首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water and nutrient budgets were constructed for 13 low-lying peat polders in the Netherlands that varied in elevation relative to sea level (?0.2 to ?2.4 m below sea level), land use (7–70% of the total polder area covered by agriculture; largely dairy farming), and surface water prevalence (6–43%). Water balances were verified with chloride budgets and accepted when both met the criterion (total inflows ? total outflows)/(total inflows) <0.05. Apart from precipitation and evapotranspiration (overall means 913 vs. 600 mm), in- and outlet (171 vs. 420 mm) as well as in- and outward seepage (137 vs. 174 mm) were important items in the water budgets. Nutrient budgets, however, were dominated by terms related to agricultural land use (~60% of all inputs, 90% of N-removal and 80% of P removal) rather than water fluxes (8% and 5% of N and P inputs; 6 and 18% of outputs). After agriculture (200 kg N ha?1 y?1), mineralisation of the peat soil and atmospheric deposition appear to be important inputs (about 94 and 21 kg N ha?1 y?1). Major output terms were agricultural output (209 kg N ha?1 y?1) and denitrification (95 kg N ha?1 y?1). The average N budget was in balance (difference ~1 kg N ha?1 y?1), whereas P accumulated in most polders, particularly those under agriculture. The mean P surplus (15 kg P ha?1 y?1 in the 9 mainly agricultural polders) corresponds well with the accumulated difference observed elsewhere (700 kg P ha?1 in the upper 50 cm in a nature reserve versus 1400 under agriculture) after over 50 years of dairy farming. Bulk retention of N and P in these polders is taking place in the peat soil, through temporary sorption to the matrix and N is lost through denitrification. In a principal components analysis combining land use, landscape pattern, water balance and nutrient budget terms, the three-first principal components explained 63% of the variability. The first component (PC) correlated strongly with the percentage of land under agriculture (r = 0.82) and negatively with the percentage covered by surface water (r = ?0.74). Most input and output terms of the nitrogen budget also correlated with this PC. The second PC covaried distinctly with the total area of a polder (r = ?0.79) and human population density at municipality level (r = 0.75). Phosphorus loads in inlet and outlet water correlated with this PC. This suggests that the variability in nutrient budgets among polders is largely governed by agricultural land use.  相似文献   

2.
Using data on long-term monitoring of water quality, mass budgets, and empirical models, we quantified chloride (Cl) leaching from major diffuse and point sources in a large central European catchment (upper Vltava river, Czech Republic) over a 110-year period (1900–2010), with the major aim to evaluate the influence of historical changes in land use and management practices on Cl leaching from agricultural land. The Cl input to farmland in synthetic fertilizers, livestock feed, and atmospheric deposition tripled in the 1950s–1980s (from 23 to 64 kg ha?1 year?1 on average), and then abruptly decreased to ~14 kg ha?1 year?1 during 1990–2010. The proportion of drained agricultural land rapidly increased from 4 % in the 1950s to its maximum of 43 % in the 1990s. Until the 1950s, the Cl leaching from agricultural land followed a simple dose–response function. Then, agricultural soils retained on average 16 ± 4 kg ha?1 year?1 of Cl during 1959–1985, when the most important changes in land use and management practices occurred, and subsequently became a net Cl source of 11 ± 3 kg ha?1 year?1 on average during 1986–2010, when Cl input to soils declined and drainage of new land ceased. Our data suggest that the temporal changes in the Cl storage in agricultural land are associated with changes in Cl concentrations in both permanent soil water and soils. Physico-chemical conditions in freshly drained soils, namely elevated aeration and high concentrations of soil organic matter (SOM), and high Cl inputs probably resulted in a Cl immobilization in soils by formation of organic chlorine (Clorg) and adsorption that was higher than the Cl production from Clorg mineralization and desorption. In contrast, Clorg mineralization and Cl desorption exceeded the Cl retention during the consecutive period of low Cl inputs and decreasing SOM concentrations in agricultural soils. Our study implies that changes in land use and agricultural management can significantly affect dose–response functions even for Cl, which is traditionally considered and modelled as a conservative ion.  相似文献   

3.
Wood ants (Formica rufa group) are regarded as keystone species in boreal and mountain forests of Europe and Asia by their effect on ecosystem carbon (C) and nutrient pools and fluxes. To quantify the impact of their activity on boreal forest ecosystems, C, nitrogen (N), phosphorus (P), potassium (K) and calcium (Ca) pools and fluxes in wood ant nests (WAN), and soil were assessed along a 5-, 30-, 60-, and 100-year-old Norway spruce (Picea abies L. Karsten) dominated successional gradient in eastern Finland. Amounts of C and nutrients in WAN increased with stand age, but contained less than 1% of total C and nutrient pools in these stands. The CO2-efflux from nests was also insignificant, as compared to CO2-efflux from the forest floor. Annually, the amount of C brought by wood ants into their nests as honeydew, prey and nest-building materials ranged from 2.7 to 49.3 kg ha?1 C, but this is only 0.1–0.7% of the combined net primary production of trees and understorey in boreal forests. The difference between wood ant nest C inputs and outputs was very small in the younger-aged stands, and increased in the older stands. Carbon accumulation rates in nests over a 100 year period are estimated to be less than 10 kg ha?1 a?1. In contrast to C, annual inputs of N, P, and K are larger compared to wood ant nest nutrient pool size, ranging from 3 to 6% of the annual tree stand and understorey uptake. This indicates a more rapid turnover and transport of N, P, and K out of WAN, and suggests that wood ants increase the cycling rate of these nutrients in boreal forests.  相似文献   

4.
5.
Nitrogen (N) biogeochemistry of a mature Scots pine (Pinus sylvestris L.) stand subjected to an average total atmospheric N deposition of 48 kg ha?1 year?1 was studied during the period 1992–2007. The annual amount of dissolved inorganic nitrogen (DIN) in throughfall (TF) averaged 34 kg ha?1 year?1 over the 16-year monitoring period. The throughfall fluxes contained also considerable amounts of dissolved organic nitrogen (DON) (5–8.5 kg N ha?1 year?1), which should be incorporated in the estimate of N flux using throughfall collectors. Throughfall DIN fluxes declined at a rate of ?0.9 kg N ha?1 year?1, mainly due to the decreasing TF fluxes of ammonium (NH4), which accounted for 70% to TF DIN. The decrease in TF DIN was accompanied by a decrease in DIN leaching in the seepage water (?1.6 kg N ha?1 year?1), which occurred exclusively as nitrate (NO3 ?). Nitrate losses in the leachate of the forest floor (LFH) equalled the TF NO3 ? delivered to the LFH-layer. On the contrary, about half of the TF NH4 + was retained within the LFH-layer. Approximately 60% of the TF DIN fluxes were leached indicating that N inputs were far in excess of the N requirements of the forest. For DON, losses were only substantial from the LFH-layer, but no DON was leached in the seepage water. Despite the high N losses through nitrate leaching and NO x emission, the forest was still accumulating N, especially in the aggrading LFH-layer. The forest stand, on the contrary, was found to be a poor N sink.  相似文献   

6.
Elevated nitrogen deposition has increased tree growth, the storage of soil organic matter, and nitrate leaching in many European forests, but little is known about the effect of tree species and nitrogen deposition on nitrous oxide emission. Here we report soil N2O emission from European beech, Scots pine and Norway spruce forests in two study areas of Germany with distinct climate, N deposition and soils. N2O emissions and throughfall input of nitrate and ammonium were measured biweekly during growing season and monthly during dormant season over a 28 months period. Annual N2O emission rates ranged between 0.4 and 1.3 kg N ha?1 year?1 among the stands and were higher in 1998 than in 1999 due to higher precipitation during the growing season of 1998. A 2-way-ANOVA revealed that N2O fluxes were significantly higher (p<0.001) at Solling than at Unterlüß while tree species had no effect on N2O emissions. Soil texture and the amount of throughfall explained together 94% of the variance among the stands, indicating that increasing portions of silt and clay may promote the formation of N2O in wet forest soils. Moreover, cumulative N2O fluxes were significantly correlated (r2 = 0.60, p<0.001) with cumulative NO 3 ? fluxes at 10 cm depth as an indicator of N saturation, however, the slope of the regression curve indicates a rather weak effect of NO 3 ? fluxes on N2O emissions. N input by throughfall was not correlated with N2O emissions and only 1.6–3.2% of N input was released as N2O to the atmosphere. Our results suggest that elevated N inputs have little effect on N2O emissions in beech, spruce and pine forests.  相似文献   

7.
Green alder (Alnus viridis ssp. fruticosa) is a dominant understory shrub during secondary successional development of upland forests throughout interior Alaska, where it contributes substantially to the nitrogen (N) economy through atmospheric N2 fixation. Across a replicated 200+ year old vegetation chronosequence, we tested the hypotheses that green alder has strong effects on soil chemical properties, and that ecosystem-level N inputs via N2 fixation decrease with secondary successional stand development. Across early-, mid-, and late-successional stands, alder created islands of elevated soil N and carbon (C), depleted soil phosphorus (P), and more acidic soils. These effects translated to the stand-level in response to alder stem density. Although neither N2 fixation nor nodule biomass differed among stand types, increases in alder densities with successional time translated to increasing N inputs. Estimates of annual N inputs by A. viridis averaged across the upland chronosequence (6.6 ± 1.2 kg N ha?1 year?1) are substantially less than inputs during early succession by Alnus tenuifolia growing along Alaskan floodplains. However, late-succession upland forests, where densities of A. viridis are highest, may persist for centuries, depending on fire return interval. This pattern of prolonged N inputs to late successional forests contradicts established theory predicting declines in N2-fixation rates and N2-fixer abundance as stands age.  相似文献   

8.
Litter inputs are expected to have a strong impact on soil N2O efflux. This study aimed to assess the effects of the litter decomposition process and nutrient efflux from litter to soil on soil N2O efflux in a tropical rainforest. A paired study with a control (L) treatment and a litter-removed (NL) treatment was followed for 2 years, continuously monitoring the effects of these treatments on soil N2O efflux, fresh litter input, decomposed litter carbon (LCI) and nitrogen (LNI), soil nitrate (NO3 ?–N), ammonium (NH4 +–N), dissolved organic carbon (DOC), and dissolved nitrogen (DN). Soil N2O flux was 0.48 and 0.32 kg N2O–N ha?1 year?1 for the L and NL treatments, respectively. Removing the litter caused a decrease in the annual soil N2O emission by 33%. The flux values from the litter layer were higher in the rainy season as compared to the dry season (2.10 ± 0.28 vs. 1.44 ± 0.35 μg N m?2 h?1). The N2O fluxes were significantly correlated with the soil NO3 ?–N contents (P < 0.05), indicating that the N2O emission was derived mainly from denitrification as well as other NO3 ? reduction processes. Suitable soil temperature and moisture sustained by rainfall were jointly attributed to the higher soil N2O fluxes of both treatments in the rainy season. The N2O fluxes from the L were mainly regulated by LCI, whereas those from the NL were dominated jointly by soil NO3 ? content and temperature. The effects of LCI and LNI on the soil N2O fluxes were the greatest in the 2 months after litter decomposition. Our results show that litter may affect not only the variability in the quantity of N2O emitted, but also the mechanisms that govern N2O production. However, further studies are still required to elucidate the impacting mechanisms of litter decomposition on N2O emission from tropical forests.  相似文献   

9.
The Gallery forests of the Cerrado biome play a critical role in controlling stream chemistry but little information about biogeochemical processes in these ecosystems is available. This work describes the fluxes of N and P in solutions along a topographic gradient in a gallery forest. Three distinct floristic communities were identified along the gradient: a wet community nearest the stream, an upland dry community adjacent to the woodland savanna and an intermediate community between the two. Transects were marked in the three communities for sampling. Fluxes of N from bulk precipitation to these forests resulted in deposition of 12.6 kg ha?1 y?1 of total N of which 8.8 kg ha?1 was as inorganic N. The throughfall flux of total N was generally <8.4 kg ha?1 year?1. Throughfall NO3?CN fluxes were higher (7?C32%) while NH4?CN and organic N fluxes were lower (54?C69% and 5?C46%) than those in bulk precipitation. The throughfall flux was slightly lower for the wet forest community compared to other communities. Litter leachate fluxes differed among floristic communities with higher NH4?CN in the wet community. The total N flux was greater in the wet forest than in the dry forest (13.5 vs. 9.4 kg ha?1 year?1, respectively). The stream water had total N flux of 0.3 kg ha?1 year?1. The flux of total P through bulk precipitation was 0.7 kg ha?1 year?1 while the mean fluxes of total P in throughfall (0.6 kg ha?1 year?1) and litter leachate (0.5 kg ha?1 year?1) declined but did not differ between communities. The low concentrations presented in soil solution and low fluxes in stream water (0.3 and 0.1 kg ha?1 year?1 for N and P, respectively) relative to other flowpaths emphasize the conservative nutrient cycling of these forests and the importance of internal recycling processes for the maintenance and conservation of riparian and stream ecosystems in the Cerrado.  相似文献   

10.
Increasing demand for food and fibre by the growing human population is driving significant land use (LU) change from forest into intensively managed land systems in tropical areas. But empirical evidence on the extent to which such changes affect the soil-atmosphere exchange of trace gases is still scarce, especially in Africa. We investigated the effect of LU on soil trace gas production in the Mau Forest Complex region, Kenya. Intact soil cores were taken from natural forest, commercial and smallholder tea plantations, eucalyptus plantations and grazing lands, and were incubated in the lab under different soil moisture conditions. Soil fluxes of nitrous oxide (N2O), nitric oxide (NO) and carbon dioxide (CO2) were quantified, and we approximated annual estimates of soil N2O and NO fluxes using soil moisture values measured in situ. Forest and eucalyptus plantations yielded annual fluxes of 0.3–1.3 kg N2O–N ha?1 a?1 and 1.5–5.2 kg NO–N ha?1 a?1. Soils of commercial tea plantations, which are highly fertilized, showed higher fluxes (0.9 kg N2O–N ha?1 a?1 and 4.3 kg NO–N ha?1 a?1) than smallholder tea plantations (0.1 kg N2O–N ha?1 a?1 and 2.1 kg NO–N ha?1 a?1) or grazing land (0.1 kg N2O–N ha?1 a?1 and 1.1 kg NO–N ha?1 a?1). High soil NO fluxes were probably the consequence of long-term N fertilization and associated soil acidification, likely promoting chemodenitrification. Our experimental approach can be implemented in understudied regions, with the potential to increase the amount of information on production and consumption of trace gases from soils.  相似文献   

11.
Ion concentrations and fluxes in seepage water (below the main rooting zone) were compared before and after clear cutting at two similar long-term experimental Norway spruce forest plots. While Ballyhooly (Ireland) was influenced by sea salt deposition, Höglwald (Germany) received high nitrogen (N) deposition. These differences were reflected in seepage water concentrations with sodium (Na+) and chloride (Cl) dominating at Ballyhooly and high nitrate (NO3 ?) and aluminium concentrations at Höglwald. Following clear cutting of the forest plots, NO3 ? concentrations peaked (Ballyhooly: 2018 μmolc L?1, Höglwald: 2595 μmolc L?1). Moreover, at Ballyhooly, NO3 ? concentrations and fluxes were continuously elevated for ~1.5 years. At Höglwald, the clear cut plot, which was replanted with spruce and beech saplings, exhibited periodically elevated NO3 ? concentrations with two distinct peaks. However, low concentrations, compared to the control (uncut) plot, were also observed. Further, at Höglwald a plot with a pre-existing dense natural regeneration of Norway spruce exhibited much lower NO3 ? concentrations before and after clear cutting. Nonetheless, NO3 ? concentrations following clear cut at both sites were elevated at least periodically above European drinking water standards (50 mg L?1). An important prerequisite for NO3 ? leaching is that forests are N saturated or at least not N-limited; consequently chronic elevated N deposition may lead to increased deterioration of seepage water quality across Europe following forest disturbances (harvesting, windthrow, insect attacks). Clear cutting at Ballyhooly was responsible for significant element loss, especially of potassium, N and calcium, while magnesium loss was compensated by high sea salt inputs. At Höglwald the contamination of seepage water with NO3 ? has been the main problem for more than 20 years at the mature stand. A pre-existing regeneration can help to reduce NO3 ? and cation leaching after cutting.  相似文献   

12.
Estimates of carbon leaching losses from different land use systems are few and their contribution to the net ecosystem carbon balance is uncertain. We investigated leaching of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and dissolved methane (CH4), at forests, grasslands, and croplands across Europe. Biogenic contributions to DIC were estimated by means of its δ13C signature. Leaching of biogenic DIC was 8.3±4.9 g m?2 yr?1 for forests, 24.1±7.2 g m?2 yr?1 for grasslands, and 14.6±4.8 g m?2 yr?1 for croplands. DOC leaching equalled 3.5±1.3 g m?2 yr?1 for forests, 5.3±2.0 g m?2 yr?1 for grasslands, and 4.1±1.3 g m?2 yr?1 for croplands. The average flux of total biogenic carbon across land use systems was 19.4±4.0 g C m?2 yr?1. Production of DOC in topsoils was positively related to their C/N ratio and DOC retention in subsoils was inversely related to the ratio of organic carbon to iron plus aluminium (hydr)oxides. Partial pressures of CO2 in soil air and soil pH determined DIC concentrations and fluxes, but soil solutions were often supersaturated with DIC relative to soil air CO2. Leaching losses of biogenic carbon (DOC plus biogenic DIC) from grasslands equalled 5–98% (median: 22%) of net ecosystem exchange (NEE) plus carbon inputs with fertilization minus carbon removal with harvest. Carbon leaching increased the net losses from cropland soils by 24–105% (median: 25%). For the majority of forest sites, leaching hardly affected actual net ecosystem carbon balances because of the small solubility of CO2 in acidic forest soil solutions and large NEE. Leaching of CH4 proved to be insignificant compared with other fluxes of carbon. Overall, our results show that leaching losses are particularly important for the carbon balance of agricultural systems.  相似文献   

13.
Losses of nitrogen (N) often follow severe disturbance of forest ecosystems. In tropical forests, losses of N associated with the disturbance of clearing may be particularly important because rates of soil N cycling are high and forest clearing now occurs on a large scale. We measured soil solution inorganic N concentrations and fluxes for 1 year in an intact forest in the Brazilian Amazon state of Rondônia and in an adjacent 3-ha forest plot that was cleared for pasture by cutting, burning and planting pasture grass and in established cattle pastures on the same soils that were 5 and 22 years old. The cleared forest had higher soil solution NO 3 ? concentrations than the intact forest, but the difference between the cleared and control forests declined with time after the start of the first post-clearing rainy season. Established pastures had much lower solution NH 4 + and NO 3 ? concentrations than forest or cleared forest. Estimated annual dissolved inorganic solution N fluxes to below 1 m during the first year after clearing were 2.5 kg ha?1 in forest and 24.4 kg ha?1 in newly cleared forest compared with only 0.5–1.2 kg ha?1 in established pastures. The solution fluxes from cleared forest during the first year after clearing were approximately 7 times greater than gaseous N oxide (N2O+NO) losses estimated for the same time. These results were consistent with the characterization of moist tropical forests on weathered soils as N-rich and likely to respond to disturbances that elevate soil N availability with increased loss to both soil solution and the atmosphere. These results also suggest that the relative increase in N oxide loss is substantially less than the increase solution inorganic N loss.  相似文献   

14.
Currently, there is a lack of knowledge about GHG emissions, specifically N2O and CH4, in subtropical coastal freshwater wetland and mangroves in the southern hemisphere. In this study, we quantified the gas fluxes and substrate availability in a subtropical coastal wetland off the coast of southeast Queensland, Australia over a complete wet-dry seasonal cycle. Sites were selected along a salinity gradient ranging from marine (34 psu) in a mangrove forest to freshwater (0.05 psu) wetland, encompassing the range of tidal influence. Fluxes were quantified for CH4 (range ?0.4–483 mg C–CH4 h?1 m?2) and N2O (?5.5–126.4 μg N–N2O h?1 m?2), with the system acting as an overall source for CH4 and N2O (mean N2O and CH4 fluxes: 52.8 μg N–N2O h?1 m?2 and 48.7 mg C–CH4 h?1 m?2, respectively). Significantly higher N2O fluxes were measured during the summer months (summer mean 64.2 ± 22.2 μg N–N2O h?1 m?2; winter mean 33.1 ± 24.4 µg N–N2O h–1 m?2) but not CH4 fluxes (summer mean 30.2 ± 81.1 mg C–CH4 h?1 m?2; winter mean 37.4 ± 79.6 mg C–CH4 h?1 m?2). The changes with season are primarily driven by temperature and precipitation controls on the dissolved inorganic nitrogen (DIN) concentration. A significant spatial pattern was observed based on location within the study site, with highest fluxes observed in the freshwater tidal wetland and decreasing through the mangrove forest. The dissolved organic carbon (DOC) varied throughout the landscape and was correlated with higher CH4 fluxes, but this was a nonlinear trend. DIN availability was dominated by N–NH4 and correlated to changes in N2O fluxes throughout the landscape. Overall, we did not observe linear relationships between CH4 and N2O fluxes and salinity, oxygen or substrate availability along the fresh-marine continuum, suggesting that this ecosystem is a mosaic of processes and responses to environmental changes.  相似文献   

15.
Symbiotic relationships between N2-fixing prokaryotes and their autotrophic hosts are essential in nitrogen (N)-limited ecosystems, yet the importance of this association in pristine boreal peatlands, which store 25 % of the world’s soil (C), has been overlooked. External inputs of N to bogs are predominantly atmospheric, and given that regions of boreal Canada anchor some of the lowest rates found globally (~1 kg N ha?1 year?1), biomass production is thought to be limited primarily by N. Despite historically low N deposition, we show that boreal bogs have accumulated approximately 12–25 times more N than can be explained by atmospheric inputs. Here we demonstrate high rates of biological N2-fixation in prokaryotes associated with Sphagnum mosses that can fully account for the missing input of N needed to sustain high rates of C sequestration. Additionally, N amendment experiments in the field did not increase Sphagnum production, indicating that mosses are not limited by N. Lastly, by examining the composition and abundance of N2-fixing prokaryotes by quantifying gene expression of 16S rRNA and nitrogenase-encoding nifH, we show that rates of N2-fixation are driven by the substantial contribution from methanotrophs, and not from cyanobacteria. We conclude biological N2-fixation drives high sequestration of C in pristine peatlands, and may play an important role in moderating fluxes of methane, one of the most important greenhouse gases produced in peatlands. Understanding the mechanistic controls on biological N2-fixation is crucial for assessing the fate of peatland carbon stocks under scenarios of climate change and enhanced anthropogenic N deposition.  相似文献   

16.
The N2-fixing shrub Alnus viridis is currently encroaching on montane grasslands in the Alps as a result of reduced land management and complete abandonment. Alnus introduces large amounts of nitrogen (N) into these formerly N-poor grasslands and restricts the succession to montane forests. We studied pools and fluxes of N and the associated C pools in pastures (controls) and adjacent Alnus shrublands at two elevations (1650 versus 1950 m a.s.l.) in three valleys in the Swiss central Alps. The total N and C pools stored in 50-year-old Alnus shrubland did not exceed those in adjacent pastures with a total of approximately 610 g N m?2 in phytomass plus soil (down to 30 cm) at both elevations. In Alnus stands, reduced soil N pools balanced the gain in phytomass N pools, a likely result of a faster turnover of soil N. The soil solution under Alnus was continuously enriched with nitrate, with a total N leaching of 0.79 g N m?2 season?1 (June–October) under 50-year-old stands at both elevations and the highest flux of 1.76 g N m?2 season?1 in 25-year-old shrubland at low elevation, clearly indicating an excess of available N in Alnus shrubland. In contrast, N leaching across all pastures was close to zero (0.08 g N m?2) throughout the season. At the catchment scale, streamlet water showed increased nitrate concentrations with typical flushing peaks in spring and autumn, provided more than one fifth of the catchment area was covered by Alnus shrubs. We conclude that the expansion of Alnus rapidly converts centuries-old, N-poor grassland into N saturated shrubland, irrespective of elevation, and it reduces the C storage potential of the landscape because the Alnus dominance constrains re-establishment of a natural montane forest.  相似文献   

17.
Denitrification is known as an important pathway for nitrate loss in agroecosystems. It is important to estimate denitrification fluxes to close field and watershed N mass balances, determine greenhouse gas emissions (N2O), and help constrain estimates of other major N fluxes (e.g., nitrate leaching, mineralization, nitrification). We compared predicted denitrification estimates for a typical corn and soybean agroecosystem on a tile drained Mollisol from five models (DAYCENT, SWAT, EPIC, DRAINMOD-N II and two versions of DNDC, 82a and 82h), after first calibrating each model to crop yields, water flux, and nitrate leaching. Known annual crop yields and daily flux values (water, nitrate-N) for 1993–2006 were provided, along with daily environmental variables (air temperature, precipitation) and soil characteristics. Measured denitrification fluxes were not available. Model output for 1997–2006 was then compared for a range of annual, monthly and daily fluxes. Each model was able to estimate corn and soybean yields accurately, and most did well in estimating riverine water and nitrate-N fluxes (1997–2006 mean measured nitrate-N loss 28 kg N ha?1 year?1, model range 21–28 kg N ha?1 year?1). Monthly patterns in observed riverine nitrate-N flux were generally reflected in model output (r 2 values ranged from 0.51 to 0.76). Nitrogen fluxes that did not have corresponding measurements were quite variable across the models, including 10-year average denitrification estimates, ranging from 3.8 to 21 kg N ha?1 year?1 and substantial variability in simulated soybean N2 fixation, N harvest, and the change in soil organic N pools. DNDC82a and DAYCENT gave comparatively low estimates of total denitrification flux (3.8 and 5.6 kg N ha?1 year?1, respectively) with similar patterns controlled primarily by moisture. DNDC82h predicted similar fluxes until 2003, when estimates were abruptly much greater. SWAT and DRAINMOD predicted larger denitrification fluxes (about 17–18 kg N ha?1 year?1) with monthly values that were similar. EPIC denitrification was intermediate between all models (11 kg N ha?1 year?1). Predicted daily fluxes during a high precipitation year (2002) varied considerably among models regardless of whether the models had comparable annual fluxes for the years. Some models predicted large denitrification fluxes for a few days, whereas others predicted large fluxes persisting for several weeks to months. Modeled denitrification fluxes were controlled mainly by soil moisture status and nitrate available to be denitrified, and the way denitrification in each model responded to moisture status greatly determined the flux. Because denitrification is dependent on the amount of nitrate available at any given time, modeled differences in other components of the N cycle (e.g., N2 fixation, N harvest, change in soil N storage) no doubt led to differences in predicted denitrification. Model comparisons suggest our ability to accurately predict denitrification fluxes (without known values) from the dominant agroecosystem in the midwestern Illinois is quite uncertain at this time.  相似文献   

18.
Urbanization alters nitrogen (N) cycling, but the spatiotemporal distribution and impact of these alterations on ecosystems are not well-quantified. We measured atmospheric inorganic N inputs and soil leaching losses along an urbanization gradient from Boston, MA to Harvard Forest in Petersham, MA. Atmospheric N inputs at urban sites (12.3 ± 1.5 kg N ha?1 year?1) were significantly greater than non-urban (5.7 ± 0.5 kg N ha?1 year?1) sites with NH4 + (median value of 77 ± 4 %) contributing thrice as much as NO3 ?. Proximity to urban core correlated positively with NH4 + (R2 = 0.57, p = 0.02) and total inorganic N inputs (R2 = 0.61, p = 0.01); on-road CO2 emissions correlated positively with NO 3 ? inputs (R2 = 0.74, p = 0.003). Inorganic N leaching rates correlated positively with atmospheric N input rates (R2 = 0.61, p = 0.01), but did not differ significantly between urban and non-urban sites (p > 0.05). Our empirical measurements of atmospheric N inputs are greater for urban areas and less for rural areas compared to modeled regional estimates of N deposition. Five of the nine sites had NO 3 ? leached that came almost entirely from nitrification, indicating that the NO3 ? in leachate came from biological processes rather than directly passing through the soil. A significant proportion (17–100 %) of NO 3 ? leached from the other four sites came directly from the atmosphere. Surprisingly, the four sites where atmospheric sources made up the largest proportion of leachate NO3 ? also had relatively low N leaching rates, suggesting that atmospheric N inputs added to terrestrial ecosystems can move to multiple sinks and losses simultaneously, rather than being lost via leaching only after abiotic and biotic sinks have become saturated. This study improves our understanding of atmospheric N deposition and leaching in urban ecosystems, and highlights the need to incorporate urbanization effects in N deposition models.  相似文献   

19.
Human actions have both intentionally and unintentionally altered the global economy of nitrogen (N), with both positive and negative consequences for human health and welfare, the environment and climate change. Here we examine long-term trends in reactive N (Nr) creation and efficiencies of Nr use within the continental US. We estimate that human actions in the US have increased Nr inputs by at least ~5 times compared to pre-industrial conditions. Whereas N2 fixation as a by-product of fossil fuel combustion accounted for ~1/4 of Nr inputs from the 1970s to 2000 (or ~7 Tg N year?1), this value has dropped substantially since then (to <5 Tg N year?1), owing to Clean Air Act amendments. As of 2007, national N use efficiency (NUE) of all combined N inputs was equal to ~40 %. This value increases to 55 % when considering intentional N inputs alone, with food, industrial goods, fuel and fiber production accounting for the largest Nr sinks, respectively. We estimate that 66 % of the N lost during the production of goods and services enters the air (as NO x , NH3, N2O and N2), with the remaining 34 % lost to various waterways. These Nr losses contribute to smog formation, acid rain, eutrophication, biodiversity declines and climate change. Hence we argue that an improved national NUE would: (i) benefit the US economy on the production side; (ii) reduce social damage costs; and (iii) help avoid some major climate change risks in the future.  相似文献   

20.
It is well known that land use change can affect soil C storage of terrestrial ecosystems either by altering the biotic processes involved in carbon cycling or by altering abiotic processes such as carbon adsorption on soil minerals. Relatively few studies, however, have examined the dynamics of soil C pools after conversion of farmland to forest or pasture. We selected three pairs of secondary forests and pastures that originated from the same abandoned sugarcane (interspecific hybrids of Saccharum spp.) land in the wet tropics of Hawaii to examine whether forest or pasture converted from farmland is more effective in sequestering C in soils. We compared the soil C pool, soil chemistry, and stable C isotope ratios between the forests and pastures. We found that total soil C was greater (P?<?0.01) in forests than in the pastures 22 years after land conversion. The percentages of SOC4 in the pastures were significantly higher than in the secondary forests in both soil layers. The percentages of SOC3 in the pastures were lower than in the secondary forests in both soil layers. The net SOC3 increase in the forest soils at 0–10 and 10–25 cm was 28.6?±?5.6 and 43.9?±?3.2 Mg ha?1 while net SOC4 increase in pasture soils at these respective depths was 18.8?±?2.2 and 26.1?±?2.7 Mg ha?1. We found that the net increases of SOC3 in both soil layers in the forest were greater (P?<?0.01) than the net increases of SOC4 in the respective soil layers in the pasture. Aluminum saturation was greater (P?<?0.01) in the forests than the pastures in both soil layers. There was no difference in oxalate extractable Fe concentration between the forests and the pastures but oxalate extractable Al concentration in both soil layers was greater (P?<?0.05) in forests than the pastures. Our findings indicated that reforestation of abandoned sugarcane farmland in Hawaii is more effective in soil C increase and stabilization than conversion to pasture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号