首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Lipopolysaccharide (LPS) is a pathogenic substance causing severe multiple organ failures and high mortality. Although several LPS binding proteins have been identified, the molecular mechanism underlying the LPS signaling pathway still remains obscure. We have found that the LPS-induced Ca2+ increase in platelets and platelet aggregation is blocked by selective platelet-activating factor (PAF) receptor antagonists, thus suggesting a cross-talk between LPS and the PAF receptor. Next, we confirmed this hypothesis using the cloned PAF receptors [(1991) Nature 349, 342-346; (1991) J. Biol. Chem. 266, 20400-20405] expressed in Xenopus oocytes and Chinese hamster ovary (CHO) cells. In both systems, cells responded to LPS only when PAF receptors were expressed, and specific PAF binding was successfully displaced and reversibly dissociated by LPS. PAF receptor activation by LPS may represent a novel important pathway in the pathogenesis of circulatory collapse and systemic thrombosis caused by endotoxin.  相似文献   

2.
Leptospire lipopolysaccharide (LPS) stimulated the adherence of polymorphonuclear neutrophils (PMNs) to human umbilical vein endothelial cells (HUVEC). Enhanced PMN adherence in response to leptospire LPS can be mediated by platelet-activator-factor (PAF), because a PAF antagonist reduced adherence. Leptospire LPS also induced the adherence platelets or U937. The second experiment involved leptospire LPS elicited platelet aggregation in a PMN-platelet mixture, because leptospire LPS stimulated human PMN but not the human platelets. The platelet response was observed only in the mixture system and was inhibited by a PAF antagonist. PAF could be an important pathogenic factor in human leptospirosis.  相似文献   

3.
In an earlier study (Miwa, M., Hill, C., Kumar, R., Sugatani, J., Olson, M. S., and Hanahan, D. J. (1987) J. Biol. Chem. 262, 527-530) it was shown that an inhibitor of platelet-activating factor (PAF), a powerful endogenous mediator of platelet aggregation, was present in freeze-clamped perfused livers. Subsequently, we determined that this substance was a mixture of unsaturated free fatty acids (FFA). Among these FFA, oleic acid between 10 and 100 microM was found to be a potent inhibitor of PAF-induced platelet aggregation and serotonin secretion. Consequently, in order to understand the molecular mechanism of oleic acid action, we investigated the effects of this FFA on several biochemical events associated with platelet aggregation induced by PAF. The effect of oleic acid and/or PAF on the level of [32P]phosphatidylinositol 4-phosphate (PIP) and [32P]phosphatidylinositol 4,5-bisphosphate (PIP2) was examined by using platelets labeled with [32P]phosphate. Oleic acid induced a dose-dependent decrease in the levels of [32P]PIP and [32P]PIP2; a maximal decrease in [32P]PIP and [32P]PIP2 of approximately 50 and 25%, respectively, was observed within seconds after the addition of 20 microM oleic acid and persisted for at least 15 min. Oleic acid did not induce the formation of [3H]inositol phosphates in platelets prelabeled with [3H]inositol, suggesting that the decrease in [32P]PIP and [32P]PIP2 was not due to a stimulation of phospholipase C. In contrast to oleic acid, PAF induced a dose-dependent increase in the [32P]PIP level, reaching a maximum of approximately 200% 3 min after the addition of 1 nM PAF to the platelets. This increase in [32P]PIP was accompanied by platelet aggregation and secretion, and a close correlation was established between the [32P]PIP level and the degree of aggregation. Oleic acid and PAF, when added together to the platelets, interacted by affecting the level of [32P]PIP and [32P]PIP2 in an opposite way since the decrease in the level of [32P]PIP and [32P] PIP2 induced by oleic acid was partially reversed by an excess of PAF. The decrease in the levels of [32P] PIP and [32P]PIP2 caused by oleic acid was associated with an inhibition of platelet aggregation induced by PAF. Interestingly, oleic acid did not block [3H]PAF binding to platelets but inhibited the PAF-induced phosphorylation of platelet proteins of 20 kDa and 40 kDa. These results suggest that inhibition of the PAF response by oleic acid may be at one of the steps in the signal transduction.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
S Kojima  F Sekiya  Y Inada  F Sato  T Tsukada  Y Saito 《FEBS letters》1990,267(2):226-228
In cooperative aggregation of bovine platelets induced by simultaneous addition of PAF and collagen at subthreshold concentrations the following observations were made. (i) Formation of phosphatidic acid and arachidonic acid metabolites, which characterize PAF and collagen alone-induced aggregation, respectively, was observed very obviously. (ii) A thromboxane antagonist did not completely block the cooperative aggregation. The extent of residual aggregation activity was dependent on concentration of collagen used in the simultaneous administration with PAF. These results suggest that both signal transduction pathways activated by PAF and collagen alone at high concentrations are attained by simultaneous addition of both agonists at subthreshold concentrations through unknown mechanisms.  相似文献   

5.
CV-3988 - a specific antagonist of platelet activating factor (PAF)   总被引:20,自引:0,他引:20  
CV-3988, rac-3-(N-n-octadecylcarbamoyloxy)-2-methoxypropyl 2-thiazolioethyl phosphate was shown to be a specific inhibitor of platelet activating factor (PAF). This compound in concentrations of 3 x 10(-6) to 3 x 10(-5)M inhibited aggregation of rabbit platelets induced by PAF (3 x 10(-8)M), while it had no effect on the aggregation induced by arachidonic acid, ADP, collagen or A-23187. CV-3988 alone even at a concentration of 10(-3)M had no effect on platelet aggregation. The inhibitory action of CV-3988 on the PAF-induced aggregation was independent of the formation of micelles. The PAF (0.1 to 1.0 micrograms/kg, i.v.)-induced hypotension in anesthetized rats was also inhibited dose-dependently by the i.v. administration of CV-3988 (1 and 10 mg/kg), while the hypotensive actions induced by the i.v. administration of acetylcholine (1 micrograms/kg), arachidonic acid (1 mg/kg), bradykinin (10 micrograms/kg), isoproterenol (1 microgram/kg) and histamine (100 micrograms/kg) were not altered by CV-3988 (10 mg/kg, i.v.). All these findings indicate that CV-3988 specifically inhibits the action of PAF in vitro and in vivo. This is the first report of a PAF antagonist which can specifically inhibit the PAF-induced hypotension as well as the PAF-induced platelet aggregation.  相似文献   

6.
蛋白激酶C在血小板聚集中的作用   总被引:3,自引:0,他引:3  
利用 ̄(32)P-NaH2PO4标记猪血小板,以蛋白激酶C的40kD底物为蛋白激活的标志.用血小板激动剂在聚集浓度范围内处理血小板,结果表明,除了不能使猪血小板聚集的肾上腺素外,凝血酶等激动剂都使血小板40kD底物蛋白磷酸化明显增加,同时38kD,26kD蛋白质磷酸化也明显增加,且40kD底物磷酸化与血小板聚集有平行增加关系.蛋白激酶C在血小板聚集中可能起着重要的调节作用。  相似文献   

7.
Platelet-activating factor (1-0-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine, PAF) is a potent inducer of shape-change, aggregation and secretion in platelets. PAF causes a rapid increase in intracellular calcium, but has no calcium gating effect in intact lipid bilayers. Human red cells (RBC) did not metabolize either PAF or PAF-phosphatidate (PAF-PA). While PAF (10 μM) was devoid of calcium ionophoretic activity, PAF-PA (1–5 μM) stimulated calcium influx into intact human RBC. In addition, PAF-PA (1–10 μM), but not PAF (10 μM), elicited a series of satellite effects related to the rise of intracellular calcium: 1) increased efflux of intracellular potassium (Gàrdos effect); 2) alkalinization of unbuffered RBC suspensions; 3) stimulation of ATP consumption and production, and enhancement of glycolytic flux with crossover at the glyceraldehyde 3-phosphate dehydrogenase step. These effects exactly duplicate those brought about by the calcium ionophore A23187. The ionophoretic potency of PAF-PA was about half that of A23187. Approximately the same concentrations of PAF-PA as those that stimulate calcium influx into RBC elicit full aggregatory response in human platelets. It is possible that transformation of PAF into PAF-PA by the combined action of phospholipase C and diacylglycerol kinase contributes to the increase of calcium influx in platelets.  相似文献   

8.
Experiments were done to test the hypothesis that aggregation of human platelets induced by platelet activating factor (PAF) may be mediated by calmodulin-dependent processes. W-7 [N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide], a potent calmodulin antagonist, caused dose-dependent inhibition of PAF induced aggregation of human platelets in vitro. The ED50 for W-7 was 51.5 +/- 9.5 microM (mean +/- SEM). This concentration is known to be platelet calmodulin-specific. These data are consistent with the hypothesis.  相似文献   

9.
This laboratory demonstrated earlier that oleic acid inhibited platelet activating factor (PAF)-induced aggregation and serotonin release of rabbit platelets (M. Miwa, C. Hill, R. Kumar, J. Sugatani, M. S. Olson, and D. J. Hanahan, 1987, J. Biol. Chem. 262, 527-530). More recently, we reported that oleic acid caused a decrease in phosphatidylinositol-4-phosphate (PIP) and phosphatidylinositol-4,5-bisphosphate (PIP2), but did not affect the level of inositol-1,4,5-trisphosphate (IP3), in rabbit platelets (D. Nunez, J. Randon, C. Gandhi, A. Siafaka-Kapadai, M. S. Olson, and D. J. Hanahan, 1990, J. Biol. Chem. 265, 18330-18838). These results suggested that oleic acid did not stimulate phospholipase C. In contrast, PAF induced a decrease in PIP2 and an increase in PIP level and IP3. These effects were shown to be attenuated by oleic acid. In this current study, our experiments show that (a) oleic acid blocked PAF-induced rise in intracellular [Ca2+] (to provide a mechanism in agreement with our previous experiments which showed that oleic acid inhibited PAF-induced IP3 rise in platelets) and (b) oleic acid itself induced a gradual rise in [Ca2+]i, which would provide a mechanism for oleic acid-induced aggregation despite the fact that oleic acid did not cause the production of IP3 (Nunez et al., 1990). Oleic acid, in a dose-dependent manner, was shown to inhibit PAF-induced Ca2+ mobilization from intra- and extracellular sources. The inhibition was closely related to the suppressive effect of oleic acid on PAF-induced aggregation. Furthermore, oleic acid inhibited the PAF-stimulated phosphorylation of the 20- and 40-kDa proteins. At concentrations above 20 microM, oleic acid itself could induce platelet aggregation and Ca2+ mobilization, but the time sequence of these two responses in human platelets was significantly different from those obtained with PAF. Oleic acid alone, at 20 microM, caused a 1.4-fold increase in the cAMP level in platelets which was followed by a decline to a basal value at higher concentrations of this fatty acid. It seemed clear that elevation of adenylate cyclase activity was not associated with free fatty acid inhibition of platelet activation. Interestingly, both PAF and oleic acid added separately to human platelets induced protein-tyrosine phosphorylation, but oleic acid did not cause any inhibition of PAF-induced protein-tyrosine phosphorylation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Zinc ions in the micromolar range exhibited a strong inhibitory activity toward platelet activating factor (PAF)-induced human washed platelet activation, if added prior to this lipid chemical mediator. The concentration of Zn2+ required for 50% inhibition of aggregation (IC50) was inversely proportional to the concentration of PAF present. The IC50 values (in microM) for Zn2+ were 8.8 +/- 3.9, 27 +/- 5.8, and 34 +/- 1.7 against 2, 5, and 10 nM PAF, respectively (n = 3-6). Zn2+ exhibited comparable inhibitory effects on [3H]serotonin secretion and the IC50 values (in microM) were 10 +/- 1.2, 18 +/- 3.5, and 35 +/- 0.0 against 2, 5, and 10 nM PAF, respectively (n = 3). Under the same experimental conditions, aggregation and serotonin secretion induced by ADP (5 microM), arachidonic acid (3.3 microM), or thrombin (0.05 U/ml) were not inhibited. Introduction of Zn2+ within 0-2 min after PAF addition not only blocked further platelet aggregation and [3H]serotonin secretion but also caused reversal of aggregation. Analysis of [3H]PAF binding to platelets showed that Zn2+ as well as unlabeled PAF prevented the specific binding of [3H]PAF. The inhibition of [3H]PAF specific binding was proportional to the concentration of Zn2+ and the IC50 value was 18 +/- 2 microM against 1 nM [3H]PAF (n = 3). Other cations, such as Cd2+, Cu2+, and La3+, were ineffective as inhibitors of PAF at concentrations where Zn2+ showed its maximal effects. However, Cd2+ and Cu2+ at high concentrations exhibited a significant inhibition of the aggregation induced by 10 nM PAF with IC50 values being five- and sevenfold higher, respectively, than the IC50 for Zn2+, and with the IC50 values for inhibition of binding of 1 nM [3H]PAF being 5 and 19 times higher, respectively, than the IC50 for Zn2+. The specific inhibition of PAF-induced platelet activation and PAF binding to platelets suggested strongly that Zn2+ interacted with the functional receptor site of PAF or at a contiguous site.  相似文献   

11.
The present study has evaluated the influence of semi-synthetic platelet-aggregating factor, (PAF) i.e., alkylacetylglycerophosphocholine, on human platelet morphology, biochemistry and function in order to determine if PAF serves as the corrective factor restoring sensitivity to refractory platelets after treatment with epinephrine. Threshold concentrations of PAF caused irreversible platelet aggregation which could be blocked by agents elevating endogenous levels or cyclic AMP or inhibited by antagonists of platelet prostaglandin synthesis and secretion. PAF did not stimulate platelets through α-adrenergic receptors or receptors for arachidonate, endoperoxides or thromboxanes. 24 h after aspirin ingestion, platelets could be aggregated irreversibly by high concentrations, but not by threshold amounts of PAF, even though they were still insensitive to arachidonate. Another less potent PAF derivative, alkenylacetylglycerophosphocholine, blocked aggregation of 24-h aspirin platelets by PAF, but did not inhibit restoration of arachidonate sensitivity and irreversible aggregation when the samples were treated first with epinephrine. Our findings indicate that threshold amounts of PAF activate human platelets in a physiologic manner and cause irreversible aggregation which is dependent on prostaglandin synthesis and the release reaction. The results do not support the concept that PAF is the mediator of the mechanism of membrane modulation through which epinephrine induces correction of the refractory state in prostaglandin I2-treated or dissociated platelets, or cells obtained from individuals following aspirin ingestion. Thus, the mechanism of platelet membrane modulation is capable of securing irreversible aggregation of secretion, prostaglandin synthesis or PAF formation.  相似文献   

12.
This study was conducted to characterize bovine platelets with respect to serotonin (5-HT) concentration and platelet-activating factor (PAF)-activation and to examine the in vitro effects of PAF and platelet-derived compounds on bovine luteal progesterone (P4) production. The concentration of 5-HT in platelets, as determined by high-performance liquid chromatography, was 538.8 +/- 40.83 ng/1 x 10(8) platelets. Based on a circulating platelet concentration range of 2.3 x 10(8) 5.8 x 10(8) platelets/ml, the circulating concentration of 5-HT would be approximately 1239-3125 ng/ml of blood. Bovine platelets were found to aggregate in response to PAF (1-40 ng/0.5 ml), with maximal aggregation occurring at 20-40 ng/0.5 ml. Coincubation of luteal cells with platelets (1 x 10(7)-4 x 10(8] enhanced luteal P4 production (p less than 0.05). Addition of the 5-HT receptor antagonist mianserin blocked the platelet-induced increases in P4 (p less than 0.05). Preincubation of platelets with indomethacin did not alter the production of P4 (p greater than 0.05), nor did the addition of propranolol (p greater than 0.05). Platelet-derived growth factor at 8 and 16 ng/ml enhanced basal P4 production (p less than 0.05) but had no effect on the responsiveness of luteal cells to luteinizing hormone (LH) (p greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
PAF-receptor antagonists are known to inhibit gastrointestinal damage induced by endotoxin. In the present study, the interaction between the biosynthesis of PAF and thromboxane (TX) A2, as putative mediators of the acute intestinal damage induced by endotoxin, has been investigated in the anaesthetised rat. Bolus intravenous administration of lipopolysaccharide from E. coli (5-50 mg/kg) induced dose-related jejunal damage, assessed using both macroscopic and histological techniques. This damage was accompanied by significant increases in the jejunal formation of PAF determined by bioassay, and of TXB2, determined by radioimmunoassay. Pretreatment with the structurally-unrelated thromboxane synthase inhibitors, 1-benzyl imidazole (10-50 mg/kg) or OKY 1581 (25 mg/kg) substantially reduced both jejunal damage and TXB2 formation, but did not inhibit PAF formation. Likewise, pretreatment with indomethacin (5 mg/kg) or BW 755C (50 mg/kg) reduced jejunal damage and TXB2 formation but did not affect PAF formation. Pretreatment (2h) with dexamethasone (4 mg/kg) reduced jejunal damage and the formation of both TXB2 and PAF. Intravenous infusion of PAF (100 ng/kg/min for 10 min) induced jejunal damage and significantly increased the formation of TXB2, whereas non-specific jejunal damage induced by oral administration of ethanol did not augment PAF formation. The present findings that inhibition of jejunal thromboxane formation is associated with a substantial reduction in jejunal damage, with no corresponding inhibition in PAF formation, therefore suggests a complex interaction or sequential release of these tissue destructive mediators underlying the intestinal damage induced by endotoxin.  相似文献   

14.
The hypothesis was tested that the hetrazepine WEB 2086 acts as an inhibitor of PAF-induced platelet aggregation via interaction with the platelet benzodiazepine receptor(BDZR). WEB 2086 is a potent inhibitor of rabbit platelet aggregation and ATP secretion induced by 370 nM PAF. The two BDZR ligands RO 5-4864 and RO 15-1788 (7-96 microM) are inactive as PAF antagonists. When platelets were pretreated with either BDZR ligand, and then exposed to various concentrations of WEB 2086, there was no alteration of the dose-response relationship of the hetrazepine on PAF-induced aggregation, as reflected by threshold concentration, ED50, or maximum inhibition seen with WEB 2086. Pretreatment of platelets with the BDZR ligands also failed to block the inhibitory action of WEB 2086 on PAF-induced ATP release. The data are consistent with the notion that WEB 2086 acts as a PAF antagonist through its action at a specific PAF receptor, and is dissociated from, and independent of, interaction with the benzodiazepine receptor.  相似文献   

15.
The interaction of a plasmalogenic analog of platelet-activating factor (1-O-alk-1;-enyl-2-acetyl-sn-glycero-3-phosphocholine; 1-alkenyl-PAF) with human platelets was studied. 1-Alkenyl-PAF induced an increase in intracellular Ca2+ concentration and inhibition of adenylate cyclase at significantly higher concentrations than PAF. 1-Alkenyl-PAF inhibits PAF-induced platelet aggregation but has no effect on ADP- or thrombin-induced aggregation of human platelets. In contrast to PAF, 1-alkenyl-PAF increases [3H]PGE1 binding with human platelets. The properties of 1-alkenyl-PAF as an agonist or antagonist of PAF receptors apparently depend on its concentration in the cell medium. Under physiological conditions 1-alkenyl-PAF might be a natural PAF antagonist acting in the human cardiovascular system.  相似文献   

16.
Low concentrations of a polyoxyethylene detergent, Brij 58, inhibited the secondary phase of platelet aggregation induced by ADP in human citrated platelet-rich plasma but had no effect on primary aggregation. Thrombin-induced aggregation of washed human platelets suspended in Tyrode's buffer was inhibited after incubation of cells with 4.10(-6) M detergent. Efflux of [14C]serotonin, 45Ca2+ and labile aorta contracting substance (thromboxane A2) and development of prothrombin-converting activity (platelet factor 3) were abolished concomitantly. Aggregation of washed platelets either by sodium arachidonate or by collagen was also inhibited by the same concentration of Brij 58 which inhibited thrombin aggregation. This concentration did not itself produce any release of a cytoplasmic marker, lactate dehydrogenase, from platelets. Higher concentrations of Brij 58, exceeding 4.10(-5) M, lysed the cells liberating lactate dehydrogenase, serotonin and Ca2+. When albumin was included as a platelet stabilizer in the suspending medium the concentration of detergent required for the inhibitory effects was increased ten-fold. This could be attributed to competitive binding of the detergent to albumin, demonstrated with [14C]acetylated Brij 58. A variety of other polyoxyethylene detergents, at concentrations from 8.10(-4) to 5.10(-3) M, also inhibited platelet aggregation induced by thrombin. It is concluded that low concentrations of Brij 58 stabilize the platelets against the action of aggregating agents, while higher concentrations produce membrane destabilization and cell lysis.  相似文献   

17.
PAF causes dose dependent platelet aggregation of human platelet rich plasma or gel filtered platelets (GFP). The benzodiazepines alprazolam and triazolam, but not diazepam (1-10 microM), inhibit PAF induced aggregation but have no effect on aggregation induced by other platelet agonists such as ADP, epinephrine and collagen. The IC50 for aggregation by PAF (4 nM) in GFP is 1 microM for both alprazolam and triazolam. The mechanism for this inhibition was explored by studying the binding of 3H-PAF(0.08 nM) to GFP in Tyrodes buffer containing albumin (0.35%), Mg++ (1mM) and Ca++ (0.5mM). GFP was incubated with different doses of the drug for 5 min prior to addition of 3H-PAF. Incubation was then carried out for 60 min at 25 degrees C to achieve binding equilibrium, as previously established. Alprazolam and triazolam, but not diazepam, caused competitive displacement of 3H-PAF from specific binding sites of GFP. The IC50 of alprazolam was 3.8 microM while that of triazolam was 0.82 microM. Lineweaver-Burk plots of 3H-PAF binding in the presence of inhibitor were also consistent with competitive inhibition. These results are consistent with the interpretation that the specific inhibition of PAF induced platelet aggregation by alprazolam and triazolam, respectively, is due to competitive inhibition of binding of PAF to its receptor.  相似文献   

18.
PAF (platelet-activating factor) is an endogenous mediator of endotoxin (LPS) shock and intestinal injury. In the present study we used an improved method to quantitate intestinal PAF after LPS injection. Both column and thin layer chromatography (TLC) were used to purify PAF. We found that using C18 column eluted sequentially with 10% acetic acid, ethyl acetate and 70% ethanol, yielded consitent results. TLC yielded falsely high PAF values, possibly from an unknown tissue lipid which co-migrated with PAF, or from toxic ingredients in the silica gel. Moreover, addition of optimal amounts of Tween-20 or ethanol in the bioassay samples enhanced PAF solubility and markedly improved PAF recovery. Lastly, dilution and heparinization of platelet-rich plasma greatly improved the sensitivity of the bioassay. The overall PAF recovery under these optimal conditions was 70–80%. We found that LPS (2–10 mg/kg, iv, 90 min) stimulated PAF production in the rat ileum, but not in the jejunum and colon. The difference in PAF production did not correlate to the numbers of sequestered neutrophils (reflected by myeloperoxidase levels) after LPS injection. This selective PAF production may account for the special vulnerability of the ileum to develop injury during endotoxemia.  相似文献   

19.
1. The platelet aggregation response to several known platelet agonists was evaluated in four Asian elephants. The platelets were highly responsive to stimulation with platelet-activating factor (PAF) and collagen, less responsive to adenosine diphosphate (ADP) and non-responsive to arachidonic acid, serotonin and epinephrine. 2. Arachidonic acid (1 x 10(-4) M), while inducing no aggregation, caused the release of 1248 +/- 1147 pg/ul (mean +/- SD) of thromboxane B2 (TXB2), the stable metabolite of thromboxane A2 from stimulated platelet. The addition of 1 x 10(-4) M ADP to platelets caused suboptimal aggregation and the release of only 25 +/- 10 pg TXB2/microliters. 3. The calcium channel blocker, verapamil, produced a dose-dependent inhibition of PAF-induced but not collagen-induced aggregation. The cyclooxygenase inhibitor, acetylsalicylic acid, produced no inhibition of either collagen- or PAF-induced aggregation.  相似文献   

20.
The effects of structurally different PAF receptor blockers were investigated in platelets, neutrophils, guinea pig ileum, rat isolated lung and rat isolated pulmonary artery. PAF caused serotonin release from platelets and a characteristic shape change and adhesion of neutrophils. The antagonists (CV 3988, alprazolam, 48740 RP and Merck-Sharp and Dohme L-652, 731) inhibited platelet serotonin release but not neutrophil shape change adhesion or lysosomal enzyme release. The antagonists in high concentrations (10(-5)-10(-4)M) inhibited nonspecifically the PAF-induced (10(-8)M) guinea pig ileum contraction, but were ineffective at concentrations which inhibited platelet responses. In the rat lung the compounds, in high concentrations, partially inhibited the low dose PAF-induced pulmonary vasodilation and the high dose PAF induced pulmonary vasoconstriction and edema. Our data indicate that some platelet PAF antagonists may be ineffective in blocking the action of PAF on neutrophils and smooth muscle preparations and suggest either PAF-receptor independent actions of PAF or different classes of PAF receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号