首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Zhao  K C Zen  W L Hubbell  H R Kaback 《Biochemistry》1999,38(23):7407-7412
Evidence has been presented [Venkatesan, P., and Kaback, H. R. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 9802-9807] that Glu126 (helix IV) and Arg144 (helix V) which are critical for substrate binding in the lactose permease of Escherichia coli are charge paired and therefore in close proximity. To test this conclusion more directly, three different site-directed spectroscopic techniques were applied to permease mutants in which Glu126 and/or Arg144 were replaced with either His or Cys residues. (1) Glu126-->His/Arg144-->His permease containing a biotin acceptor domain was purified by monomeric avidin affinity chromatography, and Mn(II) binding was assessed by electron paramagnetic resonance spectroscopy. The mutant protein binds Mn(II) with a KD of about 40 microM at pH 7.5, while no binding is observed at pH 5.5. In addition, no binding is detected with Glu126-->His or Arg144-->His permease. (2) Permease with Glu126-->Cys/Arg144-->Cys and a biotin acceptor domain was purified, labeled with a thiol-specific nitroxide spin-label, and shown to exhibit spin-spin interactions in the frozen state after reconstitution into proteoliposomes. (3) Glu126-->Cys/Arg144-->Cys permease with a biotin acceptor domain was purified and labeled with a thiol-specific pyrene derivative, and fluorescence spectra were obtained after reconstitution into lipid bilayers. An excimer band is observed with the reconstituted E126C/R144C mutant, but not with either single-Cys mutant or when the single-Cys mutants are mixed prior to reconstitution. The results provide strong support for the conclusion that Glu126 (helix IV) and Arg144 (helix V) are in close physical proximity.  相似文献   

2.
Thymidylate synthase (TS) is a long-standing target for anticancer drugs and is of interest for its rich mechanistic features. The enzyme catalyzes the conversion of dUMP to dTMP using the co-enzyme methylenetetrahydrofolate, and is perhaps the best studied of enzymes that catalyze carbon-carbon bond formation. Arg 126 is found in all TSs but forms only 1 of 13 hydrogen bonds to dUMP during catalysis, and just one of seven to the phosphate group alone. Despite this, when Arg 126 of TS from Escherichia coli was changed to glutamate (R126E), the resulting protein had kcat reduced 2000-fold and Km reduced 600-fold. The crystal structure of R126E was determined under two conditions--in the absence of bound ligand (2.4 A resolution), and with dUMP and the antifolate CB3717 (2.2 A resolution). The first crystals, which did not contain dUMP despite its presence in the crystallization drop, displayed Glu 126 in a position to sterically and electrostatically interfere with binding of the dUMP phosphate. The second crystals contained both dUMP and CB3717 in the active site, but Glu 126 formed three hydrogen bonds to nearby residues (two through water) and was in a position that partially overlapped with the normal phosphate binding site, resulting in a approximately 1 A shift in the phosphate group. Interestingly, the protein displayed the typical ligand-induced conformational change, and the covalent bond to Cys 146 was present in one of the protein's two active sites.  相似文献   

3.
Guan L  Hu Y  Kaback HR 《Biochemistry》2003,42(6):1377-1382
Major determinants for substrate recognition by the lactose permease of Escherichia coli are at the interface between helices IV (Glu126, Ala122), V (Arg144, Cys148), and VIII (Glu269). We demonstrate here that Trp151, one turn of helix V removed from Cys148, also plays an important role in substrate binding probably by aromatic stacking with the galactopyranosyl ring. Mutants with Phe or Tyr in place of Trp151 catalyze active lactose transport with time courses nearly the same as wild type. In addition, apparent K(m) values for lactose transport in the Phe or Tyr mutants are only 6- or 3-fold higher than wild type, respectively, with a comparable V(max). Surprisingly, however, binding of high-affinity galactoside analogues is severely compromised in the mutants; the affinity of mutant Trp151-->Phe or Trp151-->Tyr is diminished by factors of at least 50 or 20, respectively. The results demonstrate that Trp151 is an important component of the binding site, probably orienting the galactopyranosyl ring so that important H-bond interactions with side chains in helices IV, V, and VIII can be realized. The results are discussed in the context of a current model for the binding site.  相似文献   

4.
Wolin CD  Kaback HR 《Biochemistry》2000,39(20):6130-6135
Glu126 (helix IV) and Arg144 (helix V) in the lactose permease of Escherichia coli are critical for substrate binding and transport, and the two residues are in close proximity and charge-paired. By using a functional permease construct with two tandem factor Xa protease sites in the cytoplasmic loop between helices IV and V, it is shown here that Cys residues in place of Glu126 and Arg144, as well as Ala122 and Val149, spontaneously form disulfide bonds in situ, indicating that this region of transmembrane domains IV and V is in the alpha-helical conformation. To determine if the local structure or environment is perturbed by the presence of an unpaired charge, either Glu126 or Arg144 or both were replaced with Ala, and cross-linking between the Cys pair Ala122-->Cys/Val149-->Cys was studied. Ala replacement for Arg144 causes a marked decrease in cross-linking, while Ala replacement for Glu126 alone or for both Glu126 and Arg144 has little effect. The data provide strong support for the argument that Glu126 and Arg144 are within close proximity and suggest that an unpaired carboxylate at position 126 causes a structural change at the interface between helices IV and V.  相似文献   

5.
Sahin-Tóth M  Kaback HR 《Biochemistry》2000,39(20):6170-6175
The sucrose (CscB) permease is the only member of the oligosaccharide:H(+) symporter family in the Major Facilitator Superfamily that transports sucrose but not lactose or other galactosides. In lactose permease (lac permease), the most studied member of the family, three residues have been shown to participate in galactoside binding: Cys148 hydrophobically interacts with the galactosyl ring, while Glu126 and Arg144 are charge paired and form H-bonds with specific galactosyl OH groups. In the present study, the role of the corresponding residues in sucrose permease, Asp126, Arg144, and Ser148, is investigated using a functional Cys-less mutant (see preceding paper). Replacement of Ser148 with Cys has no significant effect on transport activity or expression, but transport becomes highly sensitive to the sulfhydryl reagent N-ethylmaleimide (NEM) in a manner similar to that of lac permease. However, in contrast to lac permease, substrate affords no protection whatsoever against NEM inactivation of transport or alkylation with [(14)C]NEM. Neutral (Ala, Cys) mutations of Asp126 and Arg144 abolish sucrose transport, while membrane expression is not affected. Similarly, combination of two Ala mutations within the same molecule (Asp126-->Ala/Arg144-->Ala) yields normally expressed, but completely inactive permease. Conservative replacements result in highly active molecules: Asp126-->Glu permease catalyzes sucrose transport comparable to Cys-less permease, while mutant Arg144-->Lys exhibits decreased but significant activity. The observations demonstrate that charge pair Asp126-Arg144 plays an essential role in sucrose transport and suggest that the overall architecture of the substrate binding sites is conserved between sucrose and lac permeases.  相似文献   

6.
Stehle F  Brandt W  Milkowski C  Strack D 《FEBS letters》2006,580(27):6366-6374
Structures of the serine carboxypeptidase-like enzymes 1-O-sinapoyl-beta-glucose:L-malate sinapoyltransferase (SMT) and 1-O-sinapoyl-beta-glucose:choline sinapoyltransferase (SCT) were modeled to gain insight into determinants of specificity and substrate recognition. The structures reveal the alpha/beta-hydrolase fold as scaffold for the catalytic triad Ser-His-Asp. The recombinant mutants of SMT Ser173Ala and His411Ala were inactive, whereas Asp358Ala displayed residual activity of 20%. 1-O-sinapoyl-beta-glucose recognition is mediated by a network of hydrogen bonds. The glucose moiety is recognized by a hydrogen bond network including Trp71, Asn73, Glu87 and Asp172. The conserved Asp172 at the sequence position preceding the catalytic serine meets sterical requirements for the glucose moiety. The mutant Asn73Ala with a residual activity of 13% underscores the importance of the intact hydrogen bond network. Arg322 is of key importance by hydrogen bonding of 1-O-sinapoyl-beta-glucose and L-malate. By conformational change, Arg322 transfers L-malate to a position favoring its activation by His411. Accordingly, the mutant Arg322Glu showed 1% residual activity. Glu215 and Arg219 establish hydrogen bonds with the sinapoyl moiety. The backbone amide hydrogens of Gly75 and Tyr174 were shown to form the oxyanion hole, stabilizing the transition state. SCT reveals also the catalytic triad and a hydrogen bond network for 1-O-sinapoyl-beta-glucose recognition, but Glu274, Glu447, Thr445 and Cys281 are crucial for positioning of choline.  相似文献   

7.
L-Xylulose reductase (XR) is a homotetramer belonging to the short-chain dehydrogenase/reductase family. Human XR is stable at low temperature, whereas the enzymes of mouse, rat, guinea pig, and hamster are rapidly dissociated into their inactive dimeric forms. In order to identify amino acid residues that cause cold inactivation of the rodent XRs, we have here selected Asp238, Leu242, and Thr244 in the C-terminal regions of rodent XRs and performed site-directed mutagenesis of the residues of mouse XR to the corresponding residues (Glu, Trp, and Cys) of the human enzyme. Cold inactivation was prevented partially by the single mutation of L242W and the double mutation of L242W/T244C, and completely by the double mutation of D238E/L242W. The L242W and L242W/T244C mutants existed in both tetrameric and dimeric forms at low temperature and the D238E/L242W mutant retained its tetrameric structure. No preventive effect was exerted by the mutations of D238E and T244C, which were dissociated into their dimeric forms upon cooling. Crystallographic analysis of human XR revealed that Glu238 and Trp242 contribute to proper orientation of the guanidino group of Arg203 of the same subunit to the C-terminal carboxylate group of Cys244 of another subunit through the neighboring residues, Gln137 and Phe241. Thus, the determinants for cold inactivation of rodent XRs are Asp238 and Leu242 with small side chains, which weaken the salt bridges between Arg203 and the C-terminal carboxylate group, and lead to cold inactivation.  相似文献   

8.
The four human glycoprotein hormones are heterodimers that contain a common alpha subunit and a hormone-specific beta subunit. Within this hormone family, 23 amino acid sequences from 11 mammalian species are available. There are 19 invariant amino acid residues in the beta subunits, 12 of which are Cys that form six disulfide bonds. Of the remaining seven conserved amino acid residues, we have investigated the role of an Asp which occurs at position 99 in human choriogonadotropin beta (hCG beta). Site-directed mutagenesis was used to replace hCG beta Asp99 with three residues, Glu, Asn, and Arg, and to prepare an inversion double mutant protein, Arg94----Asp and Asp99----Arg. The cDNAs were placed in a eukaryotic expression vector, and the plasmids were transiently transfected into Chinese hamster ovary cells containing a stably integrated gene for bovine alpha. Radioimmunoassays demonstrated that the mutant forms of hCG beta were capable of subunit assembly to the same extent as hCG beta wild type. The heterologous heterodimers were assayed in vitro using transformed mouse Leydig cells (MA-10) by competitive inhibition of 125I-hCG binding and stimulation of progesterone production. The gonadotropins containing Glu and Asn were active, although the potency was less than that associated with the hCG beta wild type-containing gonadotropin. In contrast, the Arg99-containing mutant protein and the inversion mutant protein Asp94/Arg99 were devoid of activity. Thus, in hCG beta Asp99 can be substituted with certain residues without total loss of function, although replacement with a positively charged residue leads to an inactive heterodimer. The primary role of Asp99 in hCG beta seems to involve, either directly or indirectly, receptor recognition.  相似文献   

9.
Kwaw I  Zen KC  Hu Y  Kaback HR 《Biochemistry》2001,40(35):10491-10499
Helices IV and V in the lactose permease of Escherichia coli contain the major determinants for substrate binding [Glu126 (helix IV), Arg144 (helix V), and Cys148 (helix V)]. Structural and dynamic features of this region were studied by using site-directed sulfhydryl modification of 48 single-Cys replacement mutants with N-[(14)C]ethylmaleimide (NEM) in the absence or presence of ligand. In right-side-out membrane vesicles, Cys residues in the cytoplasmic halves of both helices react with NEM in the absence of ligand, while Cys residues in the periplasmic halves do not. Five Cys replacement mutants at the periplasmic end of helix V and one at the cytoplasmic end of helix V label only in the presence of ligand. Interestingly, in addition to native Cys148, a known binding-site residue, labeling of mutant Ala122 --> Cys, which is located in helix IV across from Cys148, is markedly attenuated by ligand. Furthermore, alkylation of the Ala122 --> Cys mutant blocks transport, and protection is afforded by substrate, indicating that Ala122 is also a component of the sugar binding site. Methanethiosulfonate ethylsulfonate, an impermeant thiol reagent shown clearly in this paper to be impermeant in E. coli spheroplasts, was used to identify substituted Cys side chains exposed to water and accessible from the periplasmic side. Most of the Cys mutants in the cytoplasmic halves of helices IV and V, as well as two residues in the intervening loop, are accessible to the aqueous phase from the periplasmic face of the membrane. The findings indicate that the cytoplasmic halves of helices IV and V are more reactive/accessible to thiol reagents and more exposed to solvent than the periplasmic half. Furthermore, positions that exhibit ligand-induced changes are located for the most part in the vicinity of the residues directly involved in substrate binding, as well as the cytoplasmic loop between helices IV and V.  相似文献   

10.
Class I and class II CPD photolyases are enzymes which repair pyrimidine dimers using visible light. A detailed characterization of class I CPD photolyases has been carried out, but little is known about the class II enzymes. Photolyases from rice are suitable for functional analyses because systematic breeding for long periods in Asian countries has led to the selection of naturally occurring mutations in the CPD photolyase gene. We report the biochemical characterization of rice mutant CPD photolyases purified as GST-form from Escherichia coli. We identified three amino acid changes, Gln126Arg, Gly255Ser, and Gln296His, among which Gln but not His at 296 is important for complementing phr-defective E. coli, binding UV-damage in E. coli, and binding thymine dimers in vitro. The photolyase with Gln at 296 has an apoenzyme:FAD ratio of 1 : 0.5 and that with His at 296 has an apoenzyme:FAD ratio of 1 : 0.12-0.25, showing a role for Gln at 296 in the binding of FAD not in the binding of thymine dimer. Concerning Gln or Arg at 126, the biochemical activity of the photolyases purified from E. coli and complementing activity for phr-defective E. coli are similarly proficient. However, the sensitivity to UV of cultivars differs depending on whether Gln or Arg is at 126. The role of Gln and Arg at 126 for photoreactivation in rice is discussed.  相似文献   

11.
In order to define the active site(s) of human tumour necrosis factor (hTNF), we mutagenized its gene at random and directly screened the resulting population for loss of cytotoxic activity on L929 cells. Four biologically inactive mutant proteins (Arg32----Trp, Leu36----Phe, Ser86----Phe and Ala84----Val) behaved similar to the wild-type in various physico-chemical assays. The residues were positioned on a 3D structural model and were found to cluster together at the base of the molecule at each side of the groove that separates two monomers in the trimeric structure. A very conservative mutation at one of these sites (Ala84----Val) almost completely abolished cytotoxic activity. Amino acid alterations in three other residues in close proximity to this receptor binding site were introduced: replacements at positions 29 and 146 clearly reduced cytotoxicity only when non-conservative alterations were introduced (Leu29----Ser and Glu146----Lys), suggesting an indirect influence on the active site. However, a conservative mutation at position 91 (Val----Ala) caused a significant drop (500-fold) in bioactivity which suggests that Val91 may also play a direct role in receptor recognition. Our results favor a model in which each TNF molecule has three receptor-interaction sites (between the three subunits), thus allowing signal transmission by receptor clustering.  相似文献   

12.
A comparative study was performed on lysozyme modification after exposure to Fenton reagent (Fe(II)/H2 O2) or hydroxyl radicals produced by y radiation. The conditions were adjusted to obtain, with both systems, a 50% loss of activity of the modified ensemble. Gamma radiation modified almost all types of amino acid residues in the enzyme, with little specificity. The modification order was Tyr > Met = Cys > Lys > Ile + Leu > Gly > Pro = Phe > Thr + Ala > Trp = Ser > Arg > Asp + Glu, with 42 mol of modified residues per initial mole of native enzyme. In contrast, when the enzyme was exposed to the Fenton reaction, only some types of amino acids were modified. Furthermore, a smaller number of residues (13.5) were damaged per initial mole of enzyme. The order of the modified residues was Tyr > Cys > Trp > Met His > Ile + Leu > Val > Arg. These results demonstrate that the modifications elicited by these two free radical sources follow different mechanisms. An intramolecular free radical chain reaction is proposed to play a dominant role in the oxidative modification of the protein promoted by gamma radiation.  相似文献   

13.
Two notable features of the thermophilic CYP119, an Arg154-Glu212 salt bridge between the F-G loop and the I helix and an extended aromatic cluster, were studied to determine their contributions to the thermal stability of the enzyme. Site-specific mutants of the salt bridge (Arg154, Glu212) and aromatic cluster (Tyr2, Trp4, Trp231, Tyr250, Trp281) were expressed and purified. The substrate-binding and kinetic constants for lauric acid hydroxylation are little affected in most mutants, but the E212D mutant is inactive and the R154Q mutant has higher K(s),K(m), and k(cat) values. The salt bridge mutants, like wild-type CYP119, melt at 91+/-1 degrees C, whereas mutation of individual residues in the extended aromatic cluster lowers the T(m) by 10-15 degrees C even though no change is observed on mutation of an unrelated aromatic residue. The extended aromatic cluster, but not the Arg154-Glu212 salt bridge, contributes to the thermal stability of CYP119.  相似文献   

14.
Despite increased awareness and diagnostic facilities, 70–80% of the haemophilia A (HA) patients still remain undiagnosed in India. Very little data is available on prevalent mutations in HA from this country. We report fifty mutations in seventy one Indian HA patients, of which twenty were novel. Ten novel missense mutations [p.Leu11Pro (p.Leu-8Pro), p.Tyr155Ser (p.Tyr136Ser), p.Ile405Thr (p.Ile386Thr), p.Gly582Val (p.Gly563Val) p.Thr696Ile (p.Thr677Ile), p.Tyr737Cys (p.Tyr718Cys), p.Pro1999Arg (p.Pro1980Arg), p.Ser2082Thr (p.Ser2063Thr), p.Leu2197Trp (p.Leu2178Trp), p.Asp2317Glu (p.Asp2298Glu)] two nonsense [p.Lys396* (p.Lys377*), p.Ser2205* (p.Ser2186*)], one insertion [p.Glu1268_Asp1269ins (p.Glu1249_Asp1250)] and seven deletions [p.Leu882del (p.Leu863del), p.Met701del (p.Met682del), p.Leu1223del (p.Leu1204del), p.Trp1961_Tyr1962del (p.Trp1942_Tyr1943del) p.Glu1988del (p.Glu1969del), p.His1841del (p.His1822del), p.Ser2205del (p.Ser2186del)] were identified. Double mutations (p.Asp2317Glu; p.Thr696Ile) were observed in a moderate HA case. Mutations [p. Arg612Cys (p.Arg593Cys), p.Arg2326Gln (p.Arg2307Gln)] known to be predisposing to inhibitors to factor VIII (FVIII) were identified in two patients. 4.6% of the cases were found to be cross reacting material positive (CRM+ve). A wide heterogeneity in the nature of mutations was seen in the present study which has been successfully used for carrier detection and antenatal diagnosis in 10 families affected with severe to moderate HA.  相似文献   

15.
A mechanism proposed for lactose/H(+) symport by the lactose permease of Escherichia coli indicates that lactose permease is protonated prior to ligand binding. Moreover, in the ground state, the symported H(+) is shared between His322 (helix X) and Glu269 (helix VIII), while Glu325 (helix X) is charge-paired with Arg302 (helix IX). Substrate binding at the outer surface between helices IV (Glu126) and V (Arg144, Cys148) induces a conformational change that leads to transfer of the H(+) to Glu325 and reorientation of the binding site to the inner surface. After release of substrate, Glu325 is deprotonated on the inside due to re-juxtapositioning with Arg302. The conservative mutation Glu269-->Asp causes a 50-100-fold decrease in substrate binding affinity and markedly reduced active lactose transport, as well as decreased rates of equilibrium exchange and efflux. Gly-scanning mutagenesis of helix VIII was employed systematically with mutant Glu269-->Asp in an attempt to rescue function, and two mutants with increased activity are identified and characterized. Mutant Thr266-->Gly/Met267-->Gly/Glu269-->Asp binds ligand with increased affinity and catalyzes active lactose transport with a marked increase in rate; however, little improvement in efflux or equilibrium exchange is observed. In contrast, mutant Gly262-->Ala/Glu269-->Asp exhibits no improvement in ligand binding but a small increase in the rate of active transport; however, an increase in the steady-state level of accumulation, as well as efflux and equilibrium exchange is observed. Remarkably, when the two sets of mutations are combined, all translocation reactions are rescued to levels approximating those of wild-type permease. The findings support the contention that Glu269 plays a pivotal role in the mechanism of lactose/H(+) symport. Moreover, the results suggest that the two classes of mutants rescue activity by altering the equilibrium between outwardly and inwardly facing conformations of the permease such that impaired protonation and/or H(+) transfer is enhanced from one side of the membrane or the other. When the two sets of mutants are combined, the equilibrium between outwardly and inwardly facing conformations and thus protonation and H(+) transfer are restored.  相似文献   

16.
The structural gene for pyruvate kinase from Bacillus stearothermophilus has been cloned in Escherichia coli and sequenced. The open reading frame from the ATG start codon to the TAG stop codon is 1482 base-pairs and encodes a peptide of relative molecular mass 52,967. In the expression vector pKK223-3, containing the synthetic tac promoter, the gene is overexpressed in E. coli cells to an estimated level of 30% total soluble cell protein. A purification procedure for the overexpressed protein has been established. The construction and characterization of a pair of mutant proteins has given insight into the structural basis of allosteric regulation in the tetrameric enzyme. Substituting tryptophan for tyrosine at position 466 (mutant Trp466-->Tyr) resulted in an activated form of the enzyme, having a reduced K1/2 for the substrate phosphoenolpyruvate. We propose that the characteristics of this mutant might be the result of bulk removal releasing steric inhibition to the formation of an interdomain salt bridge between Asp356 and Arg444. The regulatory behaviour of the double mutant produced by making the additional substitution aspartate for glutamate at position 356 (Trp466-->Tyr/Asp356-->Glu) corroborates this. The position of the salt bridge is such that it might be pivotal to the conformation of a pocket that is proposed to open up when the active R-conformation is adopted. We suggest that the mechanism of activation of B. stearothermophilus pyruvate kinase by ribose-5-phosphate might hinge on an interaction with, or indirectly through, residue Trp466, removing it from the vicinity of the potential salt bridge between Asp356 and Arg444 and thus effecting a closing together of the protein structure concomitant with an opening up of the pocket region.  相似文献   

17.
We examined the effects of orally administrated amino acids on myfibrillar proteolysis in food-deprived chicks. Plasma N(tau)-methylhistidine concentration, as an index of myofibrillar proteolysis, was decreased by the administration of Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg but not by Asp, Val, Phe, Tyr or His to chicks. Orally administrated Cys was fatal to chicks. These results indicate that oral Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg administration suppressed myofibrillar proteolysis in chicks.  相似文献   

18.
Cys126 is a completely conserved residue in triosephosphate isomerase that is proximal to the active site but has been ascribed no specific role in catalysis. A previous study of the C126S and C126A mutants of yeast TIM reported substantial catalytic activity for the mutant enzymes, leading to the suggestion that this residue is implicated in folding and stability [Gonzalez-Mondragon E et al. (2004) Biochemistry 43, 3255-3263]. We re-examined the role of Cys126 with the Plasmodium falciparum enzyme as a model. Five mutants, C126S, C126A, C126V, C126M, and C126T, were characterized. Crystal structures of the 3-phosphoglycolate-bound C126S mutant and the unliganded forms of the C126S and C126A mutants were determined at a resolution of 1.7-2.1 ?. Kinetic studies revealed an approximately five-fold drop in k(cat) for the C126S and C126A mutants, whereas an approximately 10-fold drop was observed for the other three mutants. At ambient temperature, the wild-type enzyme and all five mutants showed no concentration dependence of activity. At higher temperatures (> 40 °C), the mutants showed a significant concentration dependence, with a dramatic loss in activity below 15 μM. The mutants also had diminished thermal stability at low concentration, as monitored by far-UV CD. These results suggest that Cys126 contributes to the stability of the dimer interface through a network of interactions involving His95, Glu97, and Arg98, which form direct contacts across the dimer interface.  相似文献   

19.
Thymidylate synthase (TS) catalyzes the folate-dependent methylation of deoxyuridine monophosphate (dUMP) to form thymidine monophosphate (dTMP). We have investigated the role of invariant arginine 166, one of four arginines that contact the dUMP phosphate, using site-directed mutagenesis, X-ray crystallography, and TS from Escherichia coli. The R166Q mutant was crystallized in the presence of dUMP and a structure determined to 2.9 A resolution, but neither the ligand nor the sulfate from the crystallization buffer was found in the active site. A second structure determined with crystals prepared in the presence of dUMP and the antifolate 10-propargyl-5,8-dideazafolate revealed that the inhibitor was bound in an extended, nonproductive conformation, partially occupying the nucleotide-binding site. A sulfate ion, rather than dUMP, was found in the nucleotide phosphate-binding site. Previous studies have shown that the substitution at three of the four arginines of the dUMP phosphate-binding site is permissive; however; for Arg166, all the mutations lead to a near-inactive mutant. The present structures of TS R166Q reveal that the phosphate-binding site is largely intact, but with a substantially reduced affinity for phosphate, despite the presence of the three remaining arginines. The position of Cys146, which initiates catalysis, is shifted in the mutant and resides in a position that interferes with the binding of the dUMP pyrimidine moiety.  相似文献   

20.
Specific interactions of human melanocortin-4 receptor (hMC4R) with its nonpeptide and peptide agonists were studied using alanine-scanning mutagenesis. The binding affinities and potencies of two synthetic, small-molecule agonists (THIQ, MB243) were strongly affected by substitutions in transmembrane alpha-helices (TM) 2, 3, 6, and 7 (residues Glu(100), Asp(122), Asp(126), Phe(261), His(264), Leu(265), and Leu(288)). In addition, a I129A mutation primarily affected the binding and potency of THIQ, while F262A, W258A, Y268A mutations impaired interactions with MB243. By contrast, binding affinity and potency of the linear peptide agonist NDP-MSH were substantially reduced only in D126A and H264A mutants. Three-dimensional models of receptor-ligand complexes with their agonists were generated by distance-geometry using the experimental, homology-based, and other structural constraints, including interhelical H-bonds and two disulfide bridges (Cys(40)-Cys(279), Cys(271)-Cys(277)) of hMC4R. In the models, all pharmacophore elements of small-molecule agonists are spatially overlapped with the corresponding key residues (His(6), d-Phe(7), Arg(8), and Trp(9)) of the linear peptide: their charged amine groups interact with acidic residues from TM2 and TM3, similar to His(6) and Arg(6) of NDP-MSH; their substituted piperidines mimic Trp(9) of the peptide and interact with TM5 and TM6, while the d-Phe aromatic rings of all three agonists contact with Leu(133), Trp(258), and Phe(261) residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号