首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cDNA homologue of Schizosaccharomyces pombe cdc5(+) was isolated from the basidiomycete mushroom Lentinula edodes and it was named Le.cdc5 cDNA. The deduced Le.CDC5 (842 amino acid residues) possessed N-terminal amino acid sequence highly homologous to those of S. pombe cdc5(+) gene product (Sp.cdc5p) and Sp.cdc5p-related proteins (SPCDC5RPs). The N-terminal 185 amino acid peptide of Le.CDC5 (Le.CDC5(1-185) peptide) produced in Escherichia coli was subjected to random binding-site selection analysis, revealing that Le.CDC5(1-185) peptide binds to a 7-bp sequence with the consensus sequence of 5'GCAATGT3' (complementary; 5'ACATTGC3'). Genomic binding-site (GBS) cloning by using Le.CDC5(1-185) peptide resulted in an isolation of the DNA fragment that contained three sets of 7-bp consensus-like sequence and TATA box. The Le.CDC5 protein contained two putative phosphorylation sites of cAMP-dependent protein kinase (A kinase) in its C-terminus. There exists a possible leucine zipper between the two phosphorylation sites. The Le.CDC5 fragment containing the two phosphorylation sites was actually phosphorylated by commercially available A kinase. Yeast two-hybrid analysis suggested the homodimerization of Le.CDC5 protein probably through the leucine zipper. Northern blot analysis showed that Le.cdc5 gene is most actively transcribed in primordia and small immature fruiting bodies of L. edodes, implying that Le.cdc5 may play a role in the beginning and early stage of fruiting-body formation.  相似文献   

2.
Summary. Cyclin-dependent kinases (CDK) play a key role in coordinating cell division in all eukaryotes. We investigated the capability of cyclin-dependent kinases CDKA and CDKB from the green alga Chlamydomonas reinhardtii to complement a Saccharomyces cerevisiae cdc28 temperature-sensitive mutant. The full-length coding regions of algal CDKA and CDKB cDNA were amplified by RT-PCR and cloned into the yeast expression vector pYES-DEST52, yielding pYD52-CDKA and pYD52-CDKB. The S. cerevisiae cdc28-1N strain transformed with these constructs exhibited growth at 36 °C in inducing (galactose) medium, but not in repressing (glucose) medium. Microscopic observation showed that the complemented cells had the irregular cylindrical shape typical for G2 phase-arrested cells when grown on glucose at 36 °C, but appeared as normal budded cells when grown on galactose at 36 °C. Sequence analysis and complementation tests proved that both CDKA and CDKB are functional CDC28/cdc2 homologs in C. reinhardtii. The complementation of the mitotic phenotype of the S. cerevisiae cdc28-1N mutant suggests a mitotic role for both of the kinases. Correspondence: K. Bišová, Laboratory of Cell Cycles of Algae, Institute of Microbiology, Academy of Sciences of the Czech Republic, 379 81 Třeboň, Czech Republic.  相似文献   

3.
4.
G25K is a low-molecular-mass GTP-binding protein with a broad distribution in mammalian tissues. A cDNA clone was isolated by using oligonucleotides corresponding to the partial amino acid sequence of purified human G25K. The cDNA encodes an 191-amino-acid polypeptide containing GTP-binding consensus sequences and a putative farnesylation site at the C terminus. The sequence exhibits 50 and 70% identities to the mammalian rho and rac proteins, respectively, and an 80% identity to the Saccharomyces cerevisiae CDC42 gene product. Insect Sf9 cells infected with recombinant baculovirus vectors expressing the G25K cDNA produced a 25-kDa protein that bound GTP and was recognized by antibodies specifically reactive to G25K. G25K appears to be the human homolog of the CDC42 gene product, since expression of the G25K cDNA in S. cerevisiae suppressed both cdc42-1 and cdc24-4 temperature-sensitive lethal mutations.  相似文献   

5.
We have previously reported that only a single Cdk1-related G1 and G1/S cyclin homologue was found in the genome sequence of the pathogenic basidiomycetous yeast Cryptococcus neoformans (C. neoformans) and designated it CnCln1. Surprisingly, CnCln1 was not only able to complement the function of the G1 cyclins of the ascomycetous budding yeast Saccharomyces cerevisiae (S. cerevisiae), such as ScCln3, but also the G1/S cyclins of S. cerevisiae, such as ScCln1 and ScCln2. In this study, we investigated how CnCln1 cooperates with the cyclin-dependent kinases of S. cerevisiae (ScCdk1) and substitutes the function of G1 and G1/S cyclins of S. cerevisia from a point of view of their structure-function relationship. Our in silico analysis demonstrated that the CnCln1/ScCdk1 complex was more stable than any of the yeast cyclin and ScCdk1complexes. Thus, these results are consistent with in vitro analysis that has revealed the flexible functional capacity of CnCln1 as a Cdk1-related G1 and G1/S cyclins of S. cerevisiae.  相似文献   

6.
cDNA cloning of a novel cdc2+/CDC28-related protein kinase from rice   总被引:5,自引:0,他引:5  
S Hata 《FEBS letters》1991,279(1):149-152
A cDNA clone, named R2, has been isolated by screening a rice cell cDNA library with a redundant oligonucleotide probe derived from the conserved ATP binding site of cdc2+/CDC28 protein kinases. The cDNA contained the entire coding sequence for a 424 amino acid polypeptide with a molecular mass of 47.6 kDa. The R2 mRNA, 2.1 kb in size, was expressed in both cultured rice cells and rice seedlings at similar levels. The predicted R2 protein has canonical motifs for ATP binding and catalysis, and is significantly homologous (up to 47%) to members of the cdc2+/CDC28 subfamily of serine/threonine protein kinase. The R2 protein is a novel member of the subfamily.  相似文献   

7.
Entry into mitosis requires activation of cdc2 kinase brought on by its association with cyclin B, phosphorylation of the conserved threonine (Thr-167 in Schizosaccharomyces pombe) in the T loop, and dephosphorylation of the tyrosine residue at position 15. Exit from mitosis, on the other hand, is induced by inactivation of cdc2 activity via cyclin destruction. It has been suggested that in addition to cyclin degradation, dephosphorylation of Thr-167 may also be required for exit from the M phase. Here we show that Saccharomyces cerevisiae cells expressing cdc28-E169 (a CDC28 allele in which the equivalent threonine, Thr-169, has been replaced by glutamic acid) are able to degrade mitotic cyclin Clb2, inactivate the Cdc28/Clb2 kinase, and disassemble the anaphase spindles, suggesting that they exit mitosis normally. The cdc28-E169 allele is active with respect to its mitotic functions, since it complements the mitosis-defective cdc28-1N allele. Whereas replacement of Thr-169 with serine affects neither Start nor the mitotic activity of Cdc28, replacement with glutamic acid or alanine renders Cdc28 inactive for Start-related functions. Coimmunoprecipitation experiments show that although Cdc28-E169 associates with mitotic cyclin Clb2, it fails to associate with the G1 cyclin Cln2. Thus, an unmodified threonine at position 169 in Cdc28 is important for interaction with G1 cyclins. We propose that in S. cerevisiae, dephosphorylation of Thr-169 is not required for exit from mitosis but may be necessary for commitment to the subsequent division cycle.  相似文献   

8.
G Draetta  L Brizuela  J Potashkin  D Beach 《Cell》1987,50(2):319-325
cdc2+ and CDC28 play central roles in the cell division cycles of the widely divergent yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae, respectively. The genes encode protein kinases that show 62% protein sequence identity and are capable of cross-complementation. Monoclonal antibodies were raised against p34cdc2, and a subset recognize p36cdc28. The cross-reacting antibodies detected a 34 kd homolog of the p34cdc2/p36CDC28, protein in HeLa cells. Human p34 was also recognized by an affinity-purified polyclonal anti-p34cdc2 serum. Peptide mapping of p34cdc2, p36CDC28, and human p34 revealed complete conservation of four tryptophan residues in the three proteins. p34 thus appears to be closely related to the two yeast proteins. In addition, a p34 immune complex showed protein kinase activity in vitro, and HeLa cell p34 interacts with p13, the human homolog of the suc1+ gene product of S. pombe.  相似文献   

9.
Summary The CDC4 gene of Saccharomyces cerevisiae encodes an essential function that is required for G1-S and G2-M transitions during mitosis and at various stages during meiosis. We have isolated a functional homologue of CDC4 (CaCDC4) from the pathogenic yeast Candida albicans by complementing the S. cerevisiae cdc4-3 mutation with CaCDC4 expressed from its own promoter on a single-copy vector. The predicted product of CaCDC4 has 37% overall identity to the S. cerevisiae Cdc4 protein, although this identity is biased towards the C-terminal region of the two proteins which contains eight copies of the degenerate WD-40 motif, an element found in proteins that regulate diverse biological processes and an F-box domain proximal to the first iteration of the WD-40 motif. Both the F-box domain and WD-40 motifs appear necessary for the mitotic functions of Cdc4 in both yeasts. In contrast to its conserved role in mitosis, C. albicans CDC4 is unable to rescue the meiotic deficiency in a S. cerevisiae cdc4 homozygous diploid under restrictive conditions, even when expressed from an efficient S. cerevisiae promoter. In opposition to S. cerevisiae CDC4 being essential, C. albicans CDC4 appears to be nonessential and in its absence is critical for filamentous growth in C. albicans.  相似文献   

10.
Wee1 is a protein kinase that negatively regulates p34cdc2 kinase activity. We have identified a Saccharomyces cerevisiae wee1 homolog encoded by the SWE1 gene. SWE1 overexpression arrests cells in G2 with short spindles whereas deletion of SWE1 did not alter the cell cycle but did eliminate the G2 delay observed in mih1- mutants. Swe1 immunoprecipitates were capable of tyrosine phosphorylating and inactivating p34CDC28 complexed with Clb2, a G2-type cyclin, but not p34CDC28 complexed with Cln2, a G1-type cyclin, consistent with the inability of Swe1 overexpression to inhibit the G1/S transition. These results suggest that specific cyclin subunits target p34CDC28 for distinct regulatory controls which may be important for ensuring proper p34CDC28 function during the cell cycle.  相似文献   

11.
The CDC28 gene was subcloned from a plasmid containing a 6.5-kilobase-pair segment of Saccharomyces cerevisiae DNA YRp7(CDC28-3) by partial digestion with Sau3A and insertion of the resulting fragments into the BamHI sites of YRp7 and pRC1. Recombinant plasmids were obtained containing inserts of 4.4 and 3.1 kilobase pairs which were capable of complementing a cdc28(ts) mutation. R-loop analysis indicated that each yeast insert contained two RNA coding regions of about 0.8 and 1.0 kilobase pairs, respectively. In vitro mutagenesis experiments suggested that the smaller coding region corresponded to the CDC28 gene. When cellular polyadenylic acid-containing RNA, separated by agarose gel electrophoresis after denaturation with glyoxal and transferred to nitrocellulose membrane, was reacted with labeled DNA from the smaller coding region, and RNA species of about 1 kilobase in length was detected. Presumably, the discrepancy in size between the R-loop and electrophoretic determinations is due to a segment of polyadenylic acid which is excluded from the R-loops. By using hybridization of the histone H2B mRNAs to an appropriate probe as a previously determined standards, it was possible to estimate the number of CDC28 mRNA copies per haploid cell as between 6 and 12 molecules. Hybrid release translation performed on the CDC29 mRNA directed the synthesis of a polypeptide of 27,000 daltons, as determined by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. This polypeptide was not synthesized when mRNA prepared from a cdc28 nonsense mutant was translated in a parallel fashion. However, if the RNA from a cell containing the CDC28 gene on a plasmid maintained at a high copy number was translated, the amount of in vitro product was amplified fivefold.  相似文献   

12.
Microscopic screening of a collection of cold-sensitive mutants of Saccharomyces cerevisiae led to the identification of a new gene, CDC55, which appears to be involved in the morphogenetic events of the cell cycle. CDC55 maps between CDC43 and CHC1 on the left arm of chromosome VII. At restrictive temperature, the original cdc55 mutant produces abnormally elongated buds and displays a delay or partial block of septation and/or cell separation. A cdc55 deletion mutant displays a cold-sensitive phenotype like that of the original isolate. Sequencing of CDC55 revealed that it encodes a protein of about 60 kDa, as confirmed by Western immunoblots using Cdc55p-specific antibodies. This protein has greater than 50% sequence identity to the B subunits of rabbit skeletal muscle type 2A protein phosphatase; the latter sequences were obtained by analysis of peptides derived from the purified protein, a polymerase chain reaction product, and cDNA clones. An extragenic suppressor of the cdc55 mutation lies in BEM2, a gene previously identified on the basis of an apparent role in bud emergence.  相似文献   

13.
The Arabidopsis functional homolog of the p34cdc2 protein kinase.   总被引:28,自引:9,他引:19       下载免费PDF全文
The p34cdc2 protein kinase is a key component of the eukaryotic cell cycle, which is required for G1 to S-phase transition and for entry into mitosis. Using a 380-base pair DNA fragment obtained by polymerase chain reaction amplification from an Arabidopsis thaliana flower cDNA library as a probe, we isolated and sequenced a cdc2-homologous cDNA from Arabidopsis. The encoded polypeptide has extensive homology with cdc2-like kinases. Furthermore, when expressed in a CDC28ts Saccharomyces strain, it partially restores the capacity to grow at 36 degrees C, indicating that the plant cDNA is a functional homolog of the p34cdc2 kinase. Genomic hybridization demonstrated that there is one copy of the cdc2 gene per Arabidopsis haploid genome. Using RNA gel blot analysis, we found that cdc2 mRNA is present in all plant organs.  相似文献   

14.
Saccharomyces cerevisiae, like most eucaryotic cells, can prevent the onset of anaphase until chromosomes are properly aligned on the mitotic spindle. We determined that Cdc55p (regulatory B subunit of protein phosphatase 2A [PP2A]) is required for the kinetochore/spindle checkpoint regulatory pathway in yeast. ctf13 cdc55 double mutants could not maintain a ctf13-induced mitotic delay, as determined by antitubulin staining and levels of histone H1 kinase activity. In addition, cdc55::LEU2 mutants and tpd3::LEU2 mutants (regulatory A subunit of PP2A) were nocodazole sensitive and exhibited the phenotypes of previously identified kinetochore/spindle checkpoint mutants. Inactivating CDC55 did not simply bypass the arrest that results from inhibiting ubiquitin-dependent proteolysis because cdc16-1 cdc55::LEU2 and cdc23-1 cdc55::LEU2 double mutants arrested normally at elevated temperatures. CDC55 is specific for the kinetochore/spindle checkpoint because cdc55 mutants showed normal sensitivity to gamma radiation and hydroxyurea. The conditional lethality and the abnormal cellular morphogenesis of cdc55::LEU2 were suppressed by cdc28F19, suggesting that the cdc55 phenotypes are dependent on the phosphorylation state of Cdc28p. In contrast, the nocodazole sensitivity of cdc55::LEU2 was not suppressed by cdc28F19. Therefore, the mitotic checkpoint activity of CDC55 (and TPD3) is independent of regulated phosphorylation of Cdc28p. Finally, cdc55::LEU2 suppresses the temperature sensitivity of cdc20-1, suggesting additional roles for CDC55 in mitosis.  相似文献   

15.
The CDC45 gene of Saccharomyces cerevisiae was isolated by complementation of the cold-sensitive cdc45-1 mutant and shown to be essential for cell viability. Although CDC45 genetically interacts with a group of MCM genes (CDC46, CDC47, and CDC54), the predicted sequence of its protein product reveals no significant sequence similarity to any known Mcm family member. Further genetic characterization of the cdc45-1 mutant demonstrated that it is synthetically lethal with orc2-1, mcm2-1, and mcm3-1. These results not only reveal a functional connection between the origin recognition complex (ORC) and Cdc45p but also extend the CDC45-MCM genetic interaction to all known MCM family members that were shown to be involved in replication initiation. Initiation of DNA replication in cdc45-1 cells was defective, causing a delayed entry into S phase at the nonpermissive temperature, as well as a high plasmid loss rate which could be suppressed by tandem copies of replication origins. Furthermore, two-dimensional gels directly showed that chromosomal origins fired less frequently in cdc45-1 cells at the nonpermissive temperature. These findings suggest that Cdc45p, ORC, and Mcm proteins act in concert for replication initiation throughout the genome.  相似文献   

16.
Saccharomyces cerevisiae proteins Cdc4 and Cdc20 contain WD40 repeats and participate in proteolytic processes. However, they are thought to act at two different stages of the cell cycle: Cdc4 is involved in the proteolysis of the Cdk inhibitor, Sic1, necessary for G(1)/S transition, while Cdc20 mediates anaphase-promoting complex-dependent degradation of anaphase inhibitor Pds1, a process necessary for the onset of chromosome segregation. We have isolated three mutant alleles of CDC4 (cdc4-10, cdc4-11, and cdc4-16) which suppress the nuclear division defect of cdc20-1 cells. However, the previously characterized mutation cdc4-1 and a new allele, cdc4-12, do not alleviate the defect of cdc20-1 cells. This genetic interaction suggests an additional role for Cdc4 in G(2)/M. Reexamination of the cdc4-1 mutant revealed that, in addition to being defective in the onset of S phase, it is also defective in G(2)/M transition when released from hydroxyurea-induced S-phase arrest. A second function for CDC4 in late S or G(2) phase was further confirmed by the observation that cells lacking the CDC4 gene are arrested both at G(1)/S and at G(2)/M. We subsequently isolated additional temperature-sensitive mutations in the CDC4 gene (such as cdc4-12) that render the mutant defective in both G(1)/S and G(2)/M transitions at the restrictive temperature. While the G(1)/S block in both cdc4-12 and cdc4Delta mutants is abolished by the deletion of the SIC1 gene (causing the mutants to be arrested predominantly in G(2)/M), the preanaphase arrest in the cdc4-12 mutant is relieved by the deletion of PDS1. Collectively, these observations suggest that, in addition to its involvement in the initiation of S phase, Cdc4 may also be required for the onset of anaphase.  相似文献   

17.
Mammalian growth-associated H1 histone kinase, an enzyme whose activity is sharply elevated at mitosis, is similar to cdc2+ protein kinase from Schizosaccharomyces pombe and CDC28 protein kinase from Saccharomyces cerevisiae with respect to immunoreactivity, molecular size, and specificity for phosphorylation sites in H1 histone. Phosphorylation of specific growth-associated sites in H1 histone is catalyzed by yeast cdc2+/CDC28 kinase, as shown by the in vitro thermal lability of this activity in extracts prepared from temperature-sensitive mutants. In addition, highly purified Xenopus maturation-promoting factor catalyzes phosphorylation of the same sites in H1 as do the mammalian and yeast kinases. The data indicate that growth-associated H1 kinase is encoded by a mammalian homolog of cdc2+/CDC28 protein kinase, which controls entry into mitosis in yeast and frog cells. Since H1 histone is known to be an in vivo substrate of the mammalian kinase, this suggests that phosphorylation of H1 histone or an H1 histone counterpart is an important component of the mechanism for entry of cells into mitosis.  相似文献   

18.
The yeast Cln3 protein is an unstable activator of Cdc28.   总被引:25,自引:11,他引:14       下载免费PDF全文
The Cln3 cyclin homolog of Saccharomyces cerevisiae functions to promote cell cycle START for only a short time following its synthesis. Cln3 protein is highly unstable and is stabilized by C-terminal truncation. Cln3 binds to Cdc28, a protein kinase catalytic subunit essential for cell cycle START, and Cln3 instability requires Cdc28 activity. The long functional lifetime and the hyperactivity of C-terminally truncated Cln3 (Cln3-2) relative to those of full-length Cln3 are affected by mutations in CDC28: the functional lifetime of Cln3-2 is drastically reduced by the cdc28-13 mutation at the permissive temperature, and the cdc28-4 mutation at the permissive temperature completely blocks the function of Cln3-2 while only partially reducing the function of full-length Cln3. Thus, sequences in the C-terminal third of Cln3 might help stabilize functional Cdc28-Cln3 association, as well as decreasing the lifetime of the Cln3 protein. These and other results strongly support the idea that Cln proteins function to activate Cdc28 at START.  相似文献   

19.
20.
cdc28-1N is a conditional allele that has normal G1 (Start) function but confers a mitotic defect. We have isolated seven genes that in high dosage suppress the growth defect of cdc28-1N cells but not of Start-defective cdc28-4 cells. Three of these (CLB1, CLB2, and CLB4) encode proteins strongly homologous to G2-specific B-type cyclins. Another gene, CLB3, was cloned using PCR, CLB1 and CLB2 encode a pair of closely related proteins; CLB3 and CLB4 encode a second pair. Neither CLB1 nor CLB2 is essential; however, disruption of both is lethal and causes a mitotic defect. Furthermore, the double mutant cdc28-1N clb2::LEU2 is nonviable, whereas cdc28-4 clb2::LEU2 is viable, suggesting that the cdc28-1N protein may be defective in its interaction with B-type cyclins. Our results are consistent with CDC28 function being required in both G1 and mitosis. Its mitotic role, we believe, involves interaction with a family of at least four G2-specific cyclins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号