首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intracellular fatty acid-binding proteins (FABPs) are abundantly expressed in almost all tissues. They exhibit high affinity binding of a single long-chain fatty acid, with the exception of liver FABP, which binds two fatty acids or other hydrophobic molecules. FABPs have highly similar tertiary structures consisting of a 10-stranded antiparallel β-barrel and an N-terminal helix-turn-helix motif. Research emerging in the last decade has suggested that FABPs have tissue-specific functions that reflect tissue-specific aspects of lipid and fatty acid metabolism. Proposed roles for FABPs include assimilation of dietary lipids in the intestine, targeting of liver lipids to catabolic and anabolic pathways, regulation of lipid storage and lipid-mediated gene expression in adipose tissue and macrophages, fatty acid targeting to β-oxidation pathways in muscle, and maintenance of phospholipid membranes in neural tissues. The regulation of these diverse processes is accompanied by the expression of different and sometimes multiple FABPs in these tissues and may be driven by protein-protein and protein-membrane interactions.  相似文献   

2.
Evidence is accumulating that cellular lipid binding proteins are playing central roles in cellular lipid uptake and metabolism. Membrane-associated fatty acid-binding proteins putatively function in protein-mediated transmembrane transport of fatty acids, likely coexisting with passive diffusional uptake. The intracellular trafficking of fatty acids, bile acids, and other lipid ligands, may involve their interaction with specific membrane or protein targets, which are unique properties of some but not of all cytoplasmic lipid binding proteins. Recent studies indicate that these proteins not only facilitate but also regulate cellular lipid utilization. For instance, muscle fatty acid uptake is subject to short-term regulation by translocation of fatty acid translocase (FAT)/CD36 from intracellular storage sites to the plasma membrane, and liver-type cytoplasmic fatty acid-binding protein (L-FABPc) functions in long-term, ligand-induced regulation of gene expression by directly interacting with nuclear receptors. Therefore, the properties of the lipid-protein complex, rather than those of the lipid ligand itself, determine the fate of the ligand in the cell. Finally, there are an increasing number of reports that deficiencies or altered functioning of both membrane-associated and cytoplasmic lipid binding proteins are associated with disease states, such as obesity, diabetes and atherosclerosis. In conclusion, because of their central role in the regulation of lipid metabolism, cellular lipid binding proteins are promising targets for the treatment of diseases resulting from or characterised by disturbances in lipid metabolism, such as atherosclerosis, hyperlipidemia, and insulin resistance.  相似文献   

3.
Both the developing fetus and the placenta require fatty acids for the synthesis of complex lipids necessary for the biogenesis of plasma membranes, intracellular membranes, and organelles; triacylglycerol stores; and secreted products such as lipoproteins, bile, and pulmonary surfactant. Although fetal tissues can readily synthesize fatty acids, considerable evidence exists in nonruminants that as much as 50% of the fatty acid requirements of the fetus are maternally derived. The placenta may be even more dependent than the fetus on the maternal contribution because the placenta synthesizes fatty acids poorly. The major sources of fatty acid provided to the fetus and placenta have not been identified with certainty. Maternal free fatty acids readily cross the placenta and the fatty acid moieties of maternal serum lipoproteins may also be transferred. The mechanism of transport of maternal free fatty acids and lipoprotein-carried lipid has not been investigated on a molecular level. Future studies with cultured trophoblasts should be useful in providing answers to many questions concerning placental lipid metabolism and the role of the placenta in transporting lipid to the fetus.  相似文献   

4.
Autophagy is a conserved method of quality control in which cytoplasmic contents are degraded via lysosomes. Lipophagy, a form of selective autophagy and a novel type of lipid metabolism, has recently received much attention. Lipophagy is defined as the autophagic degradation of intracellular lipid droplets (LDs). Although much remains unknown, lipophagy appears to play a significant role in many organisms, cell types, metabolic states, and diseases. It participates in the regulation of intracellular lipid storage, intracellular free lipid levels (e.g., fatty acids), and energy balance. However, it remains unclear how intracellular lipids regulate autophagy. Impaired lipophagy can cause cells to become sensitive to death stimuli and may be responsible for the onset of a variety of diseases, including nonalcoholic fatty liver disease and metabolic syndrome. Like autophagy, the role of lipophagy in cancer is poorly understood, although analysis of specific autophagy receptors has helped to expand the diversity of chemotherapeutic targets. These studies have stimulated increasing interest in the role of lipophagy in the pathogenesis and treatment of cancer and other human diseases.Subject terms: Autophagy, Mechanisms of disease  相似文献   

5.
Cellular transport and metabolism of fatty acids are integral components of lipid metabolism, but the mechanisms and regulation involved are poorly understood. A variety of commercially available fluorescent analogs of fatty acids, are potentially useful probes for the study of lipid metabolism by such techniques as cell sorting and fluorescence microscopy. We have screened a series of fluorescent fatty acids to identify analogs that would reliably simulate the metabolic behavior of natural fatty acids; i.e., similar kinetics of transport, of intracellular movement, and of metabolic fate. The metabolic behavior of these analogs was compared with those of some naturally occurring fatty acids in HepG2 cells, which are a good model of some aspects of hepatic function. Fluorescent analogs containing polar fluorophores yielded the lowest rates of cellular uptake and conversion to acylated lipid products. Similarly, fluorescent analogs with the fluorophore located near the carboxylic acid group were poorly metabolized. Fatty acid analogs containing anthracene or pyrene at the n-terminus of the acyl chain were the most extensively incorporated into cellular lipids. The types and amounts of labeled lipid products formed from these analogs and from natural fatty acids were similar. Pyrene-labeled analogs have spectral properties that can be measured fluorometrically at very low concentrations. Therefore, we compared the cellular metabolism of 12-(1-pyrenyl)dodecanoic acid with those of palmitic and oleic acids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
O Halevy  D Sklan 《Life sciences》1988,42(8):897-903
Several physical aspects of a high molecular weight lipid-protein aggregate separated by gel chromatography from chick and rat liver cytosol and its possible role in intracellular fatty acid metabolism were investigated. Electron microscopic examination of the high molecular weight lipid-protein aggregate indicated spherical particles with a diameter range of 200-600 A. This structure is consistent with a microemulsion particle of triglyceride encapsulated by phospholipid and protein. Uptake of fatty acids by microsomes occurred from the same lipid-protein aggregate, and the triglycerides synthesized in microsomes also became associated with these particles in the cytosol. The lipid-protein aggregate prepared by different homogenization methods showed identical ratios of components, but these ratios changed following incubation. These findings lend support to the concept that this aggregate plays a physiological role in intracellular lipid metabolism, and may be identifiable with previously reported subcellular fatty acid and triglyceride pools.  相似文献   

7.
The relationship between the neutral lipid and phospholipid metabolism and some structure-function peculiarities of regenerating rat liver endoplasmic reticulum membranes (13 hours after surgery, i.e., corresponding to the G1-period of the cell cycle) was studied. There was an increase in the degree of the endoplasmic reticulum membrane development and the nonesterified fatty acid (NFA) and triglyceride (TG) content in regenerating rat liver microsomes. The relative specific radioactivity of neutral lipid and phospholipid fractions in regenerating rat liver microsomes was lower than in control animals, presumably due to the high rate of the microsomal lipid exchange in the regenerating liver with other cell organelles. The changes in the lipid content and rate of their metabolism in the regenerating rat liver were associated with the increase in the membrane microviscosity and the decrease in the activity of the membrane-bound enzyme (glucose-6-phosphatase). The differences in the time-dependent changes in the synthesis and metabolism of lipids in the NFA and TG fractions may be regarded as an endogenous factor determining the structure-function peculiarities of endoplasmic reticulum membranes.  相似文献   

8.
Long-chain acyl-CoA hydrolase in the brain   总被引:1,自引:0,他引:1  
Yamada J 《Amino acids》2005,28(3):273-278
Summary. Long-chain acyl-CoA hydrolases are a group of enzymes that cleave acyl-CoAs into fatty acids and coenzyme A (CoA-SH). Because acyl-CoAs participate in numerous reactions encompassing lipid synthesis, energy metabolism and regulation, modulating intracellular levels of acyl-CoAs would affect cellular functions. Therefore, acyl-CoA synthetases have been intensively studied. In contrast, acyl-CoA hydrolases have been less investigated, especially in the brain despite the fact that its long-chain acyl-CoA hydrolyzing activity is much higher than that in any other organ in the body. However, recent studies have dissected the multiplicity of this class of enzymes on a genomic basis, and have allowed us to discuss their function. Here, we describe a cytosolic long-chain acyl-CoA hydrolase (referred to as BACH) that is constitutively expressed in the brain, comparing it with other acyl-CoA hydrolases found in peripheral organs that have a role in fatty acid oxidation.  相似文献   

9.
10.
For the working muscle there are a number of fuels available for oxidative metabolism, including glycogen, glucose, and nonesterified fatty acids. Nonesterified fatty acids originate from lipolysis in white adipose tissue, hydrolysis of VLDL triglycerides, or hydrolysis of intramyocellular triglyceride stores. A key enzyme in the mobilization of fatty acids from intracellular lipid stores is hormone-sensitive lipase (HSL). The aim of the present study was to investigate the metabolic response of HSL-null mice challenged with exercise or fasting and to examine whether other lipases are able to fully compensate for the lack of HSL. The results showed that HSL-null mice have reduced capacity to perform aerobic exercise. The liver glycogen stores were more rapidly depleted in HSL-null mice during treadmill exercise, and HSL-null mice had reduced plasma concentrations of both glycerol and nonesterified fatty acids after exercise and fasting, respectively. The data support the hypothesis that in the absence of HSL, mice are not able to respond to an exercise challenge with increased mobilization of the lipid stores. Consequently, the impact of the lipid-sparing effect on liver glycogen is reduced in the HSL-null mice, resulting in faster depletion of this energy source, contributing to the decreased endurance during submaximal exercise.  相似文献   

11.
Long chain fatty acids, derived either from endogenous metabolism or by nutritional sources play significant roles in important biological processes of membrane structure, production of biologically active compounds, and participation in cellular signaling processes. Recently, the structure of dietary fatty acids has become an important issue in human health because ingestion of saturated fats (containing triglycerides composed of saturated fatty acids) is considered harmful, while unsaturated fats are viewed as beneficial. It is important to note that the molecular reason for this dichotomy still remains elusive. Since fatty acids are important players in development of pathology of cardiovascular and endocrine system, understanding the key molecular targets of fatty acids, in particular those that discriminate between saturated and unsaturated fats, is much needed. Recently, insights have been gained on several fatty acid-activated nuclear receptors involved in gene expression. In other words, we can now envision long chain fatty acids as regulators of signal transduction processes and gene regulation, which in turn will dictate their roles in health and disease. In this review, we will discuss fatty acid-mediated regulation of nuclear receptors. We will focus on peroxisome proliferators-activated receptors (PPARs), liver X receptors (LXR), retinoid X receptors (RXRs), and Hepatocyte Nuclear Factor alpha (HNF-4alpha), all of which play pivotal roles in dietary fatty acid-mediated effects. Also, the regulation of gene expression by Conjugated Linoleic Acids (CLA), a family of dienoic fatty acids with a variety of beneficial effects, will be discussed.  相似文献   

12.
Bioactive lipids in metabolic syndrome   总被引:3,自引:0,他引:3  
  相似文献   

13.
It has been suggested that the molecular species or structure of the triglyceride, i.e. not only what fatty acids are present but also their relative order in the sn1, 2, or 3 position on the triglyceride, can influence the metabolism of the triglyceride and its fatty acids, including lipoprotein metabolism. One rationale for this possibility assumes that the fatty acid in the sn2 position can be absorbed intact, i.e. as the sn2 monoglyceride, whereas the sn1,3 fatty acids are absorbed as free fatty acids that metabolize independently. Some sn2 monoglyceride might ultimately serve as the backbone for gut or liver phospholipids, exerting downstream influence on lipid metabolism. Experiments that test this hypothesis directly by feeding triglycerides with modified structure during carefully controlled fat intake are few, particularly in humans, but their results tend to support the paradigm.  相似文献   

14.
Uridine, a pyrimidine nucleoside, can modulate liver lipid metabolism although its specific acting targets have not been identified. Using mice with fenofibrate-induced fatty liver as a model system, the effects of uridine on liver lipid metabolism are examined. At a daily dosage of 400 mg/kg, fenofibrate treatment causes reduction of liver NAD+/NADH ratio, induces hyper-acetylation of peroxisomal bifunctional enzyme (ECHD) and acyl-CoA oxidase 1 (ACOX1), and induces excessive accumulation of long chain fatty acids (LCFA) and very long chain fatty acids (VLCFA). Uridine co-administration at a daily dosage of 400 mg/kg raises NAD+/NADH ratio, inhibits fenofibrate-induced hyper-acetylation of ECHD, ACOX1, and reduces accumulation of LCFA and VLCFA. Our data indicates a therapeutic potential for uridine co-administration to prevent fenofibrate-induced fatty liver.  相似文献   

15.
16.
Recent evidence has suggested that dietary polyunsaturated fatty acids (PUFAs) modulate inflammation; however, few studies have focused on the pathobiology of PUFA using isocaloric and isolipidic diets and it is unclear if the associated pathologies are due to dietary PUFA composition, lipid metabolism or obesity, as most studies compare diets fed ad libitum. Our studies used isocaloric and isolipidic liquid diets (35% of calories from fat), with differing compositions of omega (ω)-6 or long chain (Lc) ω-3 PUFA that were pair-fed and assessed hepatic pathology, inflammation and lipid metabolism. Consistent with an isocaloric, pair-fed model we observed no significant difference in diet consumption between the groups. In contrast, the body and liver weight, total lipid level and abdominal fat deposits were significantly higher in mice fed an ω-6 diet. An analysis of the fatty acid profile in plasma and liver showed that mice on the ω-6 diet had significantly more arachidonic acid (AA) in the plasma and liver, whereas, in these mice ω-3 fatty acids such as eicosapentaenoic acid (EPA) were not detected and docosahexaenoic acid (DHA) was significantly lower. Histopathologic analyses documented that mice on the ω-6 diet had a significant increase in macrovesicular steatosis, extramedullary myelopoiesis (EMM), apoptotic hepatocytes and decreased glycogen storage in lobular hepatocytes, and hepatocyte proliferation relative to mice fed the Lc ω-3 diet. Together, these results support PUFA dietary regulation of hepatic pathology and inflammation with implications for enteral feeding regulation of steatosis and other hepatic lesions.  相似文献   

17.
The peculiarities of 24-hour hypothermia were studied in rats during immobilization and a 5-hour recovery period. The levels of glucose in blood and liver, glycogen in liver, skeletal muscles and heart, total lipids in liver and blood, nonesterified fatty acids in blood have shown that the speed of rewarming is limited both by the level of carbohydrate and lipid energy substrates.  相似文献   

18.
19.
This report summarizes our recent studies on the protein known as sterol carrier protein (SCP) or fatty acid binding protein (FABP). SCP is a highly abundant, ubiquitous protein with multifunctional roles in the regulation of lipid metabolism and transport. SCP in vitro activates membrane-bound enzymes catalyzing cholesterol synthesis and metabolism, as well as those catalyzing long chain fatty acid metabolism. SCP also binds cholesterol and fatty acids with high affinity and rapidly penetrates cholesterol containing model membranes. Studies in vivo showed SCP undergoes a remarkable diurnal cycle in level and synthesis, induced by hormones and regulated in liver by translational events. SCP rapidly responds in vivo to physiological events and manipulations affecting lipid metabolism by changes in level. Thus SCP appears to be an important regulator of lipid metabolism. Preliminary evidence is presented that SCP is secreted by liver and intestine into blood and then taken up by tissues requiring SCP but incapable of adequate SCP synthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号