首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BHK cells transfected with human lysosomal acid phosphatase (LAP) cDNA (CT29) expressed 70-fold higher enzyme activities of acid phosphatase than non-transfected BHK cells. The CT29-LAP was synthesized in BHK cells as a heterogeneously glycosylated precursor that was tightly membrane associated. Transfer to the trans-Golgi was associated with a small increase in size (approximately 7 kd) and partial processing of the oligosaccharides to complex type structures. CT29-LAP was transferred into lysosomes as shown by subcellular fractionation, immunofluorescence and immunoelectron microscopy. Lack of mannose-6-phosphate residues suggested that transport does not involve mannose-6-phosphate receptors. Part of the membrane-associated CT29-LAP was processed to a soluble form. The mechanism that converts CT29-LAP into a soluble form was sensitive to NH4Cl, and reduced the size of the polypeptide by 7 kd. In vitro translation of CT29-derived cRNA in the presence of microsomal membranes yielded a CT29-LAP precursor that is protected from proteinase K except for a small peptide of approximately 2 kd. In combination with the sequence data available for LAP, these observations suggest that CT29-LAP is synthesized and transported to lysosomes as a transmembrane protein. In the lysosomes, CT29-LAP is released from the membrane by proteolytic cleavage, which removes a C-terminal peptide including the transmembrane domain and the cytosolic tail of 18 amino acids.  相似文献   

2.
The intracellular transport of soluble lysosomal enzymes relies on the post-translational modification of N-linked oligosaccharides to generate mannose 6-phosphate (Man 6-P) residues. In most cell types the Man 6-P signal is rapidly removed after targeting of the precursor proteins from the Golgi to lysosomes via interactions with Man 6-phosphate receptors. However, in brain, the steady state proportion of lysosomal enzymes containing Man 6-P is considerably higher than in other tissues. As a first step toward understanding the mechanism and biological significance of this observation, we analyzed the subcellular localization of the rat brain Man 6-P glycoproteins by combining biochemical and morphological approaches. The brain Man 6-P glycoproteins are predominantly localized in neuronal lysosomes with no evidence for a steady state localization in nonlysosomal or prelysosomal compartments. This contrasts with the clear endosome-like localization of the low steady state proportion of mannose-6-phosphorylated lysosomal enzymes in liver. It therefore seems likely that the observed high percentage of phosphorylated species in brain is a consequence of the accumulation of lysosomal enzymes in a neuronal lysosome that does not fully dephosphorylate the Man 6-P moieties.  相似文献   

3.
The intracellular transport of newly synthesized lysosomal hydrolases to lysosomes requires the presence of one or more phosphorylated high mannose-type oligosaccharides per enzyme. A receptor that mediates mannose-6-PO4-specific uptake of lysosomal enzymes is expressed on the surface of fibroblasts and presumably accounts for the intracellular transport of newly synthesized enzymes to the lysosome. In this study, we examined the internalization of lysosomal enzyme-derived phosphorylated oligosaccharides by cultured human fibroblasts. Oligosaccharides of known specific activity bearing a single phosphate in monoester linkage were internalized with Kuptake of 3.2 X 10(-7) M, whereas oligosaccharides bearing two phosphates in monoester linkage were internalized with a Kuptake of 3.9 X 10(-8) M. Thus, phosphorylated high mannose-type oligosaccharides appear to be the minimal structure required for recognition and uptake by the fibroblast receptor. The finding that the Kuptake for monophosphorylated oligosaccharides is 100-fold less than the reported Ki for mannose-6-phosphate indicates that the fibroblast phosphomannosyl receptor contains a binding site that recognizes features of the oligosaccharide in addition to mannose-6-phosphate.  相似文献   

4.
Lysosomal membrane proteins and soluble lysosomal material were isolated from pulse-chase labelled human skin fibroblasts and examined for incorporation of radioactivity and affinity to immobilized mannose-6-phosphate-specific receptors. Incorporation of radioactivity into lysosomal membrane proteins was delayed by about 2 h on average when compared to that of soluble lysosomal proteins. The lack of binding indicates that a mannose-6-phosphate-independent mechanism is responsible for targeting of lysosomal membrane proteins to lysosomes. In contrast to soluble lysosomal proteins, the membrane proteins did not bind to mannose-6-phosphate specific receptors. The delayed appearance of membrane proteins in lysosomes as compared to that of soluble lysosomal proteins suggested that different pathways are utilized by the two classes of lysosomal proteins.  相似文献   

5.
BHK cells transfected with human cathepsin D (CD) cDNA normally segregate the autologous hamster cathepsin D while secreting a large proportion of the human proenzyme. In the present work, we have utilized these transfectants to examine to what extent the mannose-6-phosphate-dependent pathway for lysosomal enzyme segregation contributes to the differential sorting of human and hamster CD. We report that, in recipient control BHK cells, the rate of mannose-6-phosphate-dependent endocytosis of human procathepsin D secreted by transfected BHK cells is lower than that of hamster procathepsin D and much lower than that of human arylsulphatase A. The missorted human enzyme bears phosphorylated oligosaccharides and most of its phosphate residues are “uncovered”, like the autologous enzyme. Thus, despite both the Golgi-associated modifications of oligosaccharides, i.e. the phosphorylation of mannose and the uncovering of mannose-6-phosphate residues, which proceed on human and hamster procathepsin D with comparable efficiency, only the latter is accurately packaged into lysosomes. Ammonium chloride partially affects the lysosomal targeting of cathepsin D in control BHK cells, whereas in transfected cells, this drug strongly inhibits the maturation of human procathepsin D and slightly enhances its secretion. These data indicate that: (1) over-expression of a lysosomal protein does not saturate the Golgi-associated reactions leading to the synthesis of mannose-6-phosphate; (2) a portion of cathepsin D is targeted independently of mannose-6-phosphate receptors in the transfected BHK cells; and (3) whichever mechanism for lysosomal delivery of autologous procathepsin D is involved, this is not saturated by the high rate of expression of human cathepsin D.  相似文献   

6.
Antibodies against mannose-6-phosphate specific receptors inhibit the receptor-dependent endocytosis of exogenous lysosomal enzymes as well as the sorting of endogenous lysosomal enzymes. This inhibition was correlated with an apparent loss of the receptors. We report here that treatment of cells with the antibody results in the formation of receptor-antibody complexes that are not extracted by the procedure used for the solubilization of receptors prior to immunoprecipitation and detection of the receptor. The apparent loss of receptors is observed with both native antibody and the F(ab)2 fragments, but not with Fab fragments. In contrast the transport of lysosomal enzymes is inhibited by all three forms of the antibody. The inhibition is ascribed to masking by the antibody of the enzyme-binding site in the receptor. The inhibition of the sorting of endogenous lysosomal enzymes by antibodies added to the medium indicates that the mannose-6-phosphate specific receptors at the sorting site are in dynamic equilibrium with those at the cell surface. The receptor-antibody complexes formed at the cell surface appear to cycle between the cell surface and intracellular membranes. A fraction of the internalized antibodies dissociates from the receptors and is degraded after transfer into lysosomes. Complexing with Fab increases the concentration of the receptor in the lysosomes and decreases 2- to 3-fold the half-life of the receptor.  相似文献   

7.
Mannose 6-phosphate (Man6P) residues represent a recognition signal required for efficient receptor-dependent transport of soluble lysosomal proteins to lysosomes. Upon arrival, the proteins are rapidly dephosphorylated. We used mice deficient for the lysosomal acid phosphatase Acp2 or Acp5 or lacking both phosphatases (Acp2/Acp5(-/-)) to examine their role in dephosphorylation of Man6P-containing proteins. Two-dimensional (2D) Man6P immunoblot analyses of tyloxapol-purified lysosomal fractions revealed an important role of Acp5 acting in concert with Acp2 for complete dephosphorylation of lysosomal proteins. The most abundant lysosomal substrates of Acp2 and Acp5 were identified by Man6P affinity chromatography and mass spectrometry. Depending on the presence of Acp2 or Acp5, the isoelectric point of the lysosomal cholesterol-binding protein Npc2 ranged between 7.0 and 5.4 and may thus regulate its interaction with negatively charged lysosomal membranes at acidic pH. Correspondingly, unesterified cholesterol was found to accumulate in lysosomes of cultured hepatocytes of Acp2/Acp5(-/-) mice. The data demonstrate that dephosphorylation of Man6P-containing lysosomal proteins requires the concerted action of Acp2 and Acp5 and is needed for hydrolysis and removal of degradation products.  相似文献   

8.
Intracellular transport of two lysosomal enzymes, acid alpha-glucosidase and beta-hexosaminidase, was analyzed in human fibroblasts. The precursors of beta-hexosaminidase in normal fibroblasts were released from the membrane fraction by treatment with mannose 6-phosphate, but the precursor of alpha-glucosidase was not. Percoll density gradient centrifugation revealed a normal amount of acid alpha-glucosidase activity in heavy lysosomes in I-cell disease fibroblasts despite impaired maturation and defective phosphorylation, and beta-hexosaminidase activity was markedly reduced in lysosomes. It was concluded that the membrane-bound precursor of acid alpha-glucosidase is transported to lysosomes by a phosphomannosyl receptor-independent system although the enzyme lacks the recognition marker for the phosphomannosyl receptor and processing of an intermediate form to mature forms does not occur in this disease.  相似文献   

9.
We have studied the role of N-linked oligosaccharides and proteolytic processing on the targeting of cathepsin D to the lysosomes in the human hepatoma cell line HepG2. In the presence of tunicamycin cathepsin D was synthesized as an unglycosylated 43-kDa proenzyme which was proteolytically processed via a 39-kDa intermediate to a 28-kDa mature form. Only a small portion was secreted into the culture medium. During intracellular transport the 43-kDa procathepsin D transiently became membrane-associated independently of binding to the mannose 6-phosphate receptor. Subcellular fractionation showed that unglycosylated cathepsin D was efficiently targeted to the lysosomes via intermediate compartments similar to the enzyme in control cells. The results show that in HepG2 cells processing and transport of cathepsin D to the lysosomes is independent of mannose 6-phosphate residues. Inhibition of the proteolytic processing of 53-kDa procathepsin D by protease inhibitors caused this form to accumulate intracellularly. Subcellular fractionation revealed that the procathepsin D was transported to lysosomes, thereby losing its membrane association. Procathepsin D taken up by the mannose 6-phosphate receptor also transiently became membrane-associated, probably in the same compartment. We conclude that the mannose 6-phosphate-independent membrane-association is a transient and compartment-specific event in the transport of procathepsin D.  相似文献   

10.
A 2.4-kilobase cDNA clone for human steroid-sulfatase (STS) was isolated and sequenced, which encoded an enzymatically active protein. The deduced amino acid sequence comprises 583 amino acids with an N-terminal signal peptide of 21 or 23 residues and four potential N-glycosylation sites. Two of the N-glycosylation sites are utilized and were localized to the asparagine residues 47 and 259. STS has the solubility properties of an integral membrane protein. The resistance of STS toward proteinase K after translocation into microsomes suggests that most, if not all, sequences of STS are exposed at the luminal side of microsomes. The deduced amino acid sequence predicts two membrane-spanning domains (amino acids 185-211 and 213-237) separated by a helix-breaking proline residue. We propose for STS a three-domain model. Two glycosylated luminally oriented domains of 161 and 346 residues are separated by a hydrophobic domain spanning the membrane twice in opposite directions. STS expressed in BHK-21 cells is located predominantly in the endoplasmic reticulum; smaller fractions are found in the Golgi, at the cell surface, multivesicular endosomes, as well as in lysosomes. The stability of STS in lysosomes may be related to the high homology of the two luminal domains of STS with the lysosomal sulfatases, arylsulfatase A, and arylsulfatase B. In spite of its similarity with these two lysosomal sulfatases, STS does not contain mannose 6-phosphate residues and is transported to lysosomes by a mannose 6-phosphate receptor-independent mechanism.  相似文献   

11.
The synthesis, transport and processing of cathepsin C was studied in Morris hepatoma 7777 cells by metabolic labelling, immunoprecipitation and characterization of labelled polypeptides by gel electrophoresis and fluorography. The largest detectable precursor of cathepsin C was a polypeptide of Mr = 92 500. Even 3 min after synthesis this precursor was accompanied by four polypeptides with Mr values ranging from 63 000 to 54 000, indicating cleavage of the precursors within the endoplasmic reticulum. The early forms of cathepsin C were associated with low-buoyant-density organelles containing the markers of endoplasmic reticulum and Golgi complex. About 30% of these early forms were secreted within 3 h after synthesis. The remaining 70% were transferred into dense lysosomes and processed between 2 and 3 h after synthesis to a mixture of the least five major and nine minor polypeptides with Mr values ranging from 73 000 to 12 000. These forms remained stable for at least 3 days. In freshly isolated hepatocytes cathepsin C was processed to forms closely related to those found in the hepatoma cells. Cathepsin C was synthesized in Morris hepatoma 7777 cells as a glycoprotein with mannose-6-phosphate residues that mediated mannose-6-phosphate-specific receptor-dependent uptake in human skin fibroblasts. In contrast to hepatocytes, synthesis of mannose-6-phosphate receptors in Morris hepatoma 7777 cells was below the limit of detection. The hepatoma cells did not express at the cell surface these or other receptors mediating endocytosis of lysosomal enzymes. Further, processing and transport of newly synthesized cathepsin C was largely resistant to NH4Cl. Apparently, cathepsin C is transferred in Morris hepatoma 7777 cells by a mechanism independent of mannose-6-phosphate-specific receptors.  相似文献   

12.
13.
The lysosomal enzymes beta-glucuronidase and alpha-L-fucosidase and mannose-6-phosphate inhibited the phosphorylation of the lysosomal enzyme binding receptor protein prepared from monkey brain. Inhibition of both serine and tyrosine phosphorylation was observed. A non-lysosomal glycoprotein enzyme butyrylcholinesterase, mannose or glucose did not inhibit phosphorylation. Tyrosine phosphorylation of histone by the receptor protein was also inhibited by the lysosomal enzymes and mannose-6-phosphate.  相似文献   

14.
To explain the different secretion kinetics of lysosomal enzymes in Dictyostelium discoideum, previous investigators have hypothesized the existence of a heterogeneous population of lysosomes containing either the enzyme acid phosphatase or other hydrolase enzymes. This proposal predicts that at least two targeting mechanisms exist for lysosomal enzymes in this organism. To begin to investigate this possibility, the transport, processing, and targeting of acid phosphatase was studied by using a combination of radiolabel pulse-chase procedures, subcellular fractionations, and indirect immunofluorescence microscopy. Acid phosphatase was initially synthesized in axenically growing cells as a 56-kDa precursor polypeptide that was proteolytically processed after 20 min to a 55-kDa mature protein. This enzyme was rapidly transported from the endoplasmic reticulum to Golgi complex (halftime of 3 min) as measured by the acquisition of resistance to the enzyme endoglycosidase H. Furthermore, Percoll gradient fractionations indicated that radiolabeled forms of acid phosphatase reached dense lysosomal vesicles at about the same time as final processing was occurring. Proper sorting of acid phosphatase in D. discoideum apparently was not critically dependent on low intravacuolar pH since the addition of ammonium chloride did not stimulate the missorting and secretion of acid phosphatase. These results are very similar to previous observations concerning other Dictyostelium lysosomal enzymes. Consistent with the existence of a heterogeneus population of lysosomes, the percentage of radiolabeled acid phosphatase secreted 4 h into a chase period was 15-fold lower as compared with another lysosomal enzyme, beta-glucosidase. However, acid phosphatase, alpha-mannosidase, and beta-glucosidase were all predominantly colocalized as determined by indirect immunofluorescence, which for the first time demonstrates the homogeneous nature of the lysosomal system in D. discoideum. Taken together these results suggest that the processing and transport of acid phosphatase may be similar in nature to the glycosidases. However, the different kinetics of secretion of acid phosphatase versus the colocalized glycosidase enzymes suggests that an undefined mechanism operates to distinguish these classes of enzymes at a step after localization to lysosomes but prior to secretion.  相似文献   

15.
Using electron microscopic immunocytochemistry with gold probes, we have studied the localization of acid alpha-glucosidase, N-acetyl-beta-hexosaminidase and beta-glucocerebrosidase in cultured skin fibroblasts from control subjects and patients with mucolipidosis II (I-cell disease). In control fibroblasts, a random distribution of acid alpha-glucosidase and N-acetyl-beta-hexosaminidase within the lysosomes was observed, whereas beta-glucocerebrosidase was found to be localized on or near the lysosomal membrane. The observations confirm the soluble character of acid alpha-glucosidase and N-acetyl-beta-hexosaminidase and the membrane-bound character of beta-glucocerebrosidase. In I-cell fibroblasts an abnormal localization of the two soluble enzymes was found. Labeling in lysosomes was very weak, but instead, small 'presumptive' vesicles containing both enzymes were detected throughout the cytoplasm and close to the plasma membrane. These vesicles could be involved in the secretion of the two enzymes. In contrast, a normal membrane-bound lysosomal localization was observed for beta-glucocerebrosidase. It is concluded that the intracellular transport of beta-glucocerebrosidase to the lysosomes can occur even when the mannose-6-phosphate recognition system is defective. This explains the normal activity of beta-glucocerebrosidase in I-cells in contrast to the deficiency of most other lysosomal enzymes.  相似文献   

16.
We have studied the posttranslational modifications of the 52-kD protein, an estrogen-regulated autocrine mitogen secreted by several human breast cancer cells in culture (Westley, B., and H. Rochefort, 1980, Cell, 20:353-362). The secreted 52-kD protein was found to be phosphorylated mostly (94%) on high-mannose N-linked oligosaccharide chains, and mannose-6-phosphate signals were identified. The phosphate signal was totally removed by alkaline phosphatase hydrolysis. The secreted 52-kD protein was partly taken up by MCF7 cells via mannose-6-phosphate receptors and processed into 48- and 34-kD protein moieties as with lysosomal hydrolases. By electron microscopy, immunoperoxidase staining revealed most of the reactive proteins in lysosomes. After complete purification by immunoaffinity chromatography, we identified both the secreted 52-kD protein and its processed cellular forms as aspartic and acidic proteinases specifically inhibited by pepstatin. The 52-kD protease is secreted in breast cancer cells under its inactive proenzyme form, which can be autoactivated at acidic pH with a slight decrease of molecular mass. The enzyme of breast cancer cells, when compared with cathepsin D(s) of normal tissue, was found to be similar in molecular weight, enzymatic activities (inhibitors, substrates, specific activities), and immunoreactivity. However, the 52-kD protein and its cellular processed forms of breast cancer cells were totally sensitive to endo-beta-N-acetylglucosaminidase H (Endo H), whereas several cellular cathepsin D(s) of normal tissue were partially Endo H-resistant. This difference, in addition to others concerning tissue distribution, mitogenic activity and hormonal regulation, strongly suggests that the 52-kD cathepsin D-like enzyme of breast cancer cells is different from previously described cathepsin D(s). The 52-kD estrogen-induced lysosomal proteinase may have important functions in facilitating the mammary cancer cells to proliferate, migrate, and metastasize.  相似文献   

17.
Processing and transport of lysosomal enzymes in human monocyte line U937   总被引:1,自引:0,他引:1  
Precursors of cathepsin D and beta-hexosaminidase synthesized in the U937 monocyte line are processed to mature forms with similar kinetics as in fibroblasts. In U937 cells the processing of the precursor of the beta-chain of beta-hexosaminidase, however, results in a larger fragment that resembles a processing intermediate in fibroblasts. This difference is explained by differences in the equipment of the cells with proteinases, since cross-feeding of the precursors to the cells results in a processing characteristic for the recipient cell type. In sucrose gradients the precursors are found partly in a low- and partly in a high-density region. Mature polypeptides and activity of lysosomal enzymes fractionate mainly in the higher density region. In U937 cells the transport and maturation of endogenous lysosomal enzymes are less sensitive to bases (NH4Cl, chloroquine, tilorone) and to antibody against the mannose 6-phosphate specific receptors than in fibroblasts. A small portion of enzymes released from U937 cells contains the markers recognized by the mannose-6-phosphate specific receptors. U937 cells express these receptors and utilize them for transport of endogenous and exogenous lysosomal enzymes. It appears, however, that a fraction of lysosomal enzymes is transported in U937 cells independent of the mannose-6-phosphate-specific receptors.  相似文献   

18.
Recent studies have established that in mammalian cells insulin-like growth factor-II can couple the large mannose-6-phosphate receptor to a GTP-binding protein and that the insulin-like growth factor-II-induced activation of the GTP-binding protein is inhibited by mannose-6-phosphate and lysosomal enzymes. In mouse, the gene for the large mannose-6-phosphate receptor is maternally imprinted.  相似文献   

19.
Lysosomal acid phosphatase (LAP) is synthesized as a transmembrane protein with a short carboxy-terminal cytoplasmic tail of 19 amino acids, and processed to a soluble protein after transport to lysosomes. Deletion of the membrane spanning domain and the cytoplasmic tail converts LAP to a secretory protein, while deletion of the cytoplasmic tail as well as substitution of tyrosine 413 within the cytoplasmic tail against phenylalanine causes accumulation at the cell surface. A chimeric polypeptide, in which the cytoplasmic tail of LAP was fused to the ectoplasmic and transmembrane domain of hemagglutinin is rapidly internalized and tyrosine 413 of the LAP tail is essential for internalization of the fusion protein. A chimeric polypeptide, in which the membrane spanning domain and cytoplasmic tail of LAP are fused to the ectoplasmic domain of the Mr 46 kd mannose 6-phosphate receptor, is rapidly transported to lysosomes, whereas wild type receptor is not transported to lysosomes. We conclude that a tyrosine containing endocytosis signal in the cytoplasmic tail of LAP is necessary and sufficient for targeting to lysosomes.  相似文献   

20.
Cathepsin B, a lysosomal cysteine protease, is synthesized as a glycoprotein with two N-linked oligosaccharide chains, one of which is in the propeptide region while the other is in the mature region. When cultured rat hepatocytes were labeled with [(32)P]phosphate, (32)P-labeled cathepsin B was immunoprecipitated only in the proform from cell lysates and medium. Either Endo H or alkaline phosphatase treatment of (32)P-labeled procathepsin B demonstrated the acquisition of a mannose 6-phosphate (Man 6-P) residue on high mannose type oligosaccharides. To identify the site of phosphorylation, immunoisolated (35)S- or (32)P-labeled procathepsin B was incubated with purified lysosomal cathepsin D, since cathepsin D cleaves 48 amino acid residues from the N-terminus of procathepsin B, in which one N-linked oligosaccharide chain was also included [Kawabata, T. et al. (1993) J. Biochem. 113, 389-394]. Treatment of intracellular (35)S-labeled procathepsin B with a molecular mass of 39-kDa with cathepsin D resulted in the production of the 31-kDa intermediate form, but the (32)P-label incorporated into procathepsin B disappeared after treatment with cathepsin D. These results indicate that the phosphorylation of procathepsin B is restricted to an oligosaccharide chain present in the propeptide region. Interestingly, cathepsin B sorting to lysosomes was not inhibited by NH(4)Cl treatment and about 90% of the intracellular procathepsin B initially phosphorylated was secreted into the medium without being dephosphorylated intracellularly, and did not bind significantly to cation-independent-Man 6-P receptor, suggesting the failure of Man 6-P-dependent transport of procathepsin B to lysosomes. Additionally, about 50% of the newly synthesized (35)S-labeled cathepsin B was retained in the cells in mature forms consisting of a 29-kDa single chain form and a 24-kDa two chain form, while part of the procathepsin B was associated with membranes in a Man 6-P-independent manner. Taken together, these results show that in rat hepatocytes, cathepsin B is targeted to lysosomes by an alternative mechanism(s) other than the Man 6-P-dependent pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号