首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The kinetics of receptor up-regulation was examined in isolated neutrophils and in whole blood by flow cytometry during cell activation. Stimulation of neutrophils prepared without exposure to LPS with chemoattractants induced fast up-regulation of N-formyl peptide receptors and C receptor type 3 (CR3). Biphasic N-formyl peptide binding curves were detected for saturating concentrations of N-formyl peptide at 37 degrees C. The bulk of the rapid binding during the first 30 to 60 s is attributed to already expressed binding sites whereas the slow binding over the next 3 to 4 min represents a time course of receptor up-regulation. Support for this interpretation comes from conditions under which the number of binding sites and the progress of the binding curves were affected. Cells treated with LPS, which caused expression of internal N-formyl peptide receptors, exhibited rapid, monophasic binding curves with increased total binding. In LPS-untreated, calcium-depleted cells, N-formyl peptide receptor up-regulation was inhibited and rapid, monophasic binding to a smaller total number of expressed sites was observed. Cytochalasin B enhanced the total number of available N-formyl peptide receptors in LPS-untreated but not LPS-treated cells. In both cases binding was rapid and monophasic suggesting that receptors were either fully or rapidly up-regulated. Although not studied in real-time, C receptor type 3 up-regulation was similar to N-formyl peptide receptor up-regulation in response to LPS, or stimulation by N-formyl peptide, C product C5a, leukotriene B4, and platelet-activating factor in isolated cells and in whole blood. After stimulation with formyl peptide, LPS, or C product 5a, the release of vitamin B12-binding protein paralleled up-regulation of receptors. These data indicate that untreated cells up-regulate N-formyl peptide receptors during cell response at a rate of approximately 10,000/min in a calcium-dependent manner whereas LPS-treated cells already express the bulk of their receptors. In cytochalasin B-treated, degranulating cells 30,000 to 50,000 receptors were up-regulated within a minute.  相似文献   

2.
Stimulation of human neutrophils with the chemotactic N-formyl peptide causes production of oxygen radicals and conversion of monomeric actin (G-actin) to polymeric actin (F-actin). The effects of the binary botulinum C2 toxin on the amount of F-actin and on neutrophil cell responses were studied. Two different methods for analyzing the actin response were used in formyl peptide-stimulated cells: staining of F-actin with rhodamine-phalloidin and a transient right angle light scatter. Preincubation of neutrophils with 400 ng/ml component I and 1,600 ng/ml component II of botulinum C2 toxin for 30 min almost completely inhibited the formyl peptide-stimulated polymerization of G-actin and at the same time decreased the amount of F-actin in unstimulated neutrophils by an average of approximately 30%. Botulinum C2 toxin preincubation for 60 min destroyed approximately 75% of the F-actin in unstimulated neutrophils. Right angle light scatter analysis showed that control neutrophils exhibited the transient response characteristic of actin polymerization; however, after botulinum C2 toxin treatment, degranulation was detected. Single components of the binary botulinum C2 toxin were without effect on the actin polymerization response. Fluorescence flow cytometry and fluorospectrometric binding studies showed little alteration in N-formyl peptide binding or dissociation dynamics in the toxin-treated cells. However, endocytosis of the fluorescent N-formyl peptide ligand-receptor complex was slower but still possible in degranulating neutrophils treated with botulinum C2 toxin for 60 min. The half-time of endocytosis, estimated from initial rates, was 4 and 8 min in control and botulinum C2 toxin-treated neutrophils, respectively.  相似文献   

3.
N-formyl-methionyl peptides are powerful chemoattractants which bind to specific receptors on the neutrophil plasma membrane. A cDNA library from HL-60 cells, differentiated into granulocytes highly responsive to N-formyl-methionyl peptides, was constructed in the COS cell expression vector CDM8. A cDNA clone was isolated that conferred to COS cells the ability to bind a new and highly efficient hydrophilic derivative of N-formyl-Met-Leu-Phe-Lys. The transfected COS cells displayed two classes of binding sites with Kd values of 0.5-1 nM and 5-10 nM, respectively. The cDNA was 1.9 kb long with a 1050 bp open reading frame encoding a 350 residue protein. The hydropathy plot analysis revealed seven hydrophobic segments, a pattern quite similar to that of G protein-coupled receptors.  相似文献   

4.
Quantitative analysis of ligand-occupied receptor interactions with elements of the cytoskeleton and with intracellular compartments requires a sensitive and simple method of identifying the receptor-ligand complex in living cells. Toward this goal, we have prepared a photoactivatable arylazide derivative of the chemotactic peptide N-formyl-Nle-Leu-Phe-Nle-Tyr-Lys, which can be radiolabeled to high specific activity with 125I. This derivative was biologically active as judged by its ability to elicit superoxide anion production by human PMNL at nanomolar concentrations (ED50 approximately 0.7 nM). When incubated at 0 degree C with whole PMNL, radioactive ligand became specifically and saturably associated with a 60-70,000-dalton species (as assessed by SDS-PAGE) after exposure to UV light. Addition of 10-100-fold excess of unlabeled parent or unlabeled azidopeptide derivative completely blocked uptake into this species. Approximately 20-40% of the available surface receptor-binding sites were covalently labeled under these conditions. Subcellular fractionation of the labeled cells on sucrose gradients after homogenization showed that the labeled species was primarily associated with plasma membrane-rich fractions. The labeled receptor could be completely solubilized with Triton X-100 in a form which eluted as a single species with a Stoke's radius of less than 50 A on Sepharose 4B columns. In addition, the solubilized receptor-ligand complex bound specifically to wheat germ agglutinin, indicating that it is probably a glycoprotein. The ability to label the receptor in living PMNL with a high efficiency should facilitate the study of receptor dynamics and receptor physiochemical properties in this system.  相似文献   

5.
Multiple activation steps of the N-formyl peptide receptor   总被引:1,自引:0,他引:1  
The human N-formyl peptide receptor (FPR) is representative of a growing family of G protein-coupled receptors (GPCR) that respond to chemokines and chemoattractants. Despite the importance of this receptor class to immune function, relatively little is known about the molecular mechanisms involved in their activation. To reveal steps required for the activation of GPCR receptors, we utilized mutants of the FPR which have previously been shown to be incapable of binding and activating G proteins. For this study, the FPR mutants were expressed in human myeloid U937 cells and characterized for functions in addition to G protein coupling, such as receptor phosphorylation and ligand-induced receptor internalization. The results demonstrated that one of the mutants, R123G, though being unable to activate G protein, was capable of undergoing ligand-induced phosphorylation as well as internalization. Receptor internalization was monitored by following the fate of the ligand as well as by directly monitoring the fate of the receptor. The results with the R123G mutant were in contrast to those obtained for mutants D71A and R309G/E310A/R311G which, though being expressed at the cell surface and binding ligand, were incapable of being phosphorylated or internalized upon agonist stimulation. These results suggest that following ligand binding at least two "steps" are required for full activation of the wild-type FPR. That these observations may be of more general importance in GPCR-mediated signaling is suggested by the highly conserved nature of the mutants studied: D71, R123, and the site represented by amino acids 309-311 are very highly conserved throughout the entire superfamily of G protein-coupled receptors. Models of receptor activation based on the observed results are discussed.  相似文献   

6.
The goal of this study was to elucidate the relationships between early ligand binding/receptor processing events and cellular responses for the N-formyl peptide receptor system on human neutrophils as a model of a GPCR system in a physiologically relevant context. Binding kinetics of N-formyl-methionyl-leucyl-phenylalanyl-phenylalanyl-lysine-fluorescein and N-formyl-valyl-leucyl-phenylalanyl-lysine-fluorescein to the N-formyl peptide receptor on human neutrophils were characterized and combined with previously published binding data for four other ligands. Binding was best fit by an interconverting two-receptor state model that included a low affinity receptor state that converted to a high affinity state. Response behaviors elicited at 37 degrees C by the six different agonists for the N-formyl peptide receptor were measured. Dose response curves for oxidant production, actin polymerization, and G-protein activation were obtained for each ligand; whereas all ligands showed equal efficacy for all three responses, the ED(50) values varied as much as 7000-fold. The level of agonism and rank order of potencies of ligands for actin and oxidant responses were the same as for the G-protein activation assay, suggesting that the differences in abilities of ligands to mediate responses were determined upstream of G-protein activation at the level of ligand-receptor interactions. The rate constants governing ligand binding and receptor affinity conversion were ligand-dependent. Analysis of the forward and reverse rate constants governing binding to the proposed signaling receptor state showed that it was of a similar energy for all six ligands, suggesting the hypothesis that ligand efficacy is dictated by the energy state of this ligand-receptor complex. However, the interconverting two-receptor state model was not sufficient to predict response potency, suggesting the presence of receptor states not discriminated by the binding data.  相似文献   

7.
A new superior photoaffinity ligand for the N-formyl peptide receptor was prepared by derivatization of N-formyl-Met-Leu-Phe-Lys with a commercially available heterobifunctional crosslinking agent. The product, N-formyl-Met-Leu-Phe-N epsilon-(2-(p-azidosalicylamido)ethyl-1,3'- dithiopropionyl)-Lys was readily synthesized and radiolabelled, and had increased specificity and stability as compared to previously used photoaffinity ligands. The ligand rapidly associated with the receptor with high affinity (Kd = 0.28 nM). Once bound, it was virtually non-dissociable (in the absence of photolysis) in an experimental time-frame (t1/2 (off) = 154 min). The covalent incorporation of the photoaffinity ligand into the receptor upon irradiation was complete within 5 min, minimizing cell damage, and the efficiency of covalent incorporation was approx. 40%. The derivative had enhanced biological activity, having an ED50 for superoxide anion production of 0.23 nM, 27-fold lower than its parent peptide. This derivative of the N-formyl peptide was useful for up to 3 months after radiolabelling, showing a progressive decline in specific activity during storage in the dark at 4 degrees C. The enhanced stability, reproducibility and solubility of the photoaffinity ligand is expected to aid in the purification of the N-formyl peptide receptor and will prove a useful tool for analysing receptor-mediated processes.  相似文献   

8.
It is well-established that the binding of N-formyl peptides to the N-formyl peptide receptor on neutrophils can be described by a kinetic scheme that involves two ligand-bound receptor states, both a low affinity ligand-receptor complex and a high affinity ligand-receptor complex, and that the rate constants describing ligand-receptor binding and receptor affinity state interconversion are ligand-specific. Here we examine whether differences due to these rate constants, i.e. differences in the numbers and lifetimes of particular receptor states, are correlated with neutrophil responses, namely actin polymerization and oxidant production. We find that an additional receptor state, one not discerned from kinetic binding assays, is required to account for these responses. This receptor state is interpreted as the number of low affinity bound receptors that are capable of activating G proteins; in other words, the accumulation of these active receptors correlates with the extent of both responses. Furthermore, this analysis allows for the quantification of a parameter that measures the relative strength of a ligand to bias the receptor into the active conformation. A model with this additional receptor state is sufficient to describe response data when two ligands (agonist/agonist or agonist/antagonist pairs) are added simultaneously, suggesting that cells respond to the accumulation of active receptors regardless of the identity of the ligand(s).  相似文献   

9.
A large number of G protein-coupled receptors have been shown to form homodimers based on a number of different techniques such as receptor coimmunoprecipitation, cross-linking, and fluorescence resonance energy transfer. In addition, functional assays of cells coexpressing a mutant receptor with a wild-type receptor have shown receptor phenotypes that can best be explained through dimerization. We asked whether the human neutrophil N-formyl peptide receptor (FPR) forms dimers in Chinese hamster ovary cells by coexpressing wild-type FPR with one of two mutants: D71A, which is uncoupled from G protein, and N297A, which has a defect in receptor phosphorylation and endocytosis. Experiments measuring chemotaxis, ligand-induced release of intracellular calcium, and p42/44 mitogen-activated protein kinase activation did not show an inhibitory effect of the coexpressed FPR D71A mutant. Coexpressed wild-type receptor was efficiently internalized, but failed to correct the endocytosis defects of the D71A and the N297A mutants. To explore the possibility that the mutations themselves prevented dimerization, we examined the coimmunoprecipitation of differentially epitope-tagged FPR. Immunoprecipitation of hemagglutinin-tagged FPR failed to coimmunoprecipitate coexpressed c-myc-tagged FPR and vice versa. Together, these data suggest that, unlike many other G protein-coupled receptors, FPR does not form homodimers.  相似文献   

10.
We developed a permeabilization method that retains coupling between N-formyl-methionyl-leucyl-phenylalanine tripeptide (FMLP) receptor stimulation, shape changes, and barbed-end actin nucleation in human neutrophils. Using GTP analogues, phosphoinositides, a phosphoinositide-binding peptide, constitutively active or inactive Rho GTPase mutants, and activating or inhibitory peptides derived from neural Wiskott-Aldrich syndrome family proteins (N-WASP), we identified signaling pathways leading from the FMLP receptor to actin nucleation that require Cdc42, but then diverge. One branch traverses the actin nucleation pathway involving N-WASP and the Arp2/3 complex, whereas the other operates through active Rac to promote actin nucleation. Both pathways depend on phosphoinositide expression. Since maximal inhibition of the Arp2/3 pathway leaves an N17Rac inhibitable alternate pathway intact, we conclude that this alternate involves phosphoinositide-mediated uncapping of actin filament barbed ends.  相似文献   

11.
The receptor for formylated peptides such as FMLP has been reported to consist of glycoprotein components ranging from 24-95 kDa, and to exhibit both high and low affinity for ligand. Controversy exists on the molecular size and number of these components, and whether the different affinities represent distinct ligand binding sites. In this study, the receptor was found to be comprised of components, of 94, 68, and approximately 40 kDa molecular size. Competitive binding inhibition experiments showed that FMLP bound to the components in the following order from highest to lowest affinity: 68 kDa greater than approximately 40 kDa greater than 94 kDa. Our findings suggest that the FMLP receptor of human neutrophils contains at least three components, and that each component has a different affinity for FMLP.  相似文献   

12.
Two chemoattractant receptors, C5aR (the complement fragment C5a receptor) and FPR (the N-formyl peptide receptor), are involved in neutrophil activation at sites of inflammation. In this study, we found major differences in the intracellular trafficking of the receptors in transfected Chinese hamster ovary (CHO) cells. Western blot analysis showed that FPR was stable during a 3 h stimulation with ligand, but C5aR was reduced in quantity by 50%. Not all C5aR was targeted directly for degradation however; a small, but visible fraction of the receptor became re-phosphorylated upon subsequent addition of ligand, suggesting that some of the receptor had cycled to the cell surface. Light membrane fractions isolated from activated cells showed C5aR distribution at the bottom of a glycerol gradient, colocalizing with the main distribution of the late endosomal/lysosomal marker LAMP2, whereas FPR was found at the bottom of the gradient as well as in the middle of the gradient, where it cofractionated with the early/sorting endosomal marker Rab5. Using fluorescence microscopy, we observed ligand-dependent redistribution of C5aR-EGFP from the plasma membrane to LAMP2-positive compartments, whereas FPR-EGFP showed significant colocalization with the early/sorting endosomes. Analysis of endogenous C5aR and FPR in neutrophils revealed a pattern similar to the CHO transfectants: C5aR underwent degradation after prolonged ligand stimulation, while FPR did not. Finally, we confirmed the down-regulation of C5aR in a functional assay by showing reduced chemotaxis toward C5a in both CHO transfectants and neutrophils after preincubation with C5a. A similar decrease in FPR-mediated chemotaxis was not observed.  相似文献   

13.
Recent studies have highlighted the emergence of a class of G protein-coupled receptors that are internalized in an arrestin-independent manner. In addition to demonstrating that the N-formyl peptide receptor belongs in this family, we have recently shown that recycling of the receptor requires the presence of arrestins. To further elucidate mechanisms of arrestin-dependent regulation of G protein-coupled receptor processing, we examined the effects of altering the receptor-arrestin complex on ternary complex formation and cellular trafficking of the N-formyl peptide receptor by studying two active arrestin-2 mutants (truncated arrestin-2 [1-382], and arrestin-2 I386A, V387A, F388A). Complexes between the N-formyl peptide receptor and active arrestins exhibited higher affinity in vitro than the complex between the N-formyl peptide receptor and wild-type arrestin and furthermore were observed in vivo by colocalization studies using confocal microscopy. To assess the effects of these altered interactions on receptor trafficking, we demonstrated that active, but not wild-type, arrestin expression retards N-formyl peptide receptor internalization. Furthermore, expression of arrestin-2 I386A/V387A/F388A but not arrestin-2 [1-382] inhibited recycling of the N-formyl peptide receptor, reflecting an expanded role for arrestins in G protein-coupled receptor processing and trafficking. Whereas the extent of N-formyl peptide receptor phosphorylation had no effect on the inhibition of internalization, N-formyl peptide receptor recycling was restored when the receptor was only partially phosphorylated. These results indicate not only that a functional interaction between receptor and arrestin is required for recycling of certain G protein-coupled receptors, such as the N-formyl peptide receptor, but that the pattern of receptor phosphorylation further regulates this process.  相似文献   

14.
Activation of neutrophils by N-formyl chemotactic peptides   总被引:3,自引:0,他引:3  
The response of neutrophils to N-formyl peptides is mediated via a specific 50,000- to 60,000-dalton (Mr) receptor. Real-time kinetic analysis indicated that most of the cellular responses elicited by this ligand began within 5-10 s of addition to the cells at 37 C. Of three possible biochemical changes measured that could serve as transducers or second messengers, two, i.e., increases in cyclic AMP (cAMP) and intracellular free Ca2+, occurred within 5 s of stimulus addition. In contrast, internalization of the ligand by cells showed a latency time of 20-30 s, which indicates that it probably plays no role in triggering later responses. Using pulse binding techniques that allow the level of a given response to be measured as a function of the measured level of surface receptor occupancy, we found that O2- production required up to 30% receptor occupancy to elicit 50% of maximal response. In contrast, secretion, cAMP changes, Ca2+ changes, and membrane potential changes required less than 5% occupancy. Within 5 s, occupied receptors were converted at the cell surface to a slowly dissociating form. The receptors, exhibiting apparent higher affinity, were transiently associated with the cell cytoskeleton as defined by their conversion to a Triton X-100-insoluble form. Internalized receptor-ligand complexes were transported, in large part, to the Golgi apparatus. Further analyses of the mechanism of stimulation of leukocytes have been performed with monoclonal antibodies directed against the neutrophil surface. Data with these antibodies, which are not directed to the N-formyl peptide receptor, reveal that some modulated the N-formyl peptide-mediated responses and other antibodies initiated responses of the cells.  相似文献   

15.
We investigated the requirement for N-formyl peptide receptor-mediated transmembrane signalling in transfected mouse fibroblasts that express the receptor. Stably transfected cells displayed specific binding for N-formyl-Met-Leu-[3H]Phe with a dissociation constant of 3 nM. The cells responded to ligand stimulation with mobilization of calcium from intracellular stores. Calcium mobilization was ligand dose-dependent (EC50 = 3 nM fMet-Leu-Phe) and could be inhibited by pertussis toxin treatment. These results provide the first demonstration that expression of the single-chain N-formyl peptide receptor in mouse fibroblasts is sufficient for mediating ligand-induced early transmembrane signalling events, which do not appear to require other neutrophil-specific cellular components.  相似文献   

16.
We have developed a unilamellar phospholipid vesicle system which contains the N-formyl peptide receptor and GTP binding proteins. Several detergents were investigated but only two, octyl glucoside (35 mM) and deoxycholate (7.5 mM), were capable of extracting N-formyl peptide receptor from neutrophil membranes in a form which remained functionally active upon reconstitution into phospholipid vesicles. Extracted proteins were reconstituted into phosphatidylcholine vesicles by passage over a Sephadex G-50-80 column. The reconstituted formylpeptide receptor could bind [3H]FMLP (3H-labeled fMet-Leu-Phe) and [125I]FMLPL-SASD (125I-labeled N-formylmethionylleucylphenylalanyl-N epsilon-(2-(p-azidosalicylamido)ethyl- 1,3'-dithiopropionyl)lysine) while the endogenous G protein could bind [35S]GTP gamma S. Furthermore, the functional interaction of the two proteins was preserved. Addition of the nonhydrolyzable guanine nucleotide, GTP gamma S, shifted the N-formyl peptide receptor from a high- to a low-affinity binding state for ligand. The development of this in vitro reconstitution system should provide a basis to study the mechanism of interaction of the N-formyl peptide receptor and the G protein.  相似文献   

17.
Flow cytometric analyses were performed to study intracellular single-cell calcium transients ([Ca2+]i) in suspended human neutrophils during the initial phase of N-formyl peptide stimulation. Thereby, two neutrophil populations became apparent. Early maximally Ca2+-responding (high fluorescence) neutrophils and not-yet Ca2+-responding (low fluorescence) neutrophils, but no neutrophils with intermediate levels of [Ca2+]i, were detected. Within 7 s the number of low fluorescence neutrophils decreased and the number of high fluorescence neutrophils increased maximally. This suggests that [Ca2+]i transients occurred abruptly in individual neutrophils within a time interval below 1 s. At lower N-formyl peptide concentrations the lag times of individual neutrophils and the interval time of maximal activation of the [Ca2+]i-responding neutrophil population increased, however the percentage of [Ca2+]i-responding cells decreased. Surprisingly, no influence of the N-formyl peptide concentration on the [Ca2+]i-induced fluorescence signal of the individual cell was observed: it was always in an almost maximal range or not responding. In parallel, binding studies performed with fluorescein-labeled N-formyl peptide revealed that the heterogeneity of [Ca2+]i-responding cells cannot be explained by different receptor occupancy. In summary, this study demonstrates that [Ca2+]i transients induced by N-formyl peptides in suspended individual human neutrophils occur very rapidly in an almost “all-or-none manner” and that the mean increasing fluorescence signal of a calcium indicator within a whole neutrophil population results from varying lag times of the individual cells, rather than from the mean simultaneous progress of many cells. © 1993 Wiley-Liss, Inc.  相似文献   

18.
Fluorescence flow cytometry was used to measure the internalization of the fluorescent ligand N-formyl-nle-leu-phe-nle-tyr-lys-fluorescein by human neutrophils. The internalization process was monitored by the accessibility of the receptor-bound fluorescent ligand to quenching following a change in the pH of the extracellular medium from 7.4 to 3.0. In such a pH change, extracellular ligand or fluorescein are quenched immediately (excitation 488 nm). In contrast, intracellular fluorescein (derived from fluorescein diacetate) or intracellular ligand are quenched with half-times of approximately 20 or approximately 40 sec, respectively, at 37 degrees C. The fraction of internalized ligand is calculated by resolving the fast and slow components of the quenching process. Temporal resolution of the internalization process in this system depends upon two factors. We have previously shown that it is possible to examine essentially continuously the kinetics of ligand binding in the nM concentration range without removing the free ligand (Sklar LA, Finney DA, Cytometry 3:161, 1982). We have now modified a Becton Dickinson FACS IV sample head assembly to permit direct addition of reagents into the cell suspension while on-line. This enables us to change the suspension pH and evaluate internalization with a time resolution of a few seconds. We observe that internalized ligand can be detected within 1 min and that the rate is proportional to the number of receptors occupied. The rate is essentially linear over the first few minutes and approximately 60% of the receptor-bound ligand is internalized after 3 min.  相似文献   

19.
Following activation by ligand, most G protein-coupled receptors undergo rapid phosphorylation. This is accompanied by a drastic decrease in the efficacy of continued or repeated stimulation, due to receptor uncoupling from G protein and receptor internalization. Such processing steps have been shown to be absolutely dependent on receptor phosphorylation in the case of the N-formyl peptide receptor (FPR). In this study, we report results that indicate that the mechanisms responsible for desensitization and internalization are distinct. Using site-directed mutagenesis of the serine and threonine residues of the FPR carboxyl terminus, we have characterized regions that differentially regulate these two processes. Whereas substitution of all 11 Ser/Thr residues in the carboxyl terminus prevents both desensitization and internalization, substitution of four Ser/Thr residues between 328-332 blocks desensitization but has no effect on internalization. Similarly, substitution of four Ser/Thr residues between positions 334 and 339 results in a deficit in desensitization but again no decrease in internalization, suggesting that phosphorylation at either site evokes receptor internalization, whereas maximal desensitization requires phosphorylation at both sites. These results also indicate that receptor internalization is not involved in the process of desensitization. Further analysis of the residues between 328-332 revealed that restoration either of Ser(328) and Thr(329) or of Thr(331) and Ser(332) was sufficient to restore desensitization, suggesting that phosphorylation within either of these two sites, in addition to sites between residues 334 and 339, is sufficient to produce desensitization. Taken together, these results indicate that the mechanisms involved in FPR processing (uncoupling from G proteins and internalization) are regulated differentially by phosphorylation at distinct sites within the carboxyl terminus of the FPR. The relevance of this paradigm to other G protein-coupled receptors is discussed.  相似文献   

20.
《The Journal of cell biology》1993,121(6):1281-1289
Receptors for bacterial N-formyl peptides are instrumental for neutrophil chemotactic locomotion and activation at sites of infection. As regulatory mechanisms for signal transduction, both rapid coupling of the occupied receptor to cytoskeletal components, and receptor lateral redistribution, have been suggested (Jesaitis et al., 1986, 1989). To compare the distribution and lateral diffusion of the nonactivated and activated neutrophil N-formyl-peptide receptor, before internalization, we used a new fluorescent N-formyl-peptide receptor antagonist, tertbutyloxycarbonyl-Phe(D)-Leu-Phe(D)-Leu-Phe-OH (Boc- FLFLF, 0.1-1 microM), and the fluorescent receptor agonist formyl-Nle- Leu-Phe-Nle-Tyr-Lys (fnLLFnLYK, 0.1-1 microM). Fluorescent Boc-FLFLF did not elicit an oxidative burst in the neutrophil at 37 degrees C, as assessed by chemiluminescence and reduction of p-nitroblue tetrazolium chloride, but competed efficiently both with formyl-methionyl-leucyl- phenylalanine (fMLF) and fnLLFnLYK. It was not internalized, as evidenced by confocal microscopy and acid elution of surface bound ligand. The lateral mobility characteristics of the neutrophil fMLF receptor were investigated with the technique of FRAP. The diffusion coefficient (D) was similar for antagonist- and agonist-labeled receptors (D approximately 5 x 10(-10) cm2/s), but the fraction of mobile receptors was significantly lower in agonist- compared to antagonist-labeled cells, approximately 40% in contrast to approximately 60%. This reduction in receptor mobile fraction was slightly counteracted, albeit not significantly, by dihydrocytochalasin B (dhcB, 5 microM). To block internalization of agonist-labeled receptors, receptor mobility measurements were done at 14 degrees C. At this temperature, confocal microscopy revealed clustering of receptors in response to agonist binding, compared to a more uniform receptor distribution in antagonist-labeled cells. The pattern of agonist- induced receptor clustering was less apparent after dhcB treatment. To summarize, this work shows that activated N-formyl peptide receptors aggregate and immobilize in the plane of the neutrophil plasma membrane before internalization, a process that is affected, but not significantly reversed, by cytochalasin. The results are consistent with a model where arrested receptors are associated mainly with a cytochalasin-insensitive pool of cytoskeletal elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号