首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Kinetic parameters for uracil DNA glycosylase (E. coli)-catalysed excision of uracil from DNA oligomers containing dUMP in different structural contexts were determined. Our results show that single-stranded oligonucleotides (unstructured) are used as somewhat better substrates than the double-stranded oligonucleotides. This is mainly because of the favourable Vmax value of the enzyme for single-stranded substrates. More interestingly, however, we found that uracil release from loop regions of DNA hairpins is extremely inefficient. The poor efficiency with which uracil is excised from loop regions is a result of both increased Km and lowered Vmax values. This observation may have significant implications in uracil DNA glycosylase-directed repair of DNA segments that can be extruded as hairpins. In addition, these studies are useful in designing oligonucleotides for various applications in DNA research where the use of uracil DNA glycosylase is sought.  相似文献   

5.
6.
Fluorometric titration of E. coli single-stranded DNA binding protein with various RNAs showed that the protein specifically and cooperatively binds to its own mRNA. The binding inhibited in vitro expression of ssb and bla but not nusA. This inhibition takes place at a physiological concentration of SSB. The function of the protein in gene regulation is discussed.  相似文献   

7.
J D Chen  V Pirrotta 《The EMBO journal》1993,12(5):2075-2083
The Drosophila zeste protein forms multimeric species in vitro through its C-terminal domain. Multimerization is required for efficient binding to DNA containing multiple recognition sequences and increasing the number of binding sites stimulates binding in a cooperative manner. Mutants that can only form dimers still bind to a dimeric site, but with lower affinity. Mutations or progressive deletions from the C-terminal show that when even dimer formation is prevented, DNA-binding activity is lost. Surprisingly, binding activity is regained with larger deletions that leave only the DNA-binding domain. Additional protein sequences apparently inhibit DNA binding unless they permit multimerization. The DNA-binding domain peptides bind strongly even to isolated recognition sequences and they bind as monomers. The ability of various zeste peptides to stimulate white gene expression in vivo shows that multimeric forms are the functional species of the zeste product in vivo. The DNA-binding domain peptide binds well to DNA in vitro, but it cannot stimulate white gene expression in vivo. This failure may reflect the need for an activation domain or it may be caused by indiscriminate binding of this peptide to non-functional isolated sites. Multimerization increases binding specificity, selecting only sites with multiple recognition sequences.  相似文献   

8.
The theory of countercurrent distribution (CCD) was reviewed and extended. The separation function for the fundamental distribution of CCD was presented in the form n = t2k1+β)2k1(β?1)2 where n is the number of transfers, t the abscissa of the standard normal distribution, α = vm/v8 the phase ratio, β = k1/k2≥ 1 the separation factor, and k1 the partition coefficient of the more radidly moving component; n was found to be minimal on the condition αk1 = β. The separation function for the single withdrawal of CCD was obtained in the form N = u + 1 = t2{(αk1 + 1)1/2 + [β(αk1 + β)]1/2}2/(β ? 1)2+ 1, where N is the number of partition units. From this equation it appears that N is minimal when αk1 = 0. Compared with the former separation functions presented in the literature, these separation functions have the advantage of giving directly the relationships among the phase ratio, the absolute partition coefficient, the separation factor, the resolution degree, and the number of transfers or partition units required. In addition, the dependencies of the elution volumes and the widths of the elution curves on α, β, and the partition coefficients were considered mathematically by means of differential calculus. The elution volumes were found to have minima at certain αk1 values. The standard deviations, on the contrary, did not have minima in respect to αk1. The theory presented can be used for selecting proper operating conditions while separating chemical compounds.  相似文献   

9.
E Van Dyck  F Foury  B Stillman    S J Brill 《The EMBO journal》1992,11(9):3421-3430
It has previously been shown that the mitochondrial DNA (mtDNA) of Saccharomyces cerevisiae becomes thermosensitive due to the inactivation of the mitochondrial DNA helicase gene, PIF1. A suppressor of this thermosensitive phenotype was isolated from a wild-type plasmid library by transforming a pif1 null strain to growth on glycerol at the non-permissive temperature. This suppressor is a nuclear gene encoding a 135 amino acid protein that is itself essential for mtDNA replication; cells lacking this gene are totally devoid of mtDNA. We therefore named this gene RIM1 for replication in mitochondria. The primary structure of the RIM1 protein is homologous to the single-stranded DNA binding protein (SSB) from Escherichia coli and to the mitochondrial SSB from Xenopus laevis. The mature RIM1 gene product has been purified from yeast extracts using a DNA unwinding assay dependent upon the DNA helicase activity of SV40 T-antigen. Direct amino acid sequencing of the protein reveals that RIM1 is a previously uncharacterized SSB. Antibodies against this purified protein localize RIM1 to mitochondria. The SSB encoded by RIM1 is therefore an essential component of the yeast mtDNA replication apparatus.  相似文献   

10.
The binding of the recA gene product from E. coli to double-stranded and single-stranded nucleic acids has been investigated by following the change in melting temperature of duplex DNA and the fluorescence of single-stranded DNA or poly(dA) modified by reaction with chloroacetaldehyde. At low ionic strength, in the absence of Mg2+ ions, RecA protein binds preferentially to duplex DNA or poly(dA-dT). This leads to an increase of the DNA melting temperature. Stabilization of duplex DNA decreases when ionic strength or pH increases. In the presence of Mg2+ ions, preferential binding to single-stranded polynucleotides is observed. Precipitation occurs when duplex DNA begins to melt in the presence of RecA protein. From competition experiments, different single-stranded and double-stranded polydeoxynucleotides can be ranked according to their ability to bind RecA protein. Structural changes induced in nucleic acids upon RecA binding are discussed together with conformational changes induced in RecA protein upon magnesium binding.  相似文献   

11.
A consensus sequence for binding of Lrp to DNA.   总被引:23,自引:11,他引:12       下载免费PDF全文
Y Cui  Q Wang  G D Stormo    J M Calvo 《Journal of bacteriology》1995,177(17):4872-4880
  相似文献   

12.
The TWINKLE protein is a hexameric DNA helicase required for replication of mitochondrial DNA. TWINKLE displays striking sequence similarity to the bacteriophage T7 gene 4 protein (gp4), which is a bi-functional primase-helicase required at the phage DNA replication fork. The N-terminal domain of human TWINKLE contains some of the characteristic sequence motifs found in the N-terminal primase domain of the T7 gp4, but other important motifs are missing. TWINKLE is not an active primase in vitro and the functional role of the N-terminal region has remained elusive. In this report, we demonstrate that the N-terminal part of TWINKLE is required for efficient binding to single-stranded DNA. Truncations of this region reduce DNA helicase activity and mitochondrial DNA replisome processivity. We also find that the gp4 and TWINKLE are functionally distinct. In contrast to the phage protein, TWINKLE binds to double-stranded DNA. Moreover, TWINKLE forms stable hexamers even in the absence of Mg2+ or NTPs, which suggests that an accessory protein, a helicase loader, is needed for loading of TWINKLE onto the circular mtDNA genome.  相似文献   

13.
Prostaglandin E2 (PGE2) bound specifically (P less than 0.001) to ampullary and isthmic tissue on Day 2 and Day 5 after ovulation. No significant differences (P greater than 0.8) were detected between Day 2 and Day 5 in the specific binding of ampullary or isthmic tissue. Significantly more (P less than 0.05) PGE2 bound specifically to ampullary versus isthmic tissue on both days. Detection of PGE2-specific binding in the oviductal isthmus on Day 2 and Day 5 indicates that the oviduct is responsive to PGE2 when it is capable of transporting equine embryos.  相似文献   

14.
The E1 and E2 proteins from bovine papillomavirus bind cooperatively to the viral origin of DNA replication (ori), forming a complex which is essential for initiation of DNA replication. Cooperative binding has two components, in which (i) the DNA binding domains (DBDs) of the two proteins interact with each other and (ii) the E2 transactivation domain interacts with the helicase domain of E1. By generating specific point mutations in the DBD of E2, we have defined two patches of amino acids that are involved in the interaction with the E1 DBD. These same mutations, when introduced into the viral genome, result in severely reduced replication of the viral genome, as well as failure to transform mouse cells in tissue culture. Thus, the interaction between the E1 and E2 DBDs is important for the establishment of the viral genome as an episome and most likely contributes to the formation of a preinitiation complex on the viral ori.  相似文献   

15.
16.
The structure of the homotetrameric DNA binding domain of the single stranded DNA binding protein from Escherichia coli (Eco SSB) bound to two 35-mer single stranded DNAs was determined to a resolution of 2.8 A. This structure describes the vast network of interactions that results in the extensive wrapping of single stranded DNA around the SSB tetramer and suggests a structural basis for its various binding modes.  相似文献   

17.
Divalent cations can provide an effective means of modulating the behavior of nucleic acid binding proteins. As a result, there is strong interest in understanding the role of metal ions in the function of both nucleic acid binding proteins and their enzymes. We have applied complementary fluorescence spectroscopic and nitrocellulose filter binding assays to quantitate the role of metal ions in mediating DNA binding and sequence specificity by the representative PvuII endonuclease. At pH 7.5 in the presence of the catalytically nonsupportive Ca(II), this enzyme binds the PvuII target sequence with a K(d) of 50 pM. Under strict metal-free conditions, the enzyme exhibits a K(d) of only 300 nM for the cognate sequence, an affinity which is weak relative to those measured for other systems in the absence of metal ions. This represents a 6000-fold increase in PvuII affinity for cognate DNA upon the addition of Ca(II). The pH dependences of both metal ion-dependent and metal ion-independent DNA binding are remarkably shallow throughout the physiological range; other characterized restriction enzymes exhibit more pronounced pH dependences of DNA binding even in the absence of metal ions. Similar measurements with noncognate sequences indicate that divalent metal ions are not important to nonspecific DNA binding; K(d) values are approximately equal to 200 nM throughout the physiological pH range, a behavior shared with other endonucleases. While some of these results extend somewhat the range of expected behavior for restriction enzymes, these results indicate that PvuII endonuclease shares with other characterized systems a mechanism by which cognate affinity and sequence discrimination are most effectively achieved in the presence of divalent metal ions.  相似文献   

18.
The DNA-binding properties of purified full-length E2 protein from bovine papillomavirus type 1 have been investigated by utilizing a quantitative gel shift analysis. By using a recombinant baculovirus which express the E2 open reading frame from the polyhedrin promoter, the full-length E2 protein was synthesized in insect cells and purified to homogeneity by using an E2 binding site (ACCGN4CGGT)-specific oligonucleotide column. The Kd of E2 binding to a 41-bp oligonucleotide containing a single binding site was found to be 2 x 10(-11) M. When two binding sites were included on an oligonucleotide, cooperative binding to these sites by the E2 protein was observed. A cooperativity parameter of 8.5 was determined for E2 binding to two sites. An 86-amino-acid peptide encompassing the C terminus of the protein retains the ability to bind E2 binding sites with a Kd of 4 x 10(-10) M but exhibits slight cooperativity of binding to two adjacent sites. A major determinant for cooperative binding of the full-length E2 protein is thus encoded by the N-terminal amino acids outside the minimal DNA binding domain.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号