首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
D Scott  M Fox  B W Fox 《Mutation research》1975,29(2):201-202
Mutagenesis was studied in repair- and recombination-deficient strains of Haemophilus influenzae after treatment with N-nitrosocarbaryl (NC). Three different strains of H. influenzae carrying mutations affecting excision-repair of UV-induced pyrimidine dimers exhibited normal repair of premutational lesions (as detected by decreased mutation yield resulting from post-treatment DNA synthesis delay) and normal nonreplicative mutation fixation. This indicates that neither of these phenomena are caused by the same repair mechanism that removes UV-induced pyrimidine dimers from the DNA.The recombination-deficient mutant rec1 is apparently deficient in the replication-dependent mode of NC-induced mutation fixation. This conclusion is based on the following results: (1) NC-induced mutagenesis is lower in the rec1 strain than in rec+ cells. (2) Repair of premutational lesions (which depends on the existence of replication-dependent mutation fixation for its detection) was not detected in the rec1 strain. (3) When nonreplicative mutation fixation and final mutation frequency were measured in the same experiment, about 14 to 13 of the final mutation yield could be accounted for by nonreplicative mutation fixation in the rec+ strain, whereas all of the mutation could be accounted for in the rec1 strain by the nonreplicative mutation fixation. (4) When mutation fixation in strain dna9 rec1 was followed at the permissive (36°) and nonpermissive (41°) temperatures, it became apparent that in the rec1 strain replication-dependent mutation fixation occurs at early times, but these newly fixed mutations are unstable and disappear at later times, leaving only the mutations fixed by the nonreplicative process.The rec1 strain exhibits normal repair of NC-induced single-strand breaks or alkali-labile bonds in the DNA labeled before treatment, but is slow in joining discontinuities present in DNA synthesized after treatment. The results are consistent with the idea that in NC-treated H. influenzae cells the replication-dependent mode of mutation fixation occurs by error-prone joining of interruptions present in the DNA synthesized after treatment. The possibility still exists, however, that during DNA replication mispairing occurs opposite certain alkylation-induced lesions and that mutations arising during replication of strain rec1 later disappear as a result of degradation of newly synthesized DNA, which is excessive in this strain.  相似文献   

2.
The inhibition of UV-induced repair DNA synthesis by hydroxyurea, deoxyadenosine or 1-β-D-arabinofuranosylcytosine is reflected in changes in chromosome appearance (decondensation seen in fixed preparations) and DNA structure (accumulation of unwinding points or single-strand gaps). These changes are rapidly reversed if the inhibition is neutralised by addition of precursors of DNA synthesis. The in vivo organisation of chromosomes apparently survives the prolonged presence of substantial DNA breakage.  相似文献   

3.
Repair deficiency in Escherichia coli UV-sensitive mutator strain uvr502   总被引:8,自引:0,他引:8  
The effect of ultraviolet irradiation (UV) has been studied in Escherichiacoli mutator UV-sensitive mutant uvr502, its uvrA6 derivative and wild-type strain. The uvr502 mutant is about 5 times more UV-sensitive than the uvr+ isogenic strain, but 3 times less sensitive than the uvrA6 single mutant. Cells of the uvr502 mutant are unable to rejoin the fragments of parental DNA formed after UV as a result of incision. The double mutant uvrA6uvr502 as well as the single uvrA6 mutant irradiated with UV is unable to introduce breaks into parental DNA. The extent of postreplication repair is essentially normal in the uvr502 cells. There is no significant difference between the uvr+ and uvr502 cells in the rate and extent of UV-induced DNA degradation.  相似文献   

4.
Immediate fragmentation of parental DNA by near-ultraviolet irradiation at 313 nm was measured in cultured skin fibroblasts from normal individuals, patients with Xeroderma pigmentosum of complementation group A (XPA) and Xeroderma pigmentosum variants (XPV) by the alkaline elution procedure. For a dose of 2.25 KJm?2 given at Oo fragmentation was comparable in all cell strains. However, fragmentation was strongly increased relative to Oo in XPV but not in normal fibroblasts and the XPA strains when irradiation was carried out at 37o. From our results it appears that a step in the repair of parental DNA is abnormal in XPV.  相似文献   

5.
Cells resistant to Clostridium perfringens enterotoxin were selected from cultures of highly sensitive Vero (African green monkey kidney) cells. Studies were done with the sensitive and resistant cells to determine the relationship between binding and biological activity. Binding studies using 125I-enterotoxin revealed the apparent existence of high and low affinity binding sites for the enterotoxin on both cell types. The binding site density on resistant cells was found to be 110 that of sensitive cells. It was found that, even with high doses of enterotoxin, only partial affect upon DNA synthesis, membrane permeability, and plating efficiency was noted in resistant cells. It is concluded that without specific binding there is little or no ability of the enterotoxin to effect biological activity in cells.  相似文献   

6.
The relationship between cell fusion, DNA synthesis and the cell cycle in cultured embryonic normal and dysgenic (mdgmdg) mouse muscle cells has been determined by autoradiography. The experimental evidence shows that the homozygous mutant myotubes form by a process of cell fusion and that nuclei within the myotubes do not synthesize DNA or undergo mitotic or amitotic division. The duration of the total cell cycle and its component phases was statistically the same in 2-day normal and mutant (mdgmdg) myogenic cultures with the approximate values: T, 21.5 hr; G1, 10.5 hr; S, 7.5 hr; and G2, 2.5 hr. In both kinds of cultures, labeled nuclei appeared in myotubes 15–16 hr after mononucleated cells were exposed to [3H]thymidine, and the rate of incorporation of labeled nuclei into multinucleated muscle cells was comparable in control and dysgenic cultures. Thus, homozygous mdgmdg muscle cells in culture are similar to control cells with respect to their mechanism of myotube formation and the coordinate regulation of DNA synthesis and the cell cycle during myogenesis.  相似文献   

7.
The effects of UV irradiation on DNA metabolism during meiosis have been examined in wild-type (RAD+) and mitotically defined excision-defective (rad1-1) strains of Saccharomyces cerevisiae that exhibit high levels of sporulation. The rad1-1 gene product is not required for normal meiosis: DNA synthesis, RNA synthesis, size of parental and newly synthesized DNA and sporulation are comparable in RAD+ and rad1-1 strains. Cells were UV irradiated at the beginning of meiosis, and the fate of UV-induced pyrimidine dimers as well as changes in DNA and DNA synthesis were followed during meiosis. Excision repair of pyrimidine dimers can occur during meiosis and the RAD1 gene product is required; alternate excision pathways do not exist. Although the rate of elongation is decreased, the presence of pyrimidine dimers during meiosis in the rad1-1 strain does not block meiotic DNA synthesis suggesting a bypass mechanism. The final size of DNA is about five times the distance between pyrimidine dimers after exposure to 4 J/m2. Since pyrimidine dimers induced in parental strands of rad1-1 prior to premeiotic DNA synthesis do not become associated with newly synthesized DNA, the mechanism for replicational bypass does not appear to involve a recombinational process. The absence of such association indicates that normal meiotic recombination is also suppressed by UV-induced damage in DNA; this result at the molecular level is supported by observations at the genetic level.  相似文献   

8.
The respiratory adaptation process (i.e essentially mitochondrial biogenesis) in the cells of both wild-type Saccharomyces cerevisiae and strains sensitive to ultraviolet radiation (UV) undergoing transition from the anaerobic to the aerobic state (1–2 h aeration) could be arrested by a prior incubation for 15–30 min with several chemical mutagens and other DNA-acting chemicals at very low concentrations (10?7 to 10?6 M added to cells suspended at the density of 107 cells/ml). At the same concentrations, these chemicals also inhibited DNA and RNA biosynthesis in maturing mitochondria during respiratory adaptation. This provides suggestive evidence for the view that the inhibitory effect of the chemical mutagens on respiratory adaptation could be due to lesions introduced into the DNA of promitochondria in the anaerobic cells. The system of respiratory adaptation in S. cerevisiae cells could serve as a rapid test for ascertaining the potentiality of a chemical to affect DNA and probably, in turn, its potentiality to be mutagenic.  相似文献   

9.
SV 40 minichromosomes were used as a molecular model of eukaryotic chromatin to probe the nature of the lesion responsible for UV stimulation of poly (ADPR) polymerase. UV irradiation of the minichromosomes with doses between 50 and 1000 J/m2 did not increase their ability to stimulate the activity of purified poly(ADPR) polymerase. In contrast, when the minichromosomes were UV irradiated and then treated with M.luteus UV endonuclease, there was a marked increase in their ability to stimulate poly(ADPR) polymerase. This stimulation was completely suppressed when histone Hl was added to the poly(ADPR) polymerase assay. These studies demonstrate in a purified invitro system that damage caused by UV irradiation alone is not sufficient to stimulate poly(ADPR) polymerase activity. Only when DNA is nicked at the site of UV damage by UV endonuclease is there stimulation of poly(ADPR) polymerase.  相似文献   

10.
Ora Canaani  Shmuel Malkin 《BBA》1984,766(3):525-532
In intact leaves, a new physiological state is obtained reversibly at low light intensity (typically 1 W / m2), in which oxygen evolution yield, monitored by the photoacoustic method, approaches zero. In this ‘low-light’ state, irradiation with far-red (λ > 700 nm) background light immediately restores the normal oxygen yield, resulting in an unusually high Emerson enhancement ratio. Quantitative analysis of the enhancement ratio and the saturation curve of enhancement by far-red light shows that in the new state, short wavelength excitation does not reach PS I reaction centers, resulting in an extreme imbalance between the two photosystems. We suggest that adaptation to the low-light state occurs through loss of excitonic interaction between antennae of PS I and their reaction-centers. It appears also that the ‘far-red’ absorbing pigments do not participate in the disconnection and remain closely attached to the reaction centers of PS I. Their number is estimated to be less than 30 per reaction center. The disconnection of the antennae from the reaction center appears to be reversed by readaptation to ‘normal’ light levels, as well as by a brief preillumination with broad band (400–600 nm) light, acting as a trigger. In the last case, the transition to high oxygen yield state is transient. The quantum requirement of this recovery process is very small (approx. 10 hv / reaction center). The adaptation times after switching from higher to lower intensities and vice versa are in the range of minutes. The fluorescence yield remains virtually constant during adaptation to the low-light state in contrast to expectations, suggesting the possibility of cyclic electron flow around PS II in this state. In a chlorophyll-b-less barley mutant, which lacks the light-harvesting chlorophyll-ab protein (LHC) (and possibly the newly discovered light-harvesting chlorophyll-ab protein associated with PS I (LHC-I)), the ‘low-light’ state was absent. These results are consistent with the hypothesis that these antennae complexes participate directly in the adaptation to low light intensities.  相似文献   

11.
The term, xeroderma pigmentosum variants designates patients who suffer from the clinical manifestations of the disease, but whose cells have normal rates of excision repair of UV-induced lesions in DNA. In contrast to normal human fibroblasts, if cells from such variants are maintained in medium containing caffeine from immediately following exposure to UV until the survivors have undergone three doublings, the cytotoxic and mutagenic effect of UV light is dramatically increased. In the presence of 0.7mM caffeine, the slope of the UV survival curve increases ca. 3-fold. Similarly, the slope of the curve describing the frequency of mutations to azaguanine resistance induced by UV as a function of dose is ca. 3-fold steeper.  相似文献   

12.
Potorous tridactylis cells can perform photoreactivation, i.e., the visible light- catalyzed reversal of UV-induced pyrimidine dimers in DNA. UV-induced inhibitions of total RNA and DNA synthesis can also be partially reversed by exposure to visible light. P. tridactylis cells can also perform repair replication, but the extent of the latter is reduced if the cells are exposed to visible light (VL). None of these effects are observed in mouse L cells, which cannot perform photoreactivation. The results are consistent with the concept of pyrimidine dimers are one of the main substrates for repair replication.  相似文献   

13.
α factor is a diffusible substance produced by S. cerevisiae cells of the α mating type which inhibits cell division (1) and the initiation of nuclear DNA synthesis (2) in cells of the a mating type. In this report, it is shown that mitochondrial DNA synthesis continues at a normal rate in a cells for at least 6 hours in the presence of α factor, resulting in a 5-fold increase in the amount of mitochondrial DNA per cell. The continued synthesis of mitochondrial DNA in the absence of nuclear DNA synthesis allows specific labeling of yeast mitochondrial DNA.  相似文献   

14.
Premeiotic DNA synthesis in fission yeast   总被引:57,自引:0,他引:57  
Sporulating and various non-sporulating strains of S. pombe, especially several mutants deficient in conjugation or meiosis, were compared with respect to DNA synthesis under sporulation conditions. Meiosis and sporulation were induced by a transfer to nitrogen-free medium. As synchronized mitotic division was observed in all the strains as a first response to the shift, reducing the DNA amount per cell from the replicated state in G2 to the unreplicated state in the G1 phase of the cell cycle. Cells of the heterothallic wild-type strains (h+h+ or h?h?) accumulated in G1 with respect to DNA synthesis when they were incubated separately. In a mixed culture of these strains a period of enhanced DNA synthesis was observed after the start of zygote formation. This period of synthesis was absent in mutant fus1, where only prezygotes accumulated. Hence we conclude that in zygotic meiosis the premeiotic DNA synthesis is confined to zygotes after conjugation has been completed. In the diploid sporulating wild-type strain (h+h?), capable of azygotic meiosis without prior conjugation, premeiotic DNA synthesis occurred between 212 and 5 h after the shift to the sporulation medium. There was no significant premeiotic DNA synthesis observed in diploid cells of the meiosis-deficient mutants mei1 or mei3, whereas premeiotic DNA synthesis proceeded normally in mutant mei4, which is blocked at a stage after commitment to meiosis in opposition to both the other mutants.  相似文献   

15.
Gaps in daughter-strand deoxyribonucleic acid (DNA) synthesized after exposure of wild-type Escherichiacoli to ultraviolet light are filled during reincubation. In this study the dnaG, dnaC, and dnaA gene products have been examined for their role in postreplication repair. These gene products are unique in their specific control of certain types of DNA synthesis: initiation of rounds of replication and chain propagation. Initiation of rounds of replication is not essential to gap filling; however, chain propagation by short DNA piece initiation appears to be essential for gap filling.  相似文献   

16.
17.
A general characteristic of neoplastic cells, but not their non-neoplastic counterparts, is the ability to proliferate in calcium-deficient medium. NRK cells infected with the transformation-defective, temperature-sensitive, ASV mutant, tsLA23, were unable to proliferate in calcium-deficient medium at the non-permissive 40°C, but they very rapidly initiated DNA synthesis (within 1 hour) and resumed proliferation in this medium after being shifted to 36°C, a temperature permissive for the production of active pp60src and for neoplastic transformation. These observations suggest that activated pp60src acts near the G1S transition point in the cell cycle to bypass or stimulate a calcium-dependent mechanism required for the initiation of DNA synthesis, which enables the cells to display the neoplastic property of proliferating in calcium-deficient medium.  相似文献   

18.
Each of the stages in the replication of ØX174 DNA in vitro, e. g., conversion of circular single stranded parental DNA to the duplex replicative form (SS → RF), replication of the closed circular duplex form (RF → RF), and synthesis of circular single stranded progeny DNA (RF →SS), may be affected by a reduced level of dUTPase. Thus, in enzyme preparations from mutant strains defective in dUTPase (dut?), the complementary strand synthesized in the SS → RF reaction is abnormally short (7–8S vs. 14S), and the extent of RF replication is decreased 10-fold. Preferential removal of dUTPase during fractionation of enzyme preparations from wild type (dut+) cells may produce comparable effects. In particular, the single stranded circular DNA synthesized in the RF → SS reaction by a set of highly purified enzymes is rapidly degraded upon incubation with the less pure enzymes required for its conversion to RF. All of these effects are plausibly accounted for by the incorporation into DNA of uracil from dUTP, possibly present as a contaminant in one or more components of the reaction, followed by excision of the uracil and phosphodiester bond cleavage at the resulting apyrimidinic site.  相似文献   

19.
Neomycin inhibits in vitro DNA dependent DNA and RNA synthesis catalyzed by DNA polymerase I and RNA polymerase from E. coli. The effect of the antibiotic is more pronounced towards DNA synthesis. The inhibition of DNA synthesis is competitive with template DNA, does not reverse with excess deoxynucleoside triphosphate, Mg2+ or enzyme E. coli DNA polymerase I. Neomycin does not reduce the number of potential 3′ -OH end or primer. It seems to shorten the size of the newly formed polynucleotide.  相似文献   

20.
We have determined that Co2+, Ni2+ or Zn2+ may substitute for Mg2+ during DNA synthesis with E.coli DNA polymerase I, sea urchin nuclear DNA polymerase and the DNA polymerase from avian myeloblastosis virus (AMV). In addition, the frequency of non-complementary nucleotide incorporation using AMV DNA polymerase was increased using Co2+ or Mn2+ as the metal activator. These results suggest that the fidelity of DNA synthesis may be influenced by the metal activator used during catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号