首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Winter sleep of the ground squirrel Spermophilus undulatus was accompanied by a 20% decrease in phospholipid content (µg phospholipid per 1 mg protein) in microsomal fractions of the liver as compared with summer-active squirrels. The phosphatidylcholine level (mol %) in hibernating squirrels was lower than in summer-active squirrels, and the content of sphingomyelin (mol %) during the torpor bout was higher than in winter- and summer-active squirrels. The cholesterol, fatty acid, monoglyceride, and diglyceride levels in the microsomal fraction of the liver were elevated during hibernation. Pronounced seasonal changes in the lipid/protein ratio implicate the lipids of the liver microsomal fraction in adaptation of the ground squirrel to hibernation.  相似文献   

2.
A neuronal nuclear fraction (N1) and a glial nuclear fraction (N2) have been isolated from 15-day-old rabbit cerebral cortex using the Thompson procedure. More than 56% of the homogenate DNA was recovered in the two nuclear fractions, with N1 being the larger by about eightfold. Fractions N1 and N2 had very similar phospholipid distributions, with phosphatidylinositol being a larger component than phosphatidylserine. Fatty acid analyses demonstrated that phosphatidylethanolamine and phosphatidylinositol, individually, had similar fatty acid profiles in fractions N1 and N2, and also in nuclear and microsomal fractions derived from homogenates of nerve cell bodies isolated from cortex of 15-day-old rabbits. In contrast, the nuclear phosphatidylcholines had lower levels of palmitate and higher levels of arachidonate than did microsomal phosphatidylcholines. Molecular species analyses indicated that monoenes (41 mol%), tetraenes (20 mol%), and saturates (13 mol%, composed chiefly of palmitate) were the principal classes of N1 phosphatidylcholines, while the diacyl species of phosphatidylethanolamine of this fraction were characterized by high levels of tetraenes (44 mol%), pentaenes (17 mol%), and hexaenes + polyenes (24 mol%). The neutral glycerides of fraction N1 occurred collectively at a level of 0.05 mol/mol phospholipid. Prominent fatty acids of diacylglycerols included palmitate (31%), oleate (20%), arachidonate (14%), and stearate (13%). Triacylglycerols showed a similar pattern but with relatively high levels of linoleate (11%), while monoacylglycerols consisted almost entirely of palmitate (33%), stearate (35%), and oleate (24%).  相似文献   

3.
A zinc-deficient diet caused an increase in microsomal membrane phospholipid levels compared to ad libitum controls. Cholesterol levels were found to be decreased 50% compared to either pair-fed or ad libitum controls, resulting in a sharp decline in the cholesterol/phospholipid ratio. No differences were observed in the distribution of phospholipid classes among all three groups, either in mitochondrial or microsomal membrane fractions. Fatty acid analysis of PC and PE revealed a rise in the 18:2 fraction from zinc-deficient mitochondrial and microsomal membrane fractions. Mitochondrial PE and PC from zinc-deficient animals revealed a rise in the 22:6 fatty acid fraction while microsomal PC also revealed a corresponding decrease in 20:4. None of the zinc-deficient preparations differed significantly from either ad libitum or pair-fed controls in the content of long-chain alk-l-enyl ethers. The results of this study point to an effect of a zinc-deficient diet on lipid metabolism in tumor subcellular membranes which may account for the decreased rate of tumor growth observed in zinc-deficient animals.  相似文献   

4.
1. The phospholipid composition of hepatic microsomal fractions from different developmental stages of embryonic chick was established. The major components were phosphatidylcholine (approx. 66%), phosphatidylethanolamine plus phosphatidylserine (approx. 21%) and sphingomyelin (approx. 9%). 2. There were no significant changes in the phospholipid composition during embryonic development from 9 to 20 days. 3. When microsomal subfractions were prepared it was found that the smooth-microsomal fractions (Ia and Ib) had a significantly greater sphingomyelin content than the rough-microsomal fraction (II). This was compensated by a lower phosphatidylcholine content in fractions Ia and Ib and an increase of phosphatidylcholine in fraction II. 4. The significance of the differences in the phospholipid composition of smooth and rough microsomes is discussed with particular reference to the origin and interrelation of smooth and rough endoplasmic reticulum.  相似文献   

5.
1. The values of the protein, RNA and phospholipid concentrations within the total microsomal fractions obtained from different stages of embryonic chick liver are compared. 2. Only the phospholipid content increases significantly with increasing developmental age. 3. The lack of membranes in the early stages of development and the relative constancy of RNA values during development suggests that some of the protein present at the early developmental stages is of a non-membranous non-ribosomal nature. 4. Glucose 6-phosphatase, adenosine triphosphatase, NADH(2)-cytochrome c reductase and diaphorase all increased in activity as development progressed. 5. Comparisons of submicrosomal fractions with respect to their protein, RNA and phospholipid content showed that in all embryonic stages fraction II (rough-membrane fraction) contained more than 60% of the proteins, RNA and phospholipid of the microsomal fraction. 6. Glucose 6-phosphatase was shown to be present predominantly in fraction II, whereas adenosine triphosphatase was present predominantly in fraction Iab (smooth-membrane fraction). 7. The significance of the differences between the smooth- and rough-microsomal fractions is discussed.  相似文献   

6.
Plasma membranes were isolated from roots of bean (Phaseolus vulgaris L.) plants cultured on phosphate sufficient or phosphate deficient medium. The phospholipid composition of plasma membranes was analyzed and compared with that of the microsomal fraction. Phosphate deficiency had no influence on lipid/protein ratio in microsomal as well as plasma membrane fraction. In phosphate deficient roots phospholipid content was lower in the plasma membrane, but did not change in the microsomal fraction. Phosphatidylcholine and phosphatidylethanolamine were two major phospholipids in plasmalemma and microsomal membranes (80 % of the total). After two weeks of phosphate starvation a considerable decrease (about 50 %) in phosphatidylcholine and phosphatidylethanolamine in microsomal membranes was observed. The decline in two major phospholipids was accompanied by an increase in phosphatidic acid and lysophosphatidylcholine content. The effect of alterations in plasma membrane phospholipids on membrane function e.g. nitrate uptake is discussed.  相似文献   

7.
Subcellular membranes of Saccharomyces cerevisiae, including mitochondria, microsomes, plasma membranes, secretory vesicles, vacuoles, nuclear membranes, peroxisomes, and lipid particles, were isolated by improved procedures and analyzed for their lipid composition and their capacity to synthesize phospholipids and to catalyze sterol delta 24-methylation. The microsomal fraction is heterogeneous in terms of density and classical microsomal marker proteins and also with respect to the distribution of phospholipid-synthesizing enzymes. The specific activity of phosphatidylserine synthase was highest in a microsomal subfraction which was distinct from heavier microsomes harboring phosphatidylinositol synthase and the phospholipid N-methyltransferases. The exclusive location of phosphatidylserine decarboxylase in mitochondria was confirmed. CDO-diacylglycerol synthase activity was found both in mitochondria and in microsomal membranes. Highest specific activities of glycerol-3-phosphate acyltransferase and sterol delta 24-methyltransferase were observed in the lipid particle fraction. Nuclear and plasma membranes, vacuoles, and peroxisomes contain only marginal activities of the lipid-synthesizing enzymes analyzed. The plasma membrane and secretory vesicles are enriched in ergosterol and in phosphatidylserine. Lipid particles are characterized by their high content of ergosteryl esters. The rigidity of the plasma membrane and of secretory vesicles, determined by measuring fluorescence anisotropy by using trimethylammonium diphenylhexatriene as a probe, can be attributed to the high content of ergosterol.  相似文献   

8.
The acyl-CoA:cholesterol acyltransferase (ACAT) activity and lipid composition of hepatic microsomal membrane were investigated 6 weeks after both 50 and 75% distal-small-bowel resection (SBR). A significant decrease in hepatic cholesteryl ester levels was observed after SBR, with a significant increase in the cholesteryl ester content of the livers of 75% SBR compared with the 50% SBR. Hepatic total acylglycerols, free cholesterol and phospholipid levels were not modified after the surgical operation. Microsomal free cholesterol was increased after both 50 and 75% SBR. However, a decrease in both microsomal ACAT activity and cholesteryl ester levels were found in microsomes (microsomal fractions) of resected rats, both changes being higher after 75 than after 50% resection. The total phospholipid content of the microsomes did not change after the surgical operation. The microsomal phospholipid fatty acid composition indicated higher changes after 75 than after 50% SBR. These results demonstrated that, in resected animals: (1) the activity of the enzyme responsible for catalysing cholesterol esterification (ACAT) is decreased, and (2) hepatic microsomal free cholesterol does not appear to influence the activity of ACAT.  相似文献   

9.
Altered hepatic cholesterol metabolism has been implicated in the etiology of cholesterol gallstones. This hypothesis has been examined by determining acyl-coenzyme A:cholesterol acyltransferase (ACAT) activity in liver biopsies from 31 cholesterol gallstone patients and 12 control subjects. Hepatic ACAT activity in gallstone patients was decreased to one-third that in controls (P less than 0.001). No differences in hepatic homogenate or microsomal free and total cholesterol concentrations were observed between the two groups. However, marked increases in free (107%) and total (98%) cholesterol concentrations were found in the cytosolic fraction of liver biopsies from gallstone patients. The total phospholipid concentration of the liver homogenate fraction was unchanged in both groups; however, the microsomal total phospholipid concentration was reduced by 17% (P less than 0.01) in gallstone samples compared with controls. This difference did not result in a significantly increased microsomal cholesterol/phospholipid ratio for the gallstone group (0.180 +/- 0.030) compared with the control group (0.169 +/- 0.042). These results show that hepatic ACAT activity is significantly decreased in cholesterol gallstone patients. These changes in ACAT activity in livers of patients with cholesterol gallstones are consistent with the known increase in the amount of free cholesterol secreted in the bile of these patients. Thus, the changes in ACAT activity may contribute to the pathogenesis of cholesterol gallstones.  相似文献   

10.
1. Chronic administration of isoproterenol caused similar alterations of membrane lipid profile in at least two rat parotid subcellular fractions, secretory granular and microsomal. 2. Typical changes in phospholipid classes and fatty-acyl chain groups were an increase of phosphatidylcholine and a decrease of sphingomyelin, and an increase of octadecadienoyl chain and a decrease of eicosatetraenoyl chain, respectively. 3. Electron spin resonance study showed that the isoproterenol-treatment also affected a membrane physical property, which may be through these compositional changes in membrane constituents.  相似文献   

11.
A phospholipid requirement of 2-acetamidofluorene N- and ring-hydroxylation was investigated with partially delipidated microsomal fraction from livers of 3-methylcholanthrene-pretreated hamsters. Butan-1-ol extraction of microsomal fraction removed 90% of the total lipid content without any appreciable effect on microsomal proteins. Such extracted microsomal fractions had much lower capacity to N- and ring-hydroxylate 2-acetamidofluorene: 25 and 44% of control respectively. Addition of butan-1-ol-extracted total lipid restored both oxidations to some extent, whereas addition of phosphatidylcholine fraction restored both oxidations almost completely. Addition of synthetic phospholipid, dilauroyl phosphatidylcholine, restored both oxidations to a large extent, whereas synthetic dipalmitoyl or distearoyl phosphatidylcholine was ineffective in restoring these oxidations.  相似文献   

12.
Early effects of choline deficiency were studied in rats. Nonphospholipid ("neutral lipid") and phospholipid were measured in plasma and in three fractions of a liver homogenate: sediment, supernatant fraction, and "floating fat." A single choline-deficient meal caused significant aberrations from the typical diurnal changes observed in the lipid fractions of the controls. These changes occurred in the following sequence: (a) failure of phospholipid to increase, after feeding, in the sediment fraction; (b) increase of neutral lipid, compared with controls, exclusively in the floating fraction; and (c) failure of neutral lipid to return to control levels. The rate of accumulation of neutral lipid increased during the first 4 days of deficiency. The occurrence of NADH-cytochrome c dehydrogenase in the floating fat and the absence of succinate dehydrogenase activity point to microsomal origin of the floating fat. Early effects of choline deficiency on plasma lipids were limited to phospholipid, and occurred later than changes in the liver. Plasma nonphospholipid levels were unchanged during the first 2 days; this does not support impaired secretion or transportation of glyceride as the cause of fatty liver in the early stages of choline deficiency.  相似文献   

13.
Murine neuroblastoma cells (clone N-2A) grown in suspension (spinner cells) or attached on a plastic surface (monolayer cells) were used in studies of the phospholipid and cholesterol composition of whole cells, primary plasma membranes, plasma membranes internalized during phagocytosis of polystyrene latex beads, mitochondria and microsomes. Monolayer cells contained higher concentrations of total phospholipid, phosphatidylserine and phosphatidylcholine, and lower concentration of phosphatidylethanolamine than spinner cells. The cholesterol levels and the relative proportions of the various phospholipids were similar in both cell types except phosphatidylethanolamine and sphingomyelin whose proportions were lower in monolayer cells. The primary plasma membranes of the two cell types differed significantly in the relative proportions of all phospholipids, except sphingomyelin, and the phospholipid to protein and the cholesterol to protein ratios were all higher in the membranes of spinner cells. In contrast to these results, all the phospholipid to protein and the cholesterol to protein ratios of the internalized plasma membranes were higher in monolayer than in spinner cells, and the proportions of all phospholipids, except phosphatidylethanolamine, were similar in both cell types. The membrane distributions of individual phospholipids and cholesterol were inferred from comparison of the phospholipid and cholesterol compositions of primary plasma membranes and plasma membranes internalized during phagocytosis of polystyrene beads. The results are consistent with a non-random distribution of most phospholipids in both spinner and monolayer cells, but the patterns of these distributions were different in the two cell types. With regard to cholesterol the results are compatible with a random or a heterogeneous distribution. All the phospholipid to protein ratios of the mitochondrial fraction of both cell types were lower than those of the plasma membranes. However, these ratios of the microsomal fraction were higher than those of the plasma membranes of monolayer cells, whereas they were comparable, with a few exceptions, to those of spinner cell membranes. The cholesterol to phospholipid molar ratios of plasma membranes were 6.4 and 4.3 fold greater than those of the mitochondrial and microsomal fractions, respectively.  相似文献   

14.
The effect of dietary soybean phospholipid on the activities of hepatic triacylglycerol-synthesizing enzymes was compared with soybean oil in fasted-refed rats. Soybean oil at the dietary level corresponding to 20% but not at 5% fatty acid level (21.2 and 5.3% on weight bases, respectively) significantly decreased liver microsomal diacylglycerol acyltransferase activities measured with the endogenous diacylglycerol substrate. Dietary soybean phospholipid even at the dietary level corresponding to 2% fatty acids (3.4% on weight base) significantly decreased the acyltransferase activities measured with endogenous substrate. The dietary phospholipid further decreased the parameter as the dietary level increased, and at the 5% fatty acid level, it was lower than that obtained with soybean oil at 20% fatty acid level. Soybean oil and phospholipid decreased the diacylglycerol acyltransferase activities measured with the saturating concentration of exogenous dioleoylglycerol substrate only when the activities were expressed in terms of total activity (mumol/min per liver) but to much lesser extents. Dietary phospholipid compared to the oil profoundly decreased not only hepatic triacylglycerol but also microsomal diacylglycerol levels. It was indicated that the availability of microsomal diacylglycerol as the substrate for diacylglycerol transferase is the critical determinant in regulating hepatic triacylglycerol synthesis and concentration in this experimental situation. Alterations in the activities of microsomal glycerol 3-phosphate acyltransferase and of the enzymes in fatty acid synthesis could account for the phospholipid-dependent decrease in the microsomal concentration of this intermediate in triacylglycerol synthesis.  相似文献   

15.
The formation of phosphatidic acid from sn-glycerol 3-phosphate was studied in neuronal nuclear fraction N1 and a microsomal fraction P3, isolated from cerebral cortices of 15-day-old rabbits. Two assays were used, employing dithiothreitol, MgCl2, NaF and (A) sn-glycerol 3-phosphate, [14C]oleate, ATP and CoA or (B) sn-[3H]glycerol 3-phosphate and oleoyl-CoA. In both assays fraction N1 had specific rates of phosphatidic acid labelling (expressed per mumol phospholipid in the fraction) which were 5- to 6-times the corresponding values for P3. In contrast to N1, the formation of phosphatidic acid by fraction P3 was more sensitive to inhibition at high concentrations of oleoyl-CoA and was greatly dependent upon the presence of NaF. In the absence of this salt, P3 showed decreased phosphatidate formation and increased levels of radioactive monoacylglycerols. Using cerebral cortex, rough (R) and smooth (S) microsomal fractions were prepared, as was a microsomal fraction P from isolated nerve cell bodies. P had specific rates of phosphatidic acid labelling which were 2-3 times the values for P3, but were about 50% of the N1 values. This indicates a concentration of phosphatidate synthesis in the nucleus within the nerve cell. Specific rates for fraction R were higher and were similar to those of N1. In S, P3 and R the specific rates of phosphatidic acid synthesis paralleled specific RNA contents and indicated a location for phosphatidic acid synthesis within the rough endoplasmic reticulum.  相似文献   

16.
1. Crude synaptosomal fractions (P2) from guinea-pig cerebral cortex were incubated in a Krebs-glucose medium containing labelled fatty acids and [3H]glucose. After the shortest incubation period (7.5 min) a high percentage (50-80%) of the total radioactive fatty acids was found in the P2 fractions. 2. After the incubation, the synaptosomal fractions were submitted to hypo-osmotic disruption and subsynaptosomal fractionation was carried out by using discontinuous-sucrose-gradient centrifugation. The specific radioactivities of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidylinositol were determined in fractions D (synaptic vesicles), E (microsomal preparation) and H (disrupted synaptosomes), as were the specific activities of a number of marker enzymes and the distribution of acetylcholine. 3. By using [14C]oleate, [14C]arachidonate, [3H]palmitate and [3H]glucose, the order to specific radioactivities in fraction D was found to be: phosphatidylinositol greater than phosphatidylcholine greater than phosphatidylserine greater than phosphatidylethanolamine. 4. The specific radioactivities of phosphatidylcholine and phosphatidylethanolamine were always higher in fraction D than in fraction E. As fraction E had higher specific activities of several membrane marker enzymes, the enhanced labelling found in fraction D was considered to be localized in the synaptic vesicles. In this fraction, phosphatidylinositol made particularly large contributions to the total phospholipid labelling derived from [14C]arachidonate and [3H]glucose. 5. The similar labelling ratios of fatty acid/glucose in the phospholipids of fractions D and E, and the high specific radioactivities in the total phospholipid of the soluble fraction O, suggested intrasynaptosomal phospholipid transport.  相似文献   

17.
The incorporation of serine and ethanolamine into phospholipids in rabbit retinal subcellular fractions and in excised retinas was studied in vitro, and some enzymic properties of the incorporation of phospholipid bases by base exchange were examined in the microsomal fraction. The retina was found to have a higher rate of base exchange for the incorporation of phospholipid bases than other tissues. The retinal microsomal fraction possessed the highest specific activity of base exchange, while the rod outer segment had very little activity. These results suggest that the phospholipids in the rod outer segment may be transferred from the inner segment of the photorecepter cell. The apparent Km values for serine and ethanolamine in the microsomal fraction decreased with decreasing Ca2+ concentration. Although no further increase of incorporation of serine and ethanolamine occurred after 40 min in the microsomal fraction, continuous incorporation of both bases into phospholipids was seen for 3 hr in excised retina. Illumination did not significantly affect the incorporation of serine and ethanolamine in excised retina or in the rod outer segment fraction. Base exchange reaction thus may not play a direct role in the visual process.  相似文献   

18.
1. Mitochondrial and microsomal fractions of rat epididymal adipose tissue incorporated [1-(14)C]acetyl-CoA equally well into various fatty acids by a chain-elongation mechanism. C(18) and C(20) fatty acids were the two major products, and comprised about 80% of the total fatty acids synthesized in both particles. 2. When incubated in air, mitochondria synthesized stearic acid, octadecenoic acid and eicosamonoenoic acid in almost equal amounts (about 20% each), whereas in microsomal fractions, the synthesis of octadecenoic acid was more than fivefold the stearic acid formation. In both fractions, major components of synthesized monoenoic fatty acids were the Delta(11:12) isomers. Hexadecenoic acid and octadecenoic acid from whole adipose tissue contained approx. 11 and 14% of the Delta(11:12) isomer respectively. 3. When mitochondria or microsomal fractions were incubated in nitrogen, there was increased synthesis of stearic acid and palmitic acid and less of C(16) and C(18) monoenoic acids; synthesis of C(20) acids remained predominantly of the monoenoic acids. Determination of the position of the double bond in the monoenoic acids supported the view that the synthesis of hexadecenoic acid and octadecenoic acid involves a desaturase activity, whereas eicosamonoenoic acid and eicosadienoic acid are formed only by elongation of endogenous fatty acids. 4. Most of the radioactivity was found in free fatty acids (63%) and the phospholipid (26%) fraction. In phospholipids, phosphatidylcholine and phosphatidylethanolamine were the two major components. 5. Most of the fatty acids synthesized, including those not normally found in particle lipids (arachidic acid, eicosamonoenoic acid and eicosadienoic acid) were distributed fairly evenly in the phospholipid and free fatty acid fractions. However, stearic acid was found predominantly in the phospholipid fraction.  相似文献   

19.
A lamellar body fraction was isolated from rat alveolar granular pneumocytes in primary culture by upward flotation on a discontinuous sucrose gradient and compared with a similar fraction isolated from lung homogenates. Lamellar bodies from granular pneumocytes were free of detectable contamination with either succinate dehydrogenase or NADPH-cytochrome c reductase. There was an enrichment of acid phosphatase activity, which, based on distribution of enzyme activity on the gradient, did not appear to be a contamination from other fractions. The lamellar body fraction of granular pneumocytes yielded approx. 1 microgram protein/10(6) cells with a phospholipid-to-protein ratio (mg/mg) of 9.6 +/- 0.4 (n = 7). Composition with respect to total phospholipids was 71.0% phosphatidylcholine (disaturated phosphatidylcholine, 45.2%), 8.4% phosphatidylglycerol and 12.8% phosphatidylethanolamine. Palmitic acid comprised 66% of the fatty acids in phosphatidylcholine and 34% of those in phosphatidylglycerol. The lamellar body fraction from granular pneumocytes was similar to that from whole lung with respect to phospholipid-to-protein ratio and phospholipid composition and showed only minor differences in fatty acid composition. Ultrastructurally, lamellar bodies showed generally intact limiting membranes and lamellated structure. Lamellar bodies from granular pneumocytes showed occasional multinucleated whorls which were not seen in those isolated from lung homogenates. This study describes a method for preparing a homogeneous fraction of intact lamellar bodies from small amounts of material (6 X 10(7) granular pneumocytes). The yield on a per cell basis was higher when compared with a similar preparation from whole lung, although overall yield is small, due to loss of cells during the cell isolation procedure. This preparation may be useful to evaluate the role of lamellar bodies in the synthesis and secretion of lung surfactant by isolated granular pneumocytes.  相似文献   

20.
Phospholipids in mitochondria can be exchanged with those in two microsomal fractions from rough endoplasmic reticulum (rough microsomes) and smooth endoplasmic reticulum (smooth microsomes) in vitro in the presence of cell supernatant. The amounts of phospholipids transferred from each submicrosomal fraction to nitochondria were slightly different. The compositions of the phospholipids transferred to mitochondria from both microsomal fractions were the same, though these two fractions actually had different phospholipid compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号