair in normal human and xeroderma pigmentosum group C fibroblasts (XP C) treated with a combination of the carcinogens N-acetoxy-2-acetylamino-fluorene (AAAF), and 4-nitroquinoline 1-oxide (4NQO). Repair was additive in normal and XP C cells treated with AAAF plus 4NQO, indicating that there are different rate limiting steps for removal of 4NQO and AAAF lesions.  相似文献   

17.
DNA synthesis after the ultraviolet irradiation was followed in the excision proficient strainEscherichia coli B/rHcr +, in which the ability to excise thymin dimers was suppressed by a preirradiation inhibition of DNA and protein syntheses and in the excision deficient strainEscherichia coli B/rHcr ?. Synthesis of pulse-labeled DNA, its stability and semiconservative DNA synthesis were compared in both strains. It was found that cells of theHcr + strain restore semiconservative DNA synthesis and the pulselabeled DNA appears stable, in spite of the fact that dimers are not excised under these conditions. On the other hand, cells of theHcr ? strain are unable to restore semiconservative DNA synthesis and the pulselabeled DNA is degraded. As the repair by the excision of dimers under the used experimental conditions may be excluded in both strains, it is possible to assume that activity of enzymes included in theHcr + marker is prerequisite for restoring the DNA synthesizing system in theHcr + strain.  相似文献   

18.
The kinetics of the SOS induction in E. coli cells of wild type and deficient in umuC gene exposed to UV and gamma-rays were analysed. In the presence of UmuC protein SOS induction was 3-5.5 times lower and delayed for about 30 minutes after both UV and gamma rays. It was shown that decrease of the SOS induction in wild type cells irradiated by UV was due to more effective elimination of the photolesions from DNA by excision repair system. UmuCD-dependent inhibition of DNA replication was discussed as a possible mechanism allowing additional time for error-free repair.  相似文献   

19.
20.
DNA interstrand crosslinks (ICLs) are among the most cytotoxic types of DNA damage, thus ICL-inducing agents such as psoralen, are clinically useful chemotherapeutics. Psoralen-modified triplex-forming oligonucleotides (TFOs) have been used to target ICLs to specific genomic sites to increase the selectivity of these agents. However, how TFO-directed psoralen ICLs (Tdp-ICLs) are recognized and processed in human cells is unclear. Previously, we reported that two essential nucleotide excision repair (NER) protein complexes, XPA–RPA and XPC–RAD23B, recognized ICLs in vitro, and that cells deficient in the DNA mismatch repair (MMR) complex MutSβ were sensitive to psoralen ICLs. To further investigate the role of MutSβ in ICL repair and the potential interaction between proteins from the MMR and NER pathways on these lesions, we performed electrophoretic mobility-shift assays and chromatin immunoprecipitation analysis of MutSβ and NER proteins with Tdp-ICLs. We found that MutSβ bound to Tdp-ICLs with high affinity and specificity in vitro and in vivo, and that MutSβ interacted with XPA–RPA or XPC–RAD23B in recognizing Tdp-ICLs. These data suggest that proteins from the MMR and NER pathways interact in the recognition of ICLs, and provide a mechanistic link by which proteins from multiple repair pathways contribute to ICL repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号