首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Implantation of blastocysts involves conversion of maternal and embryonic cell surfaces from a nonadhesive to an adhesive state in response to the internally driven developmental program or to externally generated factors. However, the intricacies of the cellular and subcellular changes that promote the attachment are not known, because these changes are difficult to determine in situ because of the nonaccessibility of the site. To overcome this, an in vitro model of implantation was developed by co-culturing rat blastocysts and uterine epithelial cells of the same gestational age (day 5 postcoitum; plug day as day 1) in drops hanging from the lid of a Petri dish. The system was used to study the changes on the surface membranes of the cells of the trophectoderm and uterine epithelium and to evaluate the antiadhesive activity of the newly designed test substances. The isolated epithelial cell vesicles were co-cultured with zona-free blastocysts in the microdrops (40–50 µl) hanging from the lid of a 60-mm Petri dish. The lid was placed over the lower dish, which was presaturated with the medium. The culture was examined 48 h later to determine the site of adhesion of epithelial cell vesicles with the trophoblasts lining the blastocyst. The cell-cell adhesion was monitored on a computerized image analyzer. To validate the adhesion of blastocysts and epithelial cell vesicles in co-culture, the expression of a cell adhesion molecule, uvomorulin, was studied using immunocytochemical technique after incubating with antiuvomorulin antibody. Intense staining was noted on the membrane surfaces at the site of attachment of the blastocyst and cell vesicles.The authors express their sincere thanks to the Ministry of Health and Family Welfare, Government of India, for their financial support  相似文献   

4.
The evolution of aquaporin-5 (AQP5) expression during postnatal development has not been defined in the sweat gland. Previous studies have suggested that AQP isoforms in several peripheral targets are regulated by a neural mechanism. We have examined, in rat sweat glands, the expression of AQP5 during postnatal development and the effects of denervation on AQP5 expression. Both AQP5 mRNA and protein begin to be expressed at postnatal day 10, before sweat-secretory responsiveness first appears; this expression coincides with the occurrence of vasoactive intestinal peptide (VIP) immunoreactivity. Early noradrenergic and later cholinergic interaction between sweat glands and their innervation are disrupted by neonatal chemical sympathectomy or postnatal severance of the sciatic nerve. Examination of such denervated developing rats has shown that secretory responsiveness fails to arise later in the adults, and AQP5 immunostaining increases in the denervated glands, whereas gland morphogenesis and the occurrence of AQP5 expression proceed normally. Immunobloting has revealed an increase of AQP5 abundance after the denervated mature glands lose their secretory ability. These findings suggest that AQP5 protein is necessary for sweat secretion, and that the expression of AQP5 in rat sweat glands is independent of sympathetic innervation. Our data also indicate that factor(s) regulating the normal morphological development of sweat gland might be responsible for controlling AQP5 expression.  相似文献   

5.
Four types of tanycytes can be distinguished in the rat hypothalamus: 1 and 2 tanycytes establish an anatomical link between the ventricular cerebrospinal fluid (CSF) and the arcuate nucleus, whereas 1 and 2 tanycytes establish a link between CSF and portal blood. Endocytosis and transcytosis in these cells have been investigated by (1) immunocytochemistry with antibodies against molecular markers of the endocytotic and transcytotic pathways; (2) the administration of wheat germ agglutinin (WGA) into the ventricular or subarachnoidal CSF and following its internalisation by and its routing through tanycytes. The four populations of tanycytes show marked differences concerning the expression and subcellular location of proteins involved in endocytosis and transcytosis, such as clathrin, caveolin-1, Rab4 and ARF6. Thus, 1,2 tanycytes express caveolin-1 at the ventricular cell pole and at their terminals contacting the portal capillaries, whereas 1,2 tanycytes do not, suggesting that caveolae-dependant endocytosis does not occur in the latter and that, in 1,2 tanycytes, it may occur at both cell poles. In 1,2 tanycytes, clathrin is only expressed at the ventricular cell pole indicating that clathrin-dependant endocytosis operates for compounds present in the ventricular CSF and not for those exposed to the terminals. This agrees with the property of 1,2 tanycytes of internalising WGA through the ventricular cell pole but not through the terminals. The subcellular distribution in 1,2 tanycytes of WGA and of the proteins clathrin and Rab4 indicates that part of the internalised WGA follows the degradative pathway and part is sorted to a transcytotic pathway and that the transcytotic and the secretory pathways might intersect. Financial support was provided by grants 01/1050, from FIS, Spain (to J.L.B.) and 1030265, from FONDECYT, Chile (to E.M.R.)  相似文献   

6.
Immunohistochemical properties of monoclonal antibodies raised against the rat vomeronasal epithelium were examined in adult rats. Three monoclonal antibodies, VOBM1, VOBM2, and VOM2, reacted specifically to the luminal surface of the sensory epithelium of the vomeronasal organ. In addition, the reactivities of VOBM1 and VOBM2 were detected in the vomeronasal nerve layer and the glomerular layer of the accessory olfactory bulb. Electron-microscopic study revealed differential patterns of the immunoreactivity of the three antibodies to the microvilli of vomeronasal sensory epithelium. VOBM1 immunoreactivity was found on the microvilli of the supporting cells, whereas VOBM2 immunoreactivity was found on those of the sensory cells. VOM2 immunoreactivity was observed on the microvilli of both the sensory and supporting cells. These results suggest that the three antibodies recognize different antigens on the vomeronasal sensory epithelium. In particular, VOBM2 antibody appears to react to an antigen specific to the microvilli of the vomeronasal sensory cells.  相似文献   

7.
The development of cartilage canals is the first event of the ossification of the epiphyses in mammals. Canal formation differs from vascular invasion during primary ossification, since the former involves resorption of resting cartilage and is uncoupled from bone deposition. To learn more about the fate of resorbed chondrocytes during this process, we have carried out structural, cell proliferation, and in situ hybridization studies during the first stages of ossification of the rat tibial proximal epiphysis. Results concerning the formation of the cartilage canals implied the release of resting chondrocytes from the cartilage matrix to the canal cavity. Released chondrocytes had a well-preserved structure, expressed type-II collagen, and maintained the capacity to divide. All these data suggested that chondrocytes released into the canals remained viable for a specific time. Analysis of the proliferative activity at different regions of the cartilage canals showed that the percentage of proliferative chondrocytes at areas of active cartilage resorption was significantly higher than that in zones of low resorption. These results are consistent with the hypothesis that resting chondrocytes surrounding canals have a role in supplying cells for the development of the secondary ossification center. Since released chondrocytes are at an early stage of differentiation greatly preceding their entry into the apoptotic pathway and are exposed to a specific matrix, cellular, and humoral microenvironment, they might differentiate to other cell types and contribute to the ossification of the epiphysis.This research was supported by the Ministerio de Ciencia y Tecnología (Spain), grant no. MCT-00-BMC-0446. The Instituto Universitario de Oncología is financed by Obra Social Cajastur-Asturias, Spain. J. Alvarez receives financial support from the Ministerio de Ciencia y Tecnología (CAJAL-03-06) and L. Costales from the Ministerio de Ciencia y Tecnología (MCYT, FP2000-5486).  相似文献   

8.
In the present study, immunogold labeling of ultrathin sections of rat small intestine and liver has been used to obtain insights into the ultrastructural localization and possible functions of annexins. In enterocytes, annexins II, IV, and VI are found at the periphery of the core of each microvillus and of the rootlets, but are absent from the interrootlet space. Annexins II, IV, and VI are also observed close to the interdigitated plasma membrane. In hepatocytes, only annexin VI is found to be concentrated within the microvilli in the bile canaliculi, on the inner face of the sinusoidal cell surface, particularly in the space of Disse, and all along the plasma membrane. Annexin VI is also detected in mitochondria of enterocytes and hepatocytes. These localizations are in agreement with the concept of a close calcium-dependent association of annexins with membranes and cytoskeletal proteins, particularly with actin. Moreover, they support the hypothesis of an involvement of annexins in exocytotic and endocytotic processes, which take place in epithelial cells.  相似文献   

9.
In tooth development matrix metalloproteinases (MMPs) are under the control of several regulatory mechanisms including the upregulation of expression by inducers and downregulation by inhibitors. The aim of the present study was to monitor the occurrence and distribution pattern of the extracellular matrix metalloproteinase inducer (EMMPRIN), the metalloproteinases MMP-2 and MT1-MMP and caveolin-1 during the cap and bell stage of rat molar tooth germs by means of immunocytochemistry. Strong EMMPRIN immunoreactivity was detected on the cell membranes of ameloblasts and cells of the stratum intermedium in the bell stage of the enamel organ. Differentiating odontoblasts exhibited intense EMMPRIN immunoreactivity, especially at their distal ends. Caveolin-1 immunoreactivity was evident in cells of the internal enamel epithelium and in ameloblasts. Double immunofluorescence studies revealed a focal co-localization between caveolin-1 and EMMPRIN in ameloblastic cells. Finally, western blotting experiments demonstrated the expression of EMMPRIN and caveolin-1 in dental epithelial cells (HAT-7 cells). A substantial part of EMMPRIN was detected in the detergent-insoluble caveolin-1-containing low-density raft membrane fraction of HAT-7 cells suggesting a partial localization within lipid rafts. The differentiation-dependent co-expression of MMPs with EMMPRIN in the enamel organ and in odontoblasts indicates that EMMPRIN takes part in the induction of proteolytic enzymes in the rat tooth germ. The localization of EMMPRIN in membrane rafts provides a basis for further investigations on the role of caveolin-1 in EMMPRIN-mediated signal transduction cascades in ameloblasts.  相似文献   

10.
Postnatal change in the distribution of actin filaments in endothelial cells was studied in the rat aorta by use of rhodamine-phalloidin staining and confocal laser scanning microscopy. Endothelial cells of the rat aorta possessed two populations of actin filament bundles, namely, peripheral bands at the cell border and stress fibers running longitudinally in the cytoplasm. Aortic endothelial cells of the neonatal rat contained only stress fibers, whereas those of the 10-day-old rat developed both peripheral bands and stress fibers. After 20 days of age, aortic endothelial cells had predominantly peripheral bands with occasional stress fibers around the branch orifices. During postnatal development the length density of stress fibers in aortic endothelial cells decreased, whereas individual stress fibers in endothelial cells were shortened. Electron-microscopic observation revealed that the high intercellular boundaries of aortic endothelial cells at birth decreased in height and developed cytoplasmic interdigitations after 20 days of age. The occurrence of peripheral bands at the cell border is thought to be closely related to formation of cytoplasmic interdigitation which strengthens the mechanical connection between endothelial cells against increasing transmural pressure. Expression of stress fibers in aortic endothelial cells of the neonatal rat is supposed to be affected by longitudinal elongation of the developing aorta, whereas their postnatal decrease is though to be correlated with the change of fluid shear stress loaded in the aortic endothelium.  相似文献   

11.
Both ghrelin and obestatin are derived from preproghrelin by post-translational processing. We have morphologically characterized the cells that produce obestatin and ghrelin in new-born and adult Sprague-Dawley rats that were freely fed, fasted, or subjected to gastric bypass surgery or reserpine treatment. Tissue samples collected from the gastrointestinal tract and pancreas were examined by double-immunofluorescence staining, immunoelectron microscopy, and conventional electron microscopy. Obestatin was present in the stomach, duodenum, jejunum, colon, and pancreas. In the stomach, differences were noted in the development of obestatin- and preproghrelin-immunreactive (IR) cells on the one hand and ghrelin-IR cells on the other, particularly 2 weeks after birth. Preproghrelin- and obestatin-IR cells were more numerous than ghrelin-IR cells in the stomach, suggesting the lack of ghrelin in some A-like cells. Most obestatin-producing cells in the stomach were distributed in the basal part of the oxyntic mucosa; these cells co-localized with chromogranin A (pancreastatin) and vesicle monoamine transporters type 1 and 2, but not with serotonin or histidine decarboxylase. Immunoelectron microscopy revealed the obestatin- and ghrelin-producing cells to be A-like cells, characterized by numerous highly electron-dense granules containing ghrelin and obestatin. Some granules exhibited an even electron density with thin electron-lucent halos, suggestive of monoamines. Feeding status, gastric bypass surgery, and reserpine treatment had no obvious effect on the A-like cells. In the pancreas, obestatin was present in the peripheral part of the islets, with a distribution distinct from that of glucagon-producing A cells, insulin-producing beta cells, and cells producing pancreatic polypeptide Y. Thus, obestatin and ghrelin co-localize with an anticipated monoamine in A-like cells in the stomach, and obestatin is found in pancreatic islets. This study was supported by a grant from the Cancer Foundation of St. Olav’s Hospital, Trondheim, Norway.  相似文献   

12.
Chen J  Zhang J  Zhao Y  Yuan L  Nie X  Li J  Ma Z  Zhang Y  Wang Q  Chen Y  Jin Y  Rao Z 《Cell and tissue research》2007,329(2):231-237
We have examined, by immunocytochemical methods and nociceptive behavior assessment in rats, whether astrocytes in the parabrachial nucleus (PBN) are involved in the regulation of traumatic occlusion. The expression of glial fibrillary acidic protein (GFAP) in PBN of ipsilateral and contralateral sides was up-regulated 4 h after occlusal changes in molars, reached peak levels at 24 h, and was then gradually down-regulated. PBN astrocytes activated by traumatic occlusion were found to have enlarged cell bodies and thickened processes within 8 h. An inhibitor of glia metabolism (FCA, fluorocitrate) reduced astrocyte activation and significantly attenuated the development of pain hypersensitivity in this model. The results suggested that the GFAP-immunoreactive astrocytes in PBN within the bridge of Varolius were activated by traumatic occlusion, and that they were involved in the transmission and modulation of nociceptive information in the central nervous system. However, although astrocytes in PBN are thus probably involved in causing post-occlusal hyperalgesia, we have not been able to exclude that astrocytes at other locations also contribute to this effect. Jinwu Chen and Jun Zhang contributed equally to this study. This study was supported by the National Nature Science Foundation of China (nos. 30400503 and 30572066).  相似文献   

13.
The localization of -D-galactose, N-acetyl-D-galactosamine, and N-acetyl-D-glucosamine sugar residues of glycoconjugates in the vomeronasal organ, olfactory mucosa, and septal organ in the nasal mucosae of rats was investigated using lectinohistochemical techniques combined with bright-field, epifluorescence, and confocal laser scanning microscopy. Glycoconjugates in the mucomicrovillar complex of the vomeronasal organ contained all the sugar residues investigated, whereas glycoconjugates in the mucociliary complex of the olfactory mucosa and septal organ contained only N-acetyl-D-glucosamine. Vomeronasal receptor neurons expressed glycoconjugates with terminal -D-galactose and -N-acetyl-D-galactosamine, and N-acetyl-D-glucosamine residues, whereas olfactory and septal receptor neurons expressed glycoconjugates with only N-acetyl-D-glucosamine residues. Secretory granules of glands of the vomeronasal organ contained glycoconjugates with terminal -D-galactose and N-acetyl-D-galactosamine, and N-acetyl-D-glucosamine, whereas those of the Bowman's glands and glands of septal organ contained glycoconjugates with only internal N-acetyl-D-glucosamine residues. The results demonstrate that the glycoconjugates expressed by vomeronasal receptor neurons and glands contain terminal -D-galactose and -N-acetyl-D-galactosamine sugar residues that are not expressed by analogous cells in the olfactory mucosa and septal organ.  相似文献   

14.
The accumulation of fat cells (adipocytes) in bone marrow is now thought to be a factor contributing to age-related bone loss. Women with osteoporosis have higher numbers of marrow adipocytes than women with healthy bone, and bone formation rate is inversely correlated with adipocyte number in bone tissue biopsies from both men and women. Adipogenic differentiation of bone marrow stromal cells increases with age, but the factors regulating populations of mature adipocytes are not well understood. Leptin is thought to regulate adipose tissue mass via its receptors in the ventromedial hypothalamus (VMH). We have therefore tested the hypothesis that stimulation of leptin receptors in the VMH regulates adipocyte number in bone marrow. Results indicate that unilateral twice-daily injections of leptin into the rat VMH for only 4 or 5 days cause a significant reduction in the number of adipocytes in peripheral fat pads and bone marrow and indeed eliminate adipocytes almost entirely from bone marrow of the proximal tibia. Osteoblast surface is not affected with leptin treatment. Apoptosis assays performed on bone marrow samples from control and treated rats have revealed a significant increase in protein concentration of the apoptosis marker caspase-3 with leptin treatment. We conclude that stimulation of leptin receptors in the VMH significantly decreases the adipocyte population in bone marrow, primarily through apoptosis of marrow adipocytes. Elimination of marrow adipocytes via this central pathway may represent a useful strategy for the treatment and prevention of osteoporosis.  相似文献   

15.
When treating head and neck for cancer with the use of radiotherapy the salivary glands are usually within the treatment volume with ensuing dryness and discomfort. Since the autonomic nervous system is of pivotal importance for the salivary gland function and integrity, the irradiation-induced effects may involve an influence on the innervation of salivary glands. Therefore, the rat submandibular gland, including the submandibular ganglionic cells, has been subjected to immunohistochemical examination with respect to expression of neuropeptides following fractionated irradiation with high energy photons. A markedly enhanced expression of bombesin- and leu-enkephalin-(ENK)-like immunoreactivities (LI) in the ganglionic cells and a pronounced increase in the number of nerve fibers showing these immunoreactivities in the submandibular gland tissue following irradiation were observed 10 days after treatment. On the other hand, no changes in the patterns of VIP (vasoactive intestinal polypeptide)- and NPY (neuropeptide Y)-immunoreactivities occurred. Thus, the present study shows that alterations in the expression of certain neuropeptides take place in the submandibular gland and its associated ganglionic cells in response to irradiation of the head and neck region. These changes may add further explanation to the inherent radiosensitivity of salivary glands.  相似文献   

16.
17.
ATP, an intracellular energy source, is released from cells during tissue stress, damage, or inflammation. The P2X subtype of the ATP receptor is expressed in rat dorsal root ganglion (DRG) cells, spinal cord dorsal horn, and axons in peripheral tissues. ATP binding to P2X receptors on nociceptors generates signals that can be interpreted as pain from damaged tissue. We have hypothesized that tissue stress or damage in the uterine cervix during late pregnancy and parturition can lead to ATP release and sensory signaling via P2X receptors. Consequently, we have examined sensory pathways from the cervix in nonpregnant and pregnant rats for the presence of purinoceptors. Antiserum against the P2X3-receptor subtype showed P2X3- receptor immunoreactivity in axon-like structures of the cervix, in small and medium-sized neurons in the L6/S1 DRG, and in lamina II of the L6/S1 spinal cord segments. Retrograde tracing confirmed the projections of axons of P2X3-receptor-immunoreactive DRG neurons to the cervix. Some P2X3-receptor-positive DRG neurons also expressed estrogen receptor- immunoreactivity and expressed the phosphorylated form of cyclic AMP response-element-binding protein at parturition. Western blots showed a trend toward increases of P2X3-receptor protein between pregnancy (day 10) and parturition (day 22–23) in the cervix, but no significant changes in the DRG or spinal cord. Since serum estrogen rises over pregnancy, estrogen may influence purinoceptors in these DRG neurons. We suggest that receptors responsive to ATP are expressed in uterine cervical afferent nerves that transmit sensory information to the spinal cord at parturition.  相似文献   

18.
Dental pulp is assumed to possess the capacity to elaborate both bone and dentin matrix under the pathological conditions following tooth injury. This study was undertaken to clarify the mechanism inducing bone formation in the dental pulp by investigating the pulpal healing process, after tooth replantation, by micro-computed tomography (μ-CT), immunocytochemistry for heat-shock protein (HSP)-25 and cathepsin K (CK), and histochemistry for both alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP). Under deep anesthesia, the upper right first molar of 4-week-old Wistar rats was extracted and immediately repositioned in the original socket. In control teeth at this age, the periphery of the coronal dental pulp showed intense ALP-positive and HSP-25-positive reactions, whereas there were no TRAP-positive or CK-positive cells. Tooth replantation weakened or terminated ALP-positive and HSP-25-positive reactions in the pulp tissue at the initial stages. At 3–7 days after operation, the ALP-positive region recovered from the root apex to the coronal pulp followed by HSP-25-positive reactions in successful cases showing tertiary dentin formation. In other cases, TRAP-positive and CK-positive cells appeared in the pulp tissue of the replanted tooth at postoperative days 5–10 and remained associated with the bone tissue after 12–60 days. Immunoelectron microscopy clearly demonstrated that CK-positive osteoclast-lineage cells made contact with mesenchymal cells with prominent nucleoli and well-developed cell organelles. These data suggest that the appearance of TRAP-positive and CK-positive cells is involved in the induction of bone tissue formation in dental pulp.This work was supported in part by a grant from MEXT to promote 2001-multidisciplinary research project (in 2001–2005) and by KAKENHI (B) from MEXT, Japan (no. 16390523 to H.O.).  相似文献   

19.
Uterine receptivity is prerequisite for the attachment of the embryo to the uterine epithelium and involves a specialized polarity-dependent property of uterine epithelial (UE) cells. These UE cells, when polarized in culture, behave like cells in utero by exhibiting apico-basal polarity. In order to develop an implantation model in vitro, UE cells were polarized on extracellular matrix (ECM), and polarity was validated by response to estradiol-17β administered exogenously. UE cells of pregnant rats at day-3 and day-4 post-coitum (p.c.) and of non-pregnant rats were cultured on bare and extracellular-matrix-coated petri dishes until confluency. Hatched blastocysts were transferred to the cultures, and adhesion was monitored every 24 h. Although blastocysts attached to UE cells that were taken from non-pregnant rats and from rats of day-3 p.c. and cultured on bare plastic, they failed to attach to these cells polarized on ECM. However, blastocysts attached firmly to UE cells that had been taken from rats of day-4 p.c. and polarized on ECM. Receptivity of UE cells taken from non-pregnant and pregnant (day-4 p.c.) rats was quantitated by flow cytometric estimation of cellular levels of β3 integrin. The expression of β3 integrin in UE cells from rats of day-4 p.c. was highly significant (P<0.01) when compared with its expression in UE cells from non-pregnant rats. The expression of β3 integrin in UE cells of day-4 p.c. confirmed the receptivity of these cells to blastocyst implantation. Uterine receptivity was also validated in vivo by inducing the decidual cell reaction in rats ovariectomized on day-3 and day-4 p.c. Whereas remarkable deciduoma was noticed in the animals of day-4 p.c., it was absent in the animals of day-3 p.c., thereby indicating that the uterus was receptive on day-4 p.c. only. Thus, blastocysts do not attach to polarized UE cells that have been obtained from a non-receptive uterus. Attachment will occur only if the cells are obtained from a receptive uterus. UE cell receptivity is therefore essential for mimicking the process of implantation in vitro.The authors are grateful to the Ministry of Health and Family welfare, Government of India, for financial support  相似文献   

20.
Bis (Bcl-2 interacting death suppressor) has been reported to contribute to the differentiation and maturation of specific neuronal populations in the developing rat forebrain, in addition to its well-established functions as a stress or survival-related protein. In the present study, we have analyzed the expression of Bis in the rat brainstem and cervical spinal cord during development by using immunohistochemistry. Bis immunoreactivity was detected in radial glial cells flanking the midline from embryonic day 14. During embryonic and early postnatal development, Bis expression persisted in differentiating radial glia at the midline but disappeared first in the spinal cord by postnatal day 7 (P7) and later also in the brainstem by P14. Bis expression was restricted to a subpopulation of the midline radial glia, i.e., the dorsal midline of the midbrain and spinal cord and the ventral midline of the hindbrain, which were double- or triple-labeled with vimentin and nestin, markers for radial glia, and S100B. However, these markers also labeled all radial glia including the ventral midline glia in the midbrain and spinal cord, with Bis being absent from these structures. In addition, the dorsal midline glia in the midbrain and spinal cord expressed Bis prior to the timing of expression for radial glial markers. Therefore, our results demonstrate the early and transient expression of Bis in the subpopulation of midline glia in the developing brainstem and spinal cord, suggesting that Bis has a unique role in association with the radial glial cells in the developing central nervous system. This research was supported by a grant (10029970) from the Ministry of Knowledge Economy, The Republic of Korea and by a grant (M103KV010010-08 K2201-01010) from Brain Research Center of the 21st Century Frontier Research Program funded by the Ministry of Science and Technology, The Republic of Korea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号