首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Adaptive control of mobile robots using a neural network   总被引:1,自引:0,他引:1  
A Neural Network - based control approach for mobile robot is proposed. The weight adaptation is made on-line, without previous learning. Several possible situations in robot navigation are considered, including uncertainties in the model and presence of disturbance. Weight adaptation laws are presented as well as simulation results.  相似文献   

2.
This paper describes an ongoing project that has the aim to develop a low cost application to replace a computer mouse for people with physical impairment. The application is based on an eye tracking algorithm and assumes that the camera and the head position are fixed. Color tracking and template matching methods are used for pupil detection. Calibration is provided by neural networks as well as by parametric interpolation methods. Neural networks use back-propagation for learning and bipolar sigmoid function is chosen as the activation function. The user's eye is scanned with a simple web camera with backlight compensation which is attached to a head fixation device. Neural networks significantly outperform parametric interpolation techniques: 1) the calibration procedure is faster as they require less calibration marks and 2) cursor control is more precise. The system in its current stage of development is able to distinguish regions at least on the level of desktop icons. The main limitation of the proposed method is the lack of head-pose invariance and its relative sensitivity to illumination (especially to incidental pupil reflections).  相似文献   

3.
In this paper a hopping robot motion with offset mass is discussed. A mathematical model has been considered and an efficient single layered neural network has been developed to suit to the dynamics of the hopping robot, which ensures guaranteed tracking performance leading to the stability of the otherwise unstable system. The neural network takes advantage of the robot regressor dynamics that expresses the highly nonlinear robot dynamics in a linear form in terms of the known and unknown robot parameters. Time delays in the control mechanism play a vital role in the motion of hopping robots. The present work also enables us to estimate the maximum time delay admissible with out losing the guaranteed tracking performance. Further this neural network does not require offline training procedures. The salient features are highlighted by appropriate simulations.  相似文献   

4.
In this paper, we propose self-organization algorithm of spiking neural network (SNN) applicable to autonomous robot for generation of adoptive and goal-directed behavior. First, we formulated a SNN model whose inputs and outputs were analog and the hidden unites are interconnected each other. Next, we implemented it into a miniature mobile robot Khepera. In order to see whether or not a solution(s) for the given task(s) exists with the SNN, the robot was evolved with the genetic algorithm in the environment. The robot acquired the obstacle avoidance and navigation task successfully, exhibiting the presence of the solution. After that, a self-organization algorithm based on a use-dependent synaptic potentiation and depotentiation at synapses of input layer to hidden layer and of hidden layer to output layer was formulated and implemented into the robot. In the environment, the robot incrementally organized the network and the given tasks were successfully performed. The time needed to acquire the desired adoptive and goal-directed behavior using the proposed self-organization method was much less than that with the genetic evolution, approximately one fifth.  相似文献   

5.
Summary The simulation of neural networks, such as the brain cortex, which have a diffuse and rather uniform structure quite unlike the simple block-structure of extant computers, leads naturally to the study of functions and principles which only in part fall within the scope of Automata Theory. Systems of decision equations must be studied with a view especially to obtaining practical means for the prevision and computation of diffuse reverberations of wanted general characteristics, with the exclusion of all others. This amounts to deriving constraints on the allowed variability of the couplings among elements during learning processes, failing which the behavior of the simulator would become uncontrollable for practical purposes. A simple mathematical treatment is presented, which essentially linearizes these problems by an appropriate use of matrix algebra and permits a straightforward study of the wanted conditions, as well as of the controlling elements which may have to be added to the network.This work has been performed in part at the Laboratoire de Physique Théorique et Hautes Energies, Faculté des Sciences de Paris.This work has been performed with the joint sponsorship of the U.S.A.F. and their European Office of Aerospace Research under contracts no. AF EOAR 66-25 and AF 33(615)-2786.We wish to express our sincere thanks to Dr. F. Lauria for many illuminated discussions; and to Prof. M. Lévy for his kind hospitality at the Laboratoire de physique Théorique, in Paris, where part of this research was made.  相似文献   

6.
Wireless sensor networks have found more and more applications in a variety of pervasive computing environments, in their functions as data acquisition in pervasive applications. However, how to get better performance to support data acquisition of pervasive applications over WSNs remains to be a nontrivial and challenging task. The network lifetime and application requirement are two fundamental, yet conflicting, design objectives in wireless sensor networks for tracking mobile objects. The application requirement is often correlated to the delay time within which the application can send its sensing data back to the users in tracking networks. In this paper we study the network lifetime maximization problem and the delay time minimization problem together. To make both problems tractable, we have the assumption that each sensor node keeps working since it turns on. And we formulate the network lifetime maximization problem as maximizing the number of sensor nodes who don’t turn on, and the delay time minimization problem as minimizing the routing path length, after achieving the required tracking tasks. Since we prove the problems are NP-complete and APX-complete, we propose three heuristic algorithms to solve them. And we present several experiments to show the advantages and disadvantages referring to the network lifetime and the delay time among these three algorithms on three models, random graphs, grids and hypercubes. Furthermore, we implement the distributed version of these algorithms.  相似文献   

7.
This paper describes the use of artificial neural networks to model cardiovascular autonomic control in a study of the hemodynamic changes associated with space flight. Cardiovascular system models were created including four parameters: heart rate, contractility, peripheral resistance, and venous tone. Artificial neural networks were then designed and trained. A technique known as backpropagation networking was used and the results of the application of this technique to heart rate control are presented and discussed.  相似文献   

8.
This paper describes a new method for pruning artificial neural networks, using a measure of the neural complexity of the neural network. This measure is used to determine the connections that should be pruned. The measure computes the information-theoretic complexity of a neural network, which is similar to, yet different from previous research on pruning. The method proposed here shows how overly large and complex networks can be reduced in size, whilst retaining learnt behaviour and fitness. The technique proposed here helps to discover a network topology that matches the complexity of the problem it is meant to solve. This novel pruning technique is tested in a robot control domain, simulating a racecar. It is shown, that the proposed pruning method is a significant improvement over the most commonly used pruning method Magnitude Based Pruning. Furthermore, some of the pruned networks prove to be faster learners than the benchmark network that they originate from. This means that this pruning method can also help to unleash hidden potential in a network, because the learning time decreases substantially for a pruned a network, due to the reduction of dimensionality of the network.  相似文献   

9.
Ping Li  John R. Flenley 《Grana》2013,52(1):59-64
The importance of research leading to the automation of pollen identification is briefly outlined. A new technique, neural network analysis, is briefly introduced, and then applied to the determination of light microscope images of pollen grains. The results are compared with some previously published statistical classifiers. Although both types of classifiers may work, the neural network is apparently superior to the statistical methods in three ways: high success rates (100% in this case), small number of samples needed for training, and simplicity of features.  相似文献   

10.
The Hopfield model of neural network stores memory in its symmetric synaptic connections and can only learn to recognize sets of nearly orthogonal patterns. A new algorithm is put forth to permit the recognition of general (non-orthogonal) patterns. The algorithm specifies the construction of the new network's memory matrix T ij, which is, in general, asymmetrical and contains the Hopfield neural network (Hopfield 1982) as a special case. We find further that in addition to this new algorithm for general pattern recognition, there exists in fact a large class of T ij memory matrices which permit the recognition of non-orthogonal patterns. The general form of this class of T ij memory matrix is presented, and the projection matrix neural network (Personnaz et al. 1985) is found as a special case of this general form. This general form of memory matrix extends the library of memory matrices which allow a neural network to recognize non-orthogonal patterns. A neural network which followed this general form of memory matrix was modeled on a computer and successfully recognized a set of non-orthogonal patterns. The new network also showed a tolerance for altered and incomplete data. Through this new method, general patterns may be taught to the neural network.  相似文献   

11.
Modeling of pain using artificial neural networks   总被引:3,自引:0,他引:3  
In dealing with human nervous system, the sensation of pain is as sophisticated as other physiological phenomena. To obtain an acceptable model of the pain, physiology of the pain has been analysed in the present paper. Pain mechanisms are explained in block diagram representation form. Because of the nonlinear interactions existing among different sections in the diagram, artificial neural networks (ANNs) have been exploited. The basic patterns associated with chronic and acute pain have been collected and then used to obtain proper features for training the neural networks. Both static and dynamic representations of the ANNs were used in this regard. The trained networks then were employed to predict response of the body when it is exposed to special excitations. These excitations have not been used in the training phase and their behavior is interesting from the physiological view. Some of these predictions can be inferred from clinical experimentations. However, more clinical tests have to be accomplished for some of the predictions.  相似文献   

12.
Nagata Y  Chu KH 《Biotechnology letters》2003,25(21):1837-1842
Artificial neural networks and genetic algorithms are used to model and optimize a fermentation medium for the production of the enzyme hydantoinase by Agrobacterium radiobacter. Experimental data reported in the literature were used to build two neural network models. The concentrations of four medium components served as inputs to the neural network models, and hydantoinase or cell concentration served as a single output of each model. Genetic algorithms were used to optimize the input space of the neural network models to find the optimum settings for maximum enzyme and cell production. Using this procedure, two artificial intelligence techniques have been effectively integrated to create a powerful tool for process modeling and optimization.  相似文献   

13.
Artificial neural networks are made upon of highly interconnected layers of simple neuron-like nodes. The neurons act as non-linear processing elements within the network. An attractive property of artificial neural networks is that given the appropriate network topology, they are capable of learning and characterising non-linear functional relationships. Furthermore, the structure of the resulting neural network based process model may be considered generic, in the sense that little prior process knowledge is required in its determination. The methodology therefore provides a cost efficient and reliable process modelling technique. One area where such a technique could be useful is biotechnological systems. Here, for example, the use of a process model within an estimation scheme has long been considered an effective means of overcoming inherent on-line measurement problems. However, the development of an accurate process model is extremely time consuming and often results in a model of limited applicability. Artificial neural networks could therefore prove to be a useful model building tool when striving to improve bioprocess operability. Two large scale industrial fermentation systems have been considered as test cases; a fed-batch penicillin fermentation and a continuous mycelial fermentation. Both systems serve to demonstrate the utility, flexibility and potential of the artificial neural network approach to process modelling.  相似文献   

14.
An effective image retrieval system is developed based on the use of neural networks (NNs). It takes advantages of association ability of multilayer NNs as matching engines which calculate similarities between a user's drawn sketch and the stored images. The NNs memorize pixel information of every size-reduced image (thumbnail) in the learning phase. In the retrieval phase, pixel information of a user's drawn rough sketch is inputted to the learned NNs and they estimate the candidates. Thus the system can retrieve candidates quickly and correctly by utilizing the parallelism and association ability of NNs. In addition, the system has learning capability: it can automatically extract features of a user's drawn sketch during the retrieval phase and can store them as additional information to improve the performance. The software for querying, including efficient graphical user interfaces, has been implemented and tested. The effectiveness of the proposed system has been investigated through various experimental tests.  相似文献   

15.
On-line prediction of fermentation variables using neural networks   总被引:10,自引:0,他引:10  
This article presents an introduction to the use of neural network computational algorithms for the dynamic modeling of bioprocesses. The dynamic neural model is used for the prediction of key fermentation variables. This relatively hew method is compared with a more traditional prediction technique to judge its performance for prediction. Illustrative simulation results of a continuous stirred tank fermentor are used for this comparison. It is shown that neural network models are accurate with a certain degree of noise immunity. They offer the distinctive ability over more traditional methods to learn very naturally complex relationships without requiring the knowledge of the model structure.  相似文献   

16.
Predicting the hand and fingers posture during grasping tasks is an important issue in the frame of biomechanics. In this paper, a technique based on neural networks is proposed to learn the inverse kinematics mapping between the fingertip 3D position and the corresponding joint angles. Finger movements are obtained by an instrumented glove and are mapped to a multichain model of the hand. From the fingertip desired position, the neural networks allow predicting the corresponding finger joint angles keeping the specific subject coordination patterns. Two sets of movements are considered in this study. The first one, the training set, consisting of free fingers movements is used to construct the mapping between fingertip position and joint angles. The second one, constructed for testing purposes, is composed of a sequence of grasping tasks of everyday-life objects. The maximal mean error between fingertip measured position and fingertip position obtained from simulated joint angles and forward kinematics is 0.99+/-0.76mm for the training set and 1.49+/-1.62mm for the test set. Also, the maximal RMS error of joint angles prediction is 2.85 degrees and 5.10 degrees for the training and test sets respectively, while the maximal mean joint angles prediction error is -0.11+/-4.34 degrees and -2.52+/-6.71 degrees for the training and test sets, respectively. Results relative to the learning and generalization capabilities of this architecture are also presented and discussed.  相似文献   

17.
The aim of the present study is to optimize parameters for inhibiting neuronal activity safely and investigating thermal inhibition of rat cortex neural networks in vitro by continuous infrared (IR) laser. Rat cortex neurons were cultured on multi‐electrode arrays until neural networks were formed with spontaneous neural activity. Neurons were then irradiated to inhibit the activity of the networks using different powers of 1550 nm IR laser light. A finite element heating model, calibrated by the open glass pipette method, was used to calculate temperature increases at different laser irradiation intensities. A damage signal ratio (DSR) was evaluated to avoid excessive heating that may damage cells. The DSR predicted that cortex neurons should be safe at temperatures up to 49.6°C for 30 seconds, but experiments suggested that cortex neurons should not be exposed to temperatures over 46°C for 30 seconds. Neural response experiments showed that the inhibition of neural activity is temperature dependent. The normal neural activity could be inhibited safely with an inhibition degree up to 80% and induced epileptiform activity could be suppressed. These results show that continuous IR laser radiations provide a possible way to safely inhibit the neural network activity.   相似文献   

18.
A nonlinear neural network classifier was applied to noninvasive acoustic detection of coronary artery disease; the classifier included a feature vector, derived from diastolic heart sounds, and a multi-layered network trained by the backpropagation. The feature vector is based on the linear prediction coefficients of the autoregressive method after an adaptive line enhancement method was used as the input pattern to the neural network. One hundred and twelve recordings (70 abnormal, 42 normal) were studied and the network was trained on a randomly chosen set of six abnormal and six normal patients. It was tested on a database consisting of 100 recordings to which it had not been exposed. The network correctly identified 50 of the 64 patients with coronary artery disease and 32 of the 36 patients without any coronary artery occlusions. These results showed that this neural network is capable of distinguishing normal patients from abnormal patients. In addition, the diagnostic capability of this approach is much better than any other available noninvasive approach.  相似文献   

19.
This paper proposes a new methodology to approximate functions by incorporating a priori information. The relationship between the proposed scheme and multilayer neural networks is explored theoretically and numerically. This approach is particularly interesting for the very relevant class of limited spectrum functions. The number of free parameters is smaller if compared to Back-Propagation Algorithm opening the way for better generalization results.  相似文献   

20.
Gurbuz  Hasan  Kivrak  Ersin  Soyupak  Selcuk  Yerli  Sedat V. 《Hydrobiologia》2003,498(1-3):133-141
A 14.6 m long profile from the northern part of the Hulun lake, the furthest north of the large lakes of China, has provided a sedimentary and diatom record since the late Glacial. The chronological sequence was established based on 10 radiocarbon dates. Sedimentological study and diatom analysis are synthesized for the reconstruction of the history of lake-level changes. The results show that the Hulun basin was not occupied by a lake during the Last Glaciation. A rapid transition to a deep lake occurred since 12850 yr B.P., and this high level phase lasted to 11200 yr B.P., although there existed several subordinate lake level fluctuations. An abrupt lake level drop and dry climatic conditions occurred during 11200–10600 yr B.P. The lake became deeper again from 10600 yr B.P. to 10300 yr B.P. Hulun lake at the early Holocene was characterized by the low lake-level, and the lake level rose again in 7200–5800 yr B.P., though the lake-levels changed quite variably. A dry condition occurred and lake level declined again during 5800–3000 yr B.P. The presence of the palaeosol on the top of this profile indicates the persistence of low lake levels after 3000 yr B.P. The comparison with the other lake-level records from northern China has suggested that the Hulun Lake shows a different lake level history from the lakes in monsoon areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号