首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
hisT is part of a multigene operon in Escherichia coli K-12.   总被引:14,自引:8,他引:6       下载免费PDF全文
The Escherichia coli K-12 hisT gene has been cloned, and its organization and expression have been analyzed on multicopy plasmids. The hisT gene, which encodes tRNA pseudouridine synthase I (PSUI), was isolated on a Clarke-Carbon plasmid known to contain the purF gene. The presence of the hisT gene on this plasmid was suggested by its ability to restore both production of PSUI enzymatic activity and suppression of amber mutations in a hisT mutant strain. A 2.3-kilobase HindIII-ClaI restriction fragment containing the hisT gene was subcloned into plasmid pBR322, and the resulting plasmid (designated psi 300) was mapped with restriction enzymes. Complementation analysis with different kinds of hisT mutations and tRNA structural analysis confirmed that plasmid psi 300 contained the hisT structural gene. Enzyme assays showed that plasmid psi 300 overproduced PSUI activity by ca. 20-fold compared with the wild-type level. Subclones containing restriction fragments from plasmid psi 300 inserted downstream from the lac promoter established that the hisT gene is oriented from the HindIII site toward the ClaI site. Other subclones and derivatives of plasmid psi 300 containing insertion or deletion mutations were constructed and assayed for production of PSUI activity and production of proteins in minicells. These experiments showed that: (i) the proximal 1.3-kilobase HindIII-BssHII restriction fragment contains a promoter for the hisT gene and encodes a 45,000-dalton polypeptide that is not PSUI; (ii) the distal 1.0-kilobase BssHII-ClaI restriction fragment encodes the 31,000-dalton PSUI polypeptide; (iii) the 45,000-dalton polypeptide is synthesized in an approximately eightfold excess compared with PSUI; and (iv) synthesis of the two polypeptides is coupled, suggesting that the two genes are part of an operon. Insertion of mini-Mu d1 (lac Km) phage into plasmid psi 300 confirmed that the hisT gene is the downstream gene in the operon.  相似文献   

3.
Structure of the Caulobacter crescentus trpFBA operon.   总被引:15,自引:12,他引:3       下载免费PDF全文
  相似文献   

4.
5.
6.
7.
The upper operon of the TOL plasmid pWW0 of Pseudomonas putida encodes a set of enzymes which transform toluene and xylenes to benzoate and toluates. The genetic organization of the operon was characterized by cloning of the upper operon genes into an expression vector and identification of their products in Escherichia coli maxicells. This analysis showed that the upper operon contains at least five genes in the order of xylC-xylM-xylA-xylB-xylN. Between the promoter of the operon and xylC, there is a 1.7-kilobase-long space of DNA in which no gene function was identified. In contrast, most of the DNA between xylC and xylN consists of coding sequences. The xylC gene encodes the 57-kilodalton benzaldehyde dehydrogenase. The xylM and xylA genes encode 35- and 40-kilodalton polypeptides, respectively, which were shown by genetic complementation tests to be subunits of xylene oxygenase. The structural gene for benzyl alcohol dehydrogenase, xylB, encodes a 40-kilodalton polypeptide. The last gene of this operon is xylN, which synthesizes a 52-kilodalton polypeptide of unknown function.  相似文献   

8.
9.
W R Jones  G J Barcak    R E Wolf  Jr 《Journal of bacteriology》1990,172(3):1197-1205
In Escherichia coli, the level of 6-phosphogluconate dehydrogenase is directly proportional to the cellular growth rate during growth in minimal media. This contrasts with the report by Winkler et al. (M. E. Winkler, J. R. Roth, and P. E. Hartman, J. Bacteriol. 133:830-843, 1978) that the level of the enzyme in Salmonella typhimurium LT-2 strain SB3436 is invariant. The basis for the difference in the growth-rate-dependent regulation between the two genera was investigated. Expression of gnd, which encodes 6-phosphogluconate dehydrogenase, was growth rate uninducible in strain SB3436, as reported previously, but it was 1.4-fold growth rate inducible in other S. typhimurium LT-2 strains, e.g., SA535. Both the SB3436 and SA535 gnd genes were growth rate inducible in E. coli K-12. Moreover, the nucleotide sequences of the regulatory regions of the two S. typhimurium genes were identical. We concluded that a mutation unlinked to gnd is responsible for the altered growth rate inducibility of 6-phosphogluconate dehydrogenase in strain SB3436. Transductional analysis showed that the altered regulation is due to the presence of a mutation in hisT, the gene for the tRNA modification enzyme pseudouridine synthetase I. A complementation test showed that the regulatory defect conferred by the hisT mutation was recessive. In E. coli, hisT mutations reduced the extent of growth rate induction by the same factor as in S. typhimurium. The altered regulation conferred by hisT mutations was not simply due to their general effect of reducing the polypeptide chain elongation rate, because miaA mutants, which lack another tRNA modification and have a similarity reduced chain growth rate, had higher rather than lower 6-phosphogluconate dehydrogenase levels. Studies with genetic fusions suggested that hisT mutations lower the gnd mRNA level. The data also indicated that hisT is involved in translational control of gnd expression, but not the aspect mediated by the internal complementary sequence.  相似文献   

10.
The first step in heme biosynthesis is the formation of 5-aminolevulinic acid (ALA). Mutations in two genes, hemA and hemL, result in auxotrophy for ALA in Salmonella typhimurium, but the roles played by these genes and the mechanism of ALA synthesis are not understood. I have cloned and sequenced the S. typhimurium hemA gene. The predicted polypeptide sequence for the HemA protein shows no similarity to known ALA synthases, and no ALA synthase activity was detected in extracts prepared from strains carrying the cloned hemA gene. Genetic analysis, DNA sequencing of amber mutations, and maxicell studies proved that the open reading frame identified in the DNA sequence encodes HemA. Another surprising finding of this study is that hemA lies directly upstream of prfA, which encodes peptide chain release factor 1 (RF-1). A hemA::Kan insertion mutation, constructed in vitro, was transferred to the chromosome and used to show that these two genes form an operon. The hemA gene ends with an amber codon, recognized by RF-1. I suggest a model for autogenous control of prfA expression by translation reinitiation.  相似文献   

11.
12.
The isopropylmalate isomerase of Salmonella typhimurium and Escherichia coli is a complex of the leuC and leuD gene products. The supQ/new D gene substitution system in S. typhimurium restores leucine prototrophy to leuD mutants of S. typhimurium. Previous genetic evidence supports a model that indicates the replacement of the missing LeuD polypeptide by the newD gene product. This model proposed that this gene substitution is possible when a mutation at the supQ locus (near newD) liberates unaltered newD polypeptide from its normal complex with the supQ protein product. In this study, recombinant plasmids carrying newD, supQ, or both were transformed into E. coli and S. typhimurium strains deleted for the leuD and supQ genes to test the supQ/newD gene substitution model for suppression of leucine auxotrophy. It was determined that the newD gene encodes a 22-kilodalton polypeptide which can restore leucine prototrophy to leuD deletion strains and that a functional supQ gene prevents this suppression. It was also determined that the supQ and newD genes are separated by a gene encoding a 50-kilodalton protein, pB. While there is extensive DNA sequence homology between the leucine operons of S. typhimurium and E. coli, DNA hybridization experiments did not indicate substantial homology between the newD and leuD genes. These data, taken together with previously obtained genetic data, eliminate the possibility that supQ and newD are recently translocated segments of the leucine operon.  相似文献   

13.
The F tra operon region that includes genes trbA, traQ, and trbB was analyzed. Determination of the DNA sequence showed that on the tra operon strand, the trbA gene begins 19 nucleotides (nt) distal to traF and encodes a 115-amino-acid, Mr-12,946 protein. The traQ gene begins 399 nt distal to trbA and encodes a 94-amino-acid, Mr-10,867 protein. The trbB gene, which encodes a 179-amino-acid, Mr-19,507 protein, was found to overlap slightly with traQ; its start codon begins 11 nt before the traQ stop codon. Protein analysis and subcellular fractionation of the products expressed by these genes indicated that the trbB product was processed and that the mature form of this protein accumulated in the periplasm. In contrast, the protein products of trbA and traQ appeared to be unprocessed, membrane-associated proteins. The DNA sequence also revealed the presence of a previously unsuspected locus, artA, in the region between trbA and traQ. The artA open reading frame was found to lie on the DNA strand complementary to that of the F tra operon and could encode a 104-amino-acid, 12,132-dalton polypeptide. Since this sequence would not be expressed as part of the tra operon, the activity of a potential artA promoter region was assessed in a galK fusion vector system. In vivo utilization of the artA promoter and translational start sites was also examined by testing expression of an artA-beta-galactosidase fusion protein. These results indicated that the artA gene is expressed from its own promoter.  相似文献   

14.
15.
Sub-cloning experiments aimed at precisely locating the E. coli aroA gene, which encodes the shikimate pathway enzyme 5-enolpyruvylshikimate 3-phosphate synthase, showed that in certain constructions, which remain capable of complementing an auxotrophic aroA mutation, expression of aroA is reduced. DNA sequence analysis revealed that a sequence approx. 1200 base pairs (bp) upstream of aroA is necessary for its expression. An open reading frame was identified in this region which encodes a protein of 362 amino acids with a calculated Mr of 39,834 and which ends 70 bp before the start of the aroA coding sequence. This gene has been identified as serC, the structural gene for 3-phosphoserine aminotransferase, an enzyme of the serine biosynthetic pathway. Both genes are expressed as a polycistronic message which is transcribed from a promotor located 58 bp upstream of serC. Evidence is presented which confirms that the aroA and serC genes constitute an operon which has the novel feature of encoding enzymes from two different amino acid biosynthetic pathways.  相似文献   

16.
Proteins encoded by three genes in the DpnII restriction enzyme cassette of Streptococcus pneumoniae were purified and characterized. Large amounts of the proteins were produced by subcloning the cassette in an Escherichia coli expression system. All three proteins appear to be dimers composed of identical polypeptide subunits. One is the DpnII endonuclease, and the other two are DNA adenine methylase active at 5' GATC 3' sites. Inactivation of enzyme activity by insertions into the genes and comparison of the DNA sequence with the amino-terminal sequence of amino acid residues in the proteins demonstrated the following correspondence between genes and enzymes. The promoter-proximal gene in the operon, dpnM, encodes a 33 X 10(3) Mr polypeptide that gives rise to a potent DNA methylase. The next gene, dpnA, encodes the 31 x 10(3) Mr polypeptide of a weaker and less-specific methylase. The third gene, dpnB, encodes the 34 x 10(3) Mr polypeptide of the endonuclease. Although the endonuclease polypeptide is initiated from an ordinary ribosome-binding site, each of the methylase polypeptide begins at an atypical site with a consensus sequence entirely different from that of Shine & Dalgarno. This presumptive novel ribosome-binding site is well recognized in both S. pneumoniae and E. coli.  相似文献   

17.
We characterized several unusual phenotypes caused by stable insertion mutations in a gene that is located upstream in the same operon from hisT, which encodes the tRNA modification enzyme pseudouridine synthase I. Mutants containing kanamycin resistance (Kmr) cassettes in this upstream gene, which we temporarily designated usg-2, failed to grow on minimal plus glucose medium at 37 and 42 degrees C. However, usg-2::Kmr mutants did form oddly translucent, mucoid colonies at 30 degrees C or below. Microscopic examination revealed that cells from these translucent colonies were spherical and seemed to divide equatorially. Addition of D-alanine restored the shape of the mutant cells to rods and allowed the mutants to grow slowly at 37 degrees C and above. By contrast, addition of the common L-amino acids prevented growth of the usg-2::Kmr mutants, even at 30 degrees C. Furthermore, prolonged incubation of usg-2::Kmr mutants at 37 and 42 degrees C led to the appearance of several classes of temperature-resistant pseudorevertants. Other compounds also supported growth of usg-2::Kmr mutants at 37 and 42 degrees C, including glycolaldehyde and the B6 vitamers pyridoxine and pyridoxal. This observation suggested that usg-2 was pdxB, which had been mapped near hisT. Complementation experiments confirmed that usg-2 is indeed pdxB, and inspection of the pyridoxine biosynthetic pathway suggests explanations for the unusual phenotypes of pdxB::Kmr mutants. Finally, Southern hybridization experiments showed that pdxB and hisT are closely associated in several enterobacterial species. We consider reasons for grouping pdxB and hisT together in the same complex operon and speculate that these two genes play roles in the global regulation of amino acid metabolism.  相似文献   

18.
19.
20.
Pseudomonas putida F1 utilizes p-cymene (p-isopropyltoluene) by an 11-step pathway through p-cumate (p-isopropylbenzoate) to isobutyrate, pyruvate, and acetyl coenzyme A. The cym operon, encoding the conversion of p-cymene to p-cumate, is located just upstream of the cmt operon, which encodes the further catabolism of p-cumate and is located, in turn, upstream of the tod (toluene catabolism) operon in P. putida F1. The sequences of an 11,236-bp DNA segment carrying the cym operon and a 915-bp DNA segment completing the sequence of the 2,673-bp DNA segment separating the cmt and tod operons have been determined and are discussed here. The cym operon contains six genes in the order cymBCAaAbDE. The gene products have been identified both by functional assays and by comparing deduced amino acid sequences to published sequences. Thus, cymAa and cymAb encode the two components of p-cymene monooxygenase, a hydroxylase and a reductase, respectively; cymB encodes p-cumic alcohol dehydrogenase; cymC encodes p-cumic aldehyde dehydrogenase; cymD encodes a putative outer membrane protein related to gene products of other aromatic hydrocarbon catabolic operons, but having an unknown function in p-cymene catabolism; and cymE encodes an acetyl coenzyme A synthetase whose role in this pathway is also unknown. Upstream of the cym operon is a regulatory gene, cymR. By using recombinant bacteria carrying either the operator-promoter region of the cym operon or the cmt operon upstream of genes encoding readily assayed enzymes, in the presence or absence of cymR, it was demonstrated that cymR encodes a repressor which controls expression of both the cym and cmt operons and is inducible by p-cumate but not p-cymene. Short (less than 350 bp) homologous DNA segments that are located upstream of cymR and between the cmt and tod operons may have been involved in recombination events that led to the current arrangement of cym, cmt, and tod genes in P. putida F1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号