首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Lithium was used as a non-radioactive tracer to investigate the root activity of two cereals (wheat and barley), and of two contrasting cultivars of pea (leafy and semi-leafless), both in pure stands and in mixtures. The mixtures included combinations of each cereal with each pea cultivar in single rows, alternative rows and cross-drilled. Total lithium uptake (mg m-2) was higher for wheat than for barley, and higher for semi-leafless pea than for leafy peas. Growing cereals with peas reduced the total lithium uptake by peas, compared with pure stands, especially in alternate-row mixtures. Growing peas with cereals only reduced the total Li uptake by cereals when they were cross-drilled. The Li uptake by wheat, barley and peas generally decreased with soil depth in a similar manner; however, semi-leafless peas absorbed proportionately more Li from close to the soil surface than did leafy peas. Both pea cultivars absorbed more Li at 10–20 cm depth when grown in intimate mixtures with cereals, compared with less intimate mixtures or pure stands. The potential of lithium as a non-radioactive tracer in mixed-cropping studies is briefly discussed.  相似文献   

2.
Eva Ritter 《Plant and Soil》2007,295(1-2):239-251
Afforestation has become an important tool for soil protection and land reclamation in Iceland. Nevertheless, the harsh climate and degraded soils are growth-limiting for trees, and little is know about changes in soil nutrients in maturing forests planted on the volcanic soils. In the present chronosequence study, changes in C, N and total P in soil (0–10 and 10–20 cm depth) and C and N in foliar tissue were investigated in stands of native Downy birch (Betula pubescens Enrh.) and the in Iceland introduced Siberian larch (Larix sibirica Ledeb.). The forest stands were between 14 and 97 years old and were established on heath land that had been treeless for centuries. Soils were Andosols derived from basaltic material and rhyolitic volcanic ash. A significant effect of tree species was only found for the N content in foliar tissue. Foliar N concentrations were significantly higher and foliar C/N ratios significantly lower in larch needles than in birch leaves. There was no effect of stand age. Changes in soil C and the soil nutrient status with time after afforestation were little significant. Soil C concentrations in 0–10 cm depth in forest stands older than 30 years were significantly higher than in heath land and forest stands younger than 30 years. This was attributed to a slow accumulation of organic matter. Soil N concentrations and soil Ptot were not affected by stand age. Nutrient pools in the two soil layers were calculated for an average weight of soil material (400 Mg soil ha−1 in 0–10 cm depth and 600 Mg soil ha−1 in 10–20 cm depth, respectively). Soil nutrient pools did not change significantly with time. Soil C pools were in average 23.6 Mg ha−1 in the upper soil layer and 16.9 Mg ha−1 in the lower soil layer. The highest annual increase in soil C under forest compared to heath land was 0.23 Mg C ha−1 year−1 in 0–10 cm depth calculated for the 53-year-old larch stand. Soil N pools were in average 1.0 Mg N ha−1 in both soil layers and did not decrease with time despite a low N deposition and the uptake and accumulation of N in biomass of the growing trees. Soil Ptot pools were in average 220 and 320 kg P ha−1 in the upper and lower soil layer, respectively. It was assumed that mycorrhizal fungi present in the stands had an influence on the availability of N and P to the trees. Responsible Editor: Hans Lambers.  相似文献   

3.
Lolium perenne cv. S.23, L. multiflorum cv. RvP, and Trifolium repens cvs S.184 and Olwen, were grown in mixed sward and monoculture during 1979. Whereas in mixtures grass roots absorbed more 32P than clover roots, in monoculture clover generally absorbed more 32P than grass roots. This showed that grass was a very strong competitor for uptake in mixed swards. Clover and grass monocultures absorbed most 32P from 10 or 15 cm depth in the soil, while grass in mixtures absorbed most 32P at 22.5 cm depth. Comparing varieties, in monocultures in June, Olwen was most active in absorbing 32P at 15 cm. In August, Olwen absorbed more at 15 cm and 22.5 cm than S.184 or the grass varieties. Differences in absorption depth between varieties were less in mixtures than in monocultures. S.23 absorbed more 32P in the late season than RvP, both in monoculture and in mixtures. Thus Olwen differed from S. 184 in depth and timing of uptake, whilst S.23 differed from RvP in time of uptake. Such varietal differences could be exploited by manipulation of depth and timing of fertiliser application to increase the precision of sward management.  相似文献   

4.
Cereal-legume mixtures are frequently the best management decision for forage production instead of growing crops in pure stands. Nitrogen fertilization of cereal-legume mixtures is questionable since combined nitrogen could depress N2 fixation by legumes. The objectives of this study were (1) to examine the effect of N fertilization on N2 fixation by vetch and field peas in pure and in mixed stands with oats, and (2) to examine if there is any transfer of N from legumes to associated cereals. The field experiment was conducted for two growing seasons. The treatments were pure stands of vetch, pea and oats, and the mixtures of the two legumes with oats at the seeding ratios 90:10 and 75:25, fertilized with labelled15N at the rates of 15 and 90 kg N ha−1. Nitrogen fertilization of 90 kg N ha−1 suppressed N2 fixation in both legumes grown in pure and in mixed stands. Crops grown in mixtures in many instances had lower atom %15N excess. Whether this was due to high N2 fixation in the case of legume and transfer in the case of oat or the differences were due to practical problems of the15N technique is not clearly shown by the results, so based on the literature the aspect is discussed as well as the precautions which should be considered in using the15N technique in such studies.  相似文献   

5.
Experiments that have manipulated species richness with random draws of species from a larger species pool have usually found that invasibility declines as richness increases. These results have usually been attributed to niche complementarity, and interpreted to mean that communities will become less resistant to invaders as species go locally extinct. However, it is not clear how relevant these studies are to real‐world situations where species extinctions are non‐random, and where species diversity declines due to increased rarity (i.e. reduced evenness) without having local extinctions. We experimentally varied species richness from 1 to 4, and evenness from 0.44 to 0.97 with two different extinction scenarios in two‐year old plantings using seedling transplants in western Iowa. In both scenarios, evenness was varied by changing the level of dominance of the tall grass Andropogon gerardii. In one scenario, which simulated a loss of short species from Andropogon communities, we directly tested for complementarity in light capture due to having species in mixtures with dissimilar heights. We contrasted this scenario with a second set of mixtures that contained all tall species. In both cases, we controlled for factors such as rooting depth and planting density. Mean invader biomass was higher in monocultures (5.4 g m?2 week?1) than in 4‐species mixtures (3.2 g m?2 week?1). Reduced evenness did not affect invader biomass in mixtures with dissimilar heights. However, the amount of invader biomass decreased by 60% as evenness increased across mixtures with all tall species. This difference was most pronounced early in the growing season when high evenness plots had greater light capture than low evenness plots. These results suggest that the effect of reduced species diversity on invasibility are 1) not related to complementarity through height dissimilarity, and 2) variable depending on the phenological traits of the species that are becoming rare or going locally extinct.  相似文献   

6.
Native perennial bioenergy crops can mitigate greenhouse gases (GHG) by displacing fossil fuels with renewable energy and sequestering atmospheric carbon (C) in soil and roots. The relative contribution of root C to net GHG mitigation potential has not been compared in perennial bioenergy crops ranging in species diversity and N fertility. We measured root biomass, C, nitrogen (N), and soil organic carbon (SOC) in the upper 90 cm of soil for five native perennial bioenergy crops managed with and without N fertilizer. Bioenergy crops ranged in species composition and were annually harvested for 6 (one location) and 7 years (three locations) following the seeding year. Total root biomass was 84% greater in switchgrass (Panicum virgatum L.) and a four‐species grass polyculture compared to high‐diversity polycultures; the difference was driven by more biomass at shallow soil depth (0–30 cm). Total root C (0–90 cm) ranged from 3.7 Mg C ha?1 for a 12‐species mixture to 7.6 Mg C ha?1 for switchgrass. On average, standing root C accounted for 41% of net GHG mitigation potential. After accounting for farm and ethanol production emissions, net GHG mitigation potential from fossil fuel offsets and root C was greatest for switchgrass (?8.4 Mg CO2e ha?1 yr?1) and lowest for high‐diversity mixtures (?4.5 Mg CO2e ha?1 yr?1). Nitrogen fertilizer did not affect net GHG mitigation potential or the contribution of roots to GHG mitigation for any bioenergy crop. SOC did not change and therefore did not contribute to GHG mitigation potential. However, associations among SOC, root biomass, and root C : N ratio suggest greater long‐term C storage in diverse polycultures vs. switchgrass. Carbon pools in roots have a greater effect on net GHG mitigation than SOC in the short‐term, yet variation in root characteristics may alter patterns in long‐term C storage among bioenergy crops.  相似文献   

7.
Transport of sulphate, thiosulphate and iodide by choroid plexus in vitro   总被引:1,自引:0,他引:1  
—Isolated choroid plexuses of rabbits and cats were incubated in artificial cerebrospinal fluid medium containing [35S]sulphate, [35S]thiosulphate or [125I]iodide and combinations thereof. After 1 hr incubation the mean ratio of tissue concentration to medium concentration was 2·46 for [35S]sulphate, 2·39 for [35S]thiosulphate, and 270 for [125I]iodide. Uptake of all three anions was greatly reduced at 0° and by addition of dinitrophenol to the medium. Other inhibitors selectively reduced the uptake of particular anions; non-radioactive sulphate and thiosulphate reduced both [35S]sulphate and [35S]-thiosulphate uptake with much less effect on [125I]iodide uptake, while non-radioactive iodide and thiocyanate greatly reduced [125]iodide uptake with little or no effect on [35S]sulphate or [35S]thiosulphate uptake. It was concluded: (a) that sulphate and thiosulphate, like iodide, were accumulated by choroid plexus in vitro by active transport; (b) that sulphate and thiosulphate share and compete for a transport mechanism which is separate from the iodide transport mechanism; and (c) that the transport of sulphate out of cerebrospinal fluid demonstrated in vivo could occur at least in part in the choroid plexus.  相似文献   

8.
HIGH AFFINITY CHOLINE UPTAKE: IONIC AND ENERGY REQUIREMENTS   总被引:20,自引:19,他引:1  
Abstract— High affinity choline uptake into rat hippocampal synaptosomes was examined at 37°C when various ions were deleted from normal Kreb's-Ringer media. When sodium chloride was replaced by sucrose, lithium chloride, cesium chloride or rubidium chloride, choline uptake was markedly reduced. When the sodium concentrations of the Kreb's media were gradually reduced to zero, the uptake was gradually reduced in parallel. A kinetic analysis performed at low and normal sodium concentrations revealed changes in Km and Vmax values. When several non-chloride sodium salts were utilized, the uptake was reduced in all cases suggesting also a chloride-dependence in addition to the sodium-dependence. Omission of calcium chloride or magnesium sulfate from the media did not alter uptake. Sodium-dependent choline uptake was examined over a range of potassium concentrations (0–35 DIM). It was found that uptake was maximal between potassium concentrations of 0.35–4.8 mm but was reduced at both lower and higher potassium concentrations. The kinetics of uptake were examined under varying potassium concentrations, and at low potassium, only a change in Vmax was observed while at high potassium concentrations, there were changes in both Km and Vmax values. Preincubation and incubation of synaptosomes with 0.1 m -ouabain, 0.1 mm -2,4-dinitrophenol and 1 mm -KCN caused a reduction in sodium-dependent uptake. When dextrose was omitted from the preincubation and incubation media there was also a reduction in sodium-dependent uptake. By contrast, the sodium-independent uptake was unaffected by the metabolic inhibitors or omission of dextrose, and had a very low Q10. When various incubation temperatures were utilized in uptake experiments, the Q10 for the interval 37-27°C was 2.7 and the activation energy was 22.7 kcal/mol. Slightly different ionic dependences were observed when animals pretreated with pentobarbital of oentylenetetrazol were utilized as the source of synaptosomes.  相似文献   

9.
The production of perennial cellulosic feedstocks for bioenergy presents the potential to diversify regional economies and the national energy supply, while also serving as climate ‘regulators’ due to a number of biogeochemical and biogeophysical differences relative to row crops. Numerous observational and model‐based approaches have investigated biogeochemical trade‐offs, such as increased carbon sequestration and increased water use, associated with growing cellulosic feedstocks. A less understood aspect is the biogeophysical changes associated with the difference in albedo (α), which could alter the local energy balance and cause local to regional cooling several times larger than that associated with offsetting carbon. Here, we established paired fields of Miscanthus × giganteus (miscanthus) and Panicum virgatum (switchgrass), two of the leading perennial cellulosic feedstock candidates, and traditional annual row crops in the highly productive ‘Corn‐belt’. Our results show that miscanthus did and switchgrass did not have an overall higher α than current row crops, but a strong seasonal pattern existed. Both perennials had consistently higher growing season α than row crops and winter α did not differ. The lack of observed differences in winter α, however, masked an interaction between snow cover and species differences, with the perennial species, compared with the row crops, having a higher α when snow was absent and a much lower α when snow was present. Overall, these changes resulted in an average net reduction in annual absorbed energy of about 5 W m?2 for switchgrass and about 8 W m?2 for miscanthus relative to annual crops. Therefore, the conversion from annual row to perennial crops alters the radiative balance of the surface via changes in α and could lead to regional cooling.  相似文献   

10.
Switchgrass (Panicum virgatum L.), a US Department of Energy model species, is widely considered for US biomass energy production. While previous studies have demonstrated the effect of climate and management factors on biomass yield and chemical characteristics of switchgrass monocultures, information is lacking on the yield of switchgrass grown in combination with other species for biomass energy. Therefore, the objective of this quantitative review is to compare the effect of climate and management factors on the yield of switchgrass monocultures, as well as on mixtures of switchgrass, and other species. We examined all peer‐reviewed articles describing productivity of switchgrass and extracted dry matter yields, stand age, nitrogen fertilization (N), temperature (growing degree days), and precipitation/irrigation. Switchgrass yield was greater when grown in monocultures (10.9 t ha?1, n=324) than when grown in mixtures (4.4 t ha?1, n=85); yield in monocultures was also greater than the total yield of all species in the mixtures (6.9 t ha?1, n=90). The presence of legume species in mixtures increased switchgrass yield from 3.1 t ha?1 (n=65) to 8.9 t ha?1 (n=20). Total yield of switchgrass‐dominated mixtures with legumes reached 9.9 t ha?1 (n=25), which was not significantly different from the monoculture yield. The results demonstrated the potential of switchgrass for use as a biomass energy crop in both monocultures and mixtures across a wide geographic range. Monocultures, but not mixtures, showed a significant positive response to N and precipitation. The response to N for monocultures was consistent for newly established (stand age <3 years) and mature stands (stand age ≥3 years) and for lowland and upland ecotypes. In conclusion, these results suggest that fertilization with N will increase yield in monocultures, but not mixtures. For monocultures, N treatment need not be changed based on ecotype and stand age; and for mixtures, legumes should be included as an alternative N source.  相似文献   

11.
Hauggaard-Nielsen  H.  Ambus  P.  Jensen  E.S. 《Plant and Soil》2001,236(1):63-74
Root system dynamics, productivity and N use were studied in inter- and sole crops of field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) on a temperate sandy loam. A 32P tracer placed at a depth of 12.5, 37.5, 62.5 or 87.5 cm was employed to determine root system dynamics by sampling crop leaves at 0, 15, 30 and 45 cm lateral distance. 15N addition was used to estimate N2 fixation by pea, using sole cropped barley as reference crop. The Land Equivalent Ratio (LER), which is defined as the relative land area under sole crops that is required to produce the yields achieved in intercropping, were used to compare the crop growth in intercrops relative to the respective sole crops.The 32P appearance in leaves revealed that the barley root system grows faster than that of pea. P uptake by the barley root system during early growth stages was approximately 10 days ahead of that of the pea root system in root depth and lateral root distribution. More than 90% of the P uptake by the pea root system was confined to the top 12.5 cm of soil, whereas barley had about 25–30% of tracer P uptake in the 12.5 – 62.5 cm soil layer. Judging from this P uptake, intercropping caused the barley root system to grow deeper and faster lateral root development of both species was observed. Barley accumulated similar amounts of aboveground N when grown as inter- and sole crop, whereas the total aboveground N acquired by pea in the intercrop was only 16% of that acquired in the pea sole crop. The percentage of total aboveground N derived from N2 fixation in sole cropped pea increased from 40% to 80% during the growth period, whereas it was almost constant at 85% in intercropped pea. The total amounts of N2 fixed were 95 and 15 kg N ha–1 in sole cropped and intercropped pea, respectively. Barley was the dominant component of the pea-barley intercrop, obtaining 90% of its sole crop yield, while pea produced only 15% of the grains of a sole crop pea. Intercropping of pea and barley improved the utilization of plant growth resources (LER > 1) as compared to sole crops. Root system distribution in time and space can partly explain interspecific competition. The 32P methodology proved to be a valuable tool for determining root dynamics in intercropping systems.  相似文献   

12.
Root competition in polyculture systems involving combinations of four tree species and four grass species was evaluated based on 32P recovery by each species in mixed and sole crop situations. The tree species were: Leucaena leucocephala, Casuarina equisetifolia, Acacia auriculiformis and Ailanthus triphysa, and the grass species were: Pennisetum purpureum (hybrid napier), Brachiaria ruziziensis (congo signal), Panicum maximum (guinea grass) and Zea mexicana (teosinte). Four lateral distance (25 and 50 cm) and depth (15 and 50 cm) treatments were included in the study to characterize the relative fine root distribution of trees. Absorption of 32P was monitored through radioassay of leaves. Regardless of the species, 32P uptake from 50 cm soil depth was lower than that of 15 cm depth. Absorption of 32P from 50 cm lateral distance was also less than that of 25 cm distance in Acacia and Casuarina. Grass species in sole crop situations absorbed more 32P than in mixed systems. None of the grass species when grown in association with tree components affected the absorption of 32P by trees. All grass species exerted a complementary effect on 32P absorption by Casuarina. Leucaena also benefited in the same way when grown in association with congo signal and/or teosinte. Of the tree species, Acacia and Leucaena adversely affected the 32P uptake by grass species.  相似文献   

13.
Erythropoietic activity of spleen cell grafts was measured (Fe59 uptake) in X-irradiated recipient mice under conditions in which these grafts were engaged in homograft reactions against allogeneic target cells or in graft-versus-host reactions. Such Fe59 incorporation was greatly reduced at 7 to 10 days after graft implantation relative to that of control grafts. This reduced erythropoiesis did not occur when the spleen cell graft was immunologically incompetent. Transplantation of bone marrow-lymph node cell mixtures also resulted in a relative decline in Fe59 uptake, but only when minimal numbers (105 to 106) of marrow cells were injected. The incorporation of I125 UdR in the spleen of irradiated recipients was used to assess cellular proliferation. Incorporation of this label was reduced when measured 7–10 days after implantation of the lympho-hemopoietic cell graft, but reached a peak at five days—the latter indicating stimulated lymphopoiesis. These data are consistent with the concept of depletion of a pluripotent stem cell pool (limited in size under these experimental conditions) due to excessive and concurrent functional demands for erythropoiesis and lymphopoiesis. An alternative explanation would involve cytotoxic effects on hemopoietic elements present in the milieu of the immunologic reaction.  相似文献   

14.
The effect of tree row species on the distribution of soil inorganic N and the biomass growth and N uptake of trees and crops was investigated beneath a Grevillea robustaA. Cunn. ex R. Br. (grevillea) tree row and Senna spectabilisDC. (senna) hedgerow grown with Zea mays L. (maize) and a sole maize crop, during one cropping season. The hypothesis was that a tree with a large nutrient uptake would have a greater competitive effect upon coexisting plants than a tree that takes up less and internally cycles nutrients. The field study was conducted on a kaolinitic Oxisol in the sub-humid highlands of western Kenya. Soil nitrate and ammonium were measured to 300 cm depth and 525 cm distance from the tree rows, before and after maize cropping. Ammonium concentrations were small and did not change significantly during the cropping season. There was > 8 mg nitrate kg–1 in the upper 60 cm and at 90–180 cm depth at the start of the season, except within 300 cm of the senna hedgerow where concentrations were smaller. During the season, nitrate in the grevillea-maize system only decreased in the upper 60 cm, whereas nitrate decreased at almost every depth and distance from the senna hedgerow. Inorganic N (nitrate plus ammonium) decreased by 94 kg ha–1 in the senna-maize system and 33 kg ha–1 in the grevillea-maize system.The aboveground N content of the trees increased by 23 kg ha–1 for grevillea and 39 kg ha–1 for senna. Nitrogen uptake by maize was 85 kg ha–1 when grown with grevillea and 65 kg ha–1 with senna. Assuming a mineralisation input of 50 kg N ha–1season–1, the decrease in inorganic soil N approximately equalled plant N uptake in the grevillea-maize system, but exceeded that in the senna-maize system. Pruning and litter fall removed about 14 kg N ha–1 a–1 from grevillea, and > 75 kg N ha–1 a–1 from senna. The removal of pruned material from an agroforestry system may lead to nutrient mining and a decline in productivity.  相似文献   

15.
Eucalyptus tenuiramis frequently forms mixed-species stands with E. obliqua. A statistical analysis of 2140 forest stands in south-eastern Tasmania indicates that the mixed-species stands of E. tenuiramis and E. obliqua occupy and environmental space intermediate to that of pure stands of either species. Detailed examination of one such mixed-species stand showed that local-scale variation in soil depth could make the environment similar to that of pure stands and that this soil depth variation was correlated with the abundance of each species in the local area. Examination of another mixed-species stand over the first 15 years of development demonstrated that local-scale variation in soil depth did not affect the probability of establishment of either species. However, within 2 or 3 years of establishment plants were large enough to explore the full soil volume and soil depth became a significant factor in species performance. Logistic regression modelling indicated that threshold values of drought stress for species changeover at the broad geographical scale, due to variation in mean annual climate, were the same as those correlated with local-scale patches of species that occurred as a result of variations in soil depth. Finally, the photosynthetic performance and leaf-area production of plants in mixed-species plantings and monoculture across artificially induced gradients of water supply were examined. Differences in species response to drought-stress provided a physiological explanation of the growth performance of each species at different levels of resource supply.  相似文献   

16.
Floral composition and structural parameters of the herbaceous vegetation of four recovering tropical dry deciduous forest stands protected for 2, 4, 6 and 10-year periods, on the Eastern Ghats of India, situated at Kandhamal district of Orissa, India were investigated. More than 1 ha of recovering forest stands of each of the four stages was selected and fifteen sample quadrats of 1 m × 1 m were randomly placed at each stand for vegetation analysis. Floristic analysis revealed highest number of species (69) in 2-year recovering stand, which declined with increase in age. A total of 87 species, 71 genera and 32 families were recorded in the forest stands. Total number of herbaceous species encountered in the stands was 44, 28, 30 and 24 in 2, 4, 6 and 10-year stands, respectively. Total individuals of all herb species were 114, 70, 88 and 68 plant m−2 in 2, 4, 6 and 10-year stands, respectively. Herbaceous stand basal areas were 7.84, 3.66, 4.77 and 5.23 cm2 m−2 in 2, 4, 6, and 10-year stands, respectively. Importance value index (IVI) revealed that Heteropogon contortus was predominant in 2 and 4-year stands, Andrographis paniculatus in 6-year stand and Elephantopus scaber in 10-year stand. Diversity-dominance curve revealed lognormal distribution in all the four stands. Simpson’s dominance index (C) was highest in 2-year stand which decreased in other stands, while Shannon’s diversity index (H1) was almost the same in all the stands. Biomass of herbaceous vegetation was 83.2 g m−2 in 2 year, 62.2 g m−2 in 4 year, 58.0 g m−2 in 6 year and 64.0 g m−2 in 10-year stand.  相似文献   

17.
The mean depth of Sr and water uptake in mixed Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) stands was investigated, using natural variations of 87Sr/86Sr and 18O/16O in soils in relation to depth. Three spruce-pine pairs were studied on a podzol and a peat site in Northern Sweden. Tree leaf and wood, as well as soils, soil solutions and roots below each tree were analysed for Sr and Ca concentrations and 87Sr/86Sr ratio. The 18O/16O ratio was also determined in xylem sap and soil solutions in relation to depth. Soil solution 18O/16O decreased in relation to depth. Comparing with xylem sap 18O/16O data indicated a deeper uptake of soil water by pine than spruce on the podzol site and a superficial uptake by both species on the peat. The 87Sr/86Sr ratio of bioavailable Sr generally increased in soils in relation to depth. Contrastingly, the 87Sr/86Sr ratio in spruce wood was generally higher than in pine wood suggesting a deeper uptake of Sr by spruce. But the 87Sr/86Sr ratio and concentrations of bioavailable Sr were systematically higher below spruce than below pine. In order to explain these unexpected results, we built a simple flux model to investigate the possible effects of interspecific variations in Sr cycling, soil mineral weathering and depth of Sr uptake on soil and tree 87Sr/86Sr ratio. At the study sites, spruce cycled in litterfall up to 12 times more strontium than pine. The use of the model showed that this difference in Sr cycling could alone explain higher isotopic signatures of trees and topsoils below spruce. Besides, high isotopic signatures of roots in the A/E horizons below spruce led us to hypothesise a species-specific weathering process. Finally, the comparison between the 87Sr/86Sr ratios in wood and root or soil solutions below each species suggested that the average depth of Sr and water uptake were close, but irregular variations of the Sr isotopic ratio with depth reduce the accuracy of the results. Tree species strongly influence Sr isotopic ratios in boreal forest soils through differences in Sr cycling, and possibly through specific mineral weathering.  相似文献   

18.
The manner of uptake or iron by Chinese hamster fibroblasts, type DON, from human transferrin was investigated by means of replacement studies, in which the cells that were incubated with 125I-labelled human transferrin were chased with non-radioactive transferrin for only a few minutes. The results did not support the reversible endocytosis hypothesis for the uptake of iron from transferrin. The uptake of iron measured as 59Fe during several cell divisions was found to be a function of time and cell number. It was found that the total uptake of iron in the harvests was directly proportional to the incubation, and that the uptake per 106 cells levelled off in the course of time.  相似文献   

19.
The importance of litter to nutrient and organic matter storage and the possible influence of species selection on soil fertility in ten stands each consisting of a separate tree species were examined in this study. The plantations had been grown under similar conditions in an arboretum in the Luquillo Experimental Forest, Puerto Rico. The species involved were: Anthocephalus chinensis, Eucalyptus × patentinervis, E. saligna, Hernandia sonora, Hibiscus elatus, Khaya nyasica, Pinus caribaea var. hondurensis, P. elliottii var. densa, Swietenia macrophylla, and Terminalia ivorensis. After 26 yr, litter mass ranged from 5 mg ha-1 in the H. sonora stand to 27.2 Mg ha-1 in the P. caribaea stand. Nutrients in the litter (N, P, K, Ca, and Mg) also varied widely, but stands were ranked in different order when ranked by nutrients in the litter than then ranked according to accumulation of mass. Only E. saligna and A. chinensis stands were ranked similarly in accumulation of both nutrients and mass, and the stand of H. elatus was ranked higher with respect to nutrient accumulation than to accumulation of mass. The nutrient concentration in standing leaf litter generally increased in the order of recently fallen <old intact< fragmented. Nutrient concentration of standing leaf litter appears to increase with age and depth in the litter layer. The amount of nutrients stored in the litter compartment of these plantations was in the same order of magnitude as the quantity of available nutrients in the top 10-cm of mineral soil. Total litter mass was negatively correlated with the mass-weighted concentration of N, K, and Mg. The same relationship was found for Ca in the leaf litter and N in the fine wood litter compartments. In some stands (notably P. caribaea, P. elliottii, and E. saligna), leaf litter derived from species other than the species planted in that particular stand had higher nutrient concentration than leaf litter from the planted species. Soils of the 10 stands were classified in the same soil series and had similar texture (clay soils). However, significantly different chemical characteristics were found. Results obtained by analysis of covariance and by limiting comparisons to adjacent stands with similar soil texture, indicate that different species have had different influences on the concentration of available nutrients in soil.  相似文献   

20.
A simple and non-radioactive technique based on O-cresolpthalein complexone assay was developed to study in vitro non-radioactive calcium (40Ca) deposition by isolated matrix vesicles. Using this technique, the effect of various phosphoester substrates including ATP, AMP and β-GP on in vitro MV-calcification was studied. O-cresolpthalein complexone assay with non-radioactive calcium demonstrated that AMP or β-GP were more effective in promoting calcium deposition by isolated MVs than ATP. The application of this nonradioactive technique, which is highly sensitive and simple, would offer a useful alternative approach to the routinely used radiometric biomineralization assay which employs radioactive 45Ca. Published: December 16, 2004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号