首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macrophage pseudopodia that surround objects during phagocytosis contain a meshwork of actin filaments and exclude organelles. Between these pseudopodia at the base of developing phagosomes, the organelle exclusion ceases, and lysosomes enter the cell periphery to fuse with the phagosomes. Macrophages also extend hyaline pseudopodia on the surface of nylon wool fibers and secrete lysosomal enzymes into the extracellular medium instead of into phagosomes. To analyze biochemically these concurrent alterations in cytoplasmic architecture, we allowed rabbit lung macrophages to spread on nylon wool fibers and then subjected the adherent cells to shear. This procedure caused the selective release of β-glucoronidase into the extracellular medium and yielded two fractions, cell bodies and isolated pseudopod blebs resembling podosomes, which are plasma-lemma-bounded sacs of cortical cytoplasm. Cytoplasmic extracts of the cell bodies eluted from nylon fibers contained two-thirds less actin-binding protein and myosin, and approximately 20 percent less actin and two-thirds of the other two proteins were accounted for in podosomes. The alterations in protein composition correlated with assays of myosin-associated EDTA-activated adenosine triphosphatase activity, and with a diminution in the capacity of extracts of nylon wool fiber-treated cell bodies to gel, a property dependent on the interaction between actin-binding protein and F-actin. However, the capacity of the remaining actin in cell bodies to polymerize did not change. We propose that actin-binding protein and myosin are concentrated in the cell cortex and particularly in pseudopodia where prominent gelation and syneresis of actin occur. Actin in the regions from which actin-binding protein and myosin are displaced disaggregates without depolymerizing, permitting lysosomes to gain access to the plasmalemma. Translocation of contractile proteins could therefore account for the concomitant differences in organelle exclusion that characterize phagocytosis.  相似文献   

2.
Actin and myosin of rabbit pulmonary macrophages are influenced by two other proteins. A protein cofactor is required for the actin activation of macrophage myosin Mg2 ATPase activity, and a high molecular weight actin-binding protein aggregates actin filaments (Stossel T.P., and J.H. Hartwig. 1975. J. Biol. Chem. 250:5706-5711)9 When warmed in 0.34 M sucrose solution containing Mg2-ATP and dithiothreitol, these four proteins interact cooperatively. Acin-binding protein in the presence of actin causes the actin to form a gel, which liquifies when cooled. The myosin contracts the gel into an aggregate, and the rate of aggregation is accelerated by the cofactor. Therefore, we believe that these four proteins also effec the temperature-dependent gelation and aggregation of crude sucrose extracts pulmonary macrophages containing Mg2-ATP and dithiothreitol. The gelled extracts are composed of tangled filaments. Relative to homogenates of resting macrophages, the distribution of actin-binding protein in homogenates of phagocytizing macrophages is altered such that 2-6 times more actin-binding protein is soluble. Sucrose extracts of phagocytizing macrophages gel more rapidly than extracts of resting macrophages. Phagocytosis by pulmonary macrophages involves the formation of peripheral pseudopods containing filaments. The findings suggest that the actin-binding protein initiates a cooperative interaction of contractile proteins to generate cytoplasmic gelation, and that phagocytosis influences the behavior of the actin-binding protein.  相似文献   

3.
Actin, myosin, and a high molecular weight actin-binding protein were extracted from rabbit alveolar macrophages with low ionic strength sucrose solutions containing ATP, EDTA, and dithiothreitol, pH 7.0. Addition of KCl, 75 to 100 mM, to sucrose extracts of macrophages stirred at 25 degrees caused actin to polymerize and bind to a protein of high molecualr weight. The complex precipitated and sedimented at low centrifugal forces. Macrophage actin was dissociated from the binding protein with 0.6 M KCl, and purified by repetitive depolymerization and polymerization. Purified macrophage actin migrated as a polypeptide of molecular weight 45,000 on polyacrylamide gels with dodecyl sulfate, formed extended filaments in 0.1 M KCl, bound rabbit skeletal muscle myosin in the absence of Mg-2+ATP and activated its Mg-2+ATPase activity. Macrophage myosin was bound to actin remaining in the macrophage extracts after removal of the actin precipitated with the high molecular weight protein by KCl. The myosin-actin complex and other proteins were collected by ultracentrifugation. Macrophage myosin was purified from this complex or from a 20 to 50% saturated ammonium sulfate fraction of macrophage extracts by gel filtration on agarose columns in 0.6 M Kl and 0.6 M Kl solutions. Purified macrophage myosin had high specific K-+- and EDTA- and K-+- and Ca-2+ATPase activities and low specific Mg-2+ATPase activity. It had subunits of 200,000, 20,000, and 15,000 molecular weight, and formed bipolar filaments in 0.1 M KCl, both in the presence and absence of divalent cations. The high molecular weight protein that precipitated with actin in the sucrose extracts of macrophages was purified by gel filtration in 0.6 M Kl-0.6 M KCl solutions. It was designated a macrophage actin-binding protein, because of its association with actin at physiological pH and ionic strength. On polyacrylamide gels in dodecyl sulfate, the purified high molecular weight protein contained one band which co-migrated with the lighter polypeptide (molecular weight 220,000) of the doublet comprising purified rabbit erythrocyte spectrin. The macrophage protein, like rabbit erythrocyte spectrin, was soluble in 2 mM EDTA and 80% ethanol as well as in 0.6 M KCl solutions, and precipitated in 2 mM CaCl2 or 0.075 to 0.1 M KCl solutions. The macrophage actin-binding protein and rabbit erythrocyte spectrin eluted from agarose columns with a KAV of 0.24 and in the excluded volumes. The protein did not form filaments in 0.1 M KCl and had no detectable ATPase activity under the conditions tested.  相似文献   

4.
We documented the activity of cultured cells on time-lapse videotapes and then stained these identified cells with antibodies to actin and myosin. This experimental approach enabled us to directly correlate cellular activity with the distribution of cytoplasmic actin and myosin. When trypsinized HeLa cells spread onto a glass surface, the cortical cytoplasm was the most actively motile and random, bleb-like extensions (0.5-4.0 micrometer wide, 2-5 micrometer long) occurred over the entire surface until the cells started to spread. During spreading, ruffling membranes were found at the cell perimeter. The actin staining was found alone in the surface blebs and ruffles and together with myosin staining in the cortical cytoplasm at the bases of the blebs and ruffles. In well-spread, stationary HeLa cells most of the actin and myosin was found in stress fibers but there was also diffuse antiactin fluorescence in areas of motile cytoplasm such as leading lamellae and ruffling membranes. Similarly, all 22 of the rapidly translocating embryonic chick cells had only diffuse actin staining. Between these extremes were slow-moving HeLa cells, which had combinations of diffuse and fibrous antiactin and antimyosin staining. These results suggest that large actomyosin filament bundles are associated with nonmotile cytoplasm and that actively motile cytoplasm has a more diffuse distribution of these proteins.  相似文献   

5.
The interactions were analyzed between actin, myosin, and a recently discovered high molecular weight actin-binding protein (Hartwig, J. H., and Stossel, T. P. (1975) J. Biol Chem.250,5696-5705) of rabbit alveolar macrophages. Purified rabbit alveolar macrophage or rabbit skeletal muscle F-actins did not activate the Mg2+ATPase activity of purified rabbit alveolar macrophage myosin unless an additional cofactor, partially purified from macrophage extracts, was added. The Mg2+ATPase activity of cofactor-activated macrophage actomyosin was as high as 0.6 mumol of Pi/mg of myosin protein/min at 37 degrees. The macrophage cofactor increased the Mg2+ATPase activity of rabbit skeletal muscle actomyosin, and calcium regulated the Mg2+ATPase activity of cofactor-activited muscle actomyosin in the presence of muscle troponins and tropomyosin. However, the Mg2+ATPase activity of macrophage actomyosin in the presence of the cofactor was inhibited by muscle control proteins, both in the presence and absence of calcium. The Mg2+ATPase activity of the macrophage actomyosin plus cofactor, whether assembled from purified components or studied in a complex collected from crude macrophage extracts, was not influenced by the presence of absence of calcium ions. Therefore, as described for Acanthamoeba castellanii myosin (Pollard, T. D., and Korn, E. D. (1973) J. Biol. Chem. 248, 4691-4697), rabbit alveolar macrophage myosin requires a cofactor for activation of its Mg2+ATPase activity by F-actin; and no evidence was found for participation of calcium ions in the regulation of this activity.In macrophage extracts containing 0.34 M sucrose, 0.5 mM ATP, and 0.05 M KCl at pH 7.0,the actin-binding protein bound F-actin into bundles with interconnecting bridges. Purified macrophage actin-binding protein in 0.1 M KCl at pH 7.0 also bound purified macrophage F-actin into filament bundles. Macrophage myosin bound to F-actin in the absence but not the presence of Mg2+ATP, but the actin-binding protein did not bind to macrophage myosin in either the presence or absence of Mg2+ATP.  相似文献   

6.
Astral microtubules (MTs) are known to be important for cleavage furrow induction and spindle positioning, and loss of astral MTs has been reported to increase cortical contractility. To investigate the effect of excess astral MT activity, we depleted the MT depolymerizer mitotic centromere-associated kinesin (MCAK) from HeLa cells to produce ultra-long, astral MTs during mitosis. MCAK depletion promoted dramatic spindle rocking in early anaphase, wherein the entire mitotic spindle oscillated along the spindle axis from one proto-daughter cell to the other, driven by oscillations of cortical nonmuscle myosin II. The effect was phenocopied by taxol treatment. Live imaging revealed that cortical actin partially vacates the polar cortex in favor of the equatorial cortex during anaphase. We propose that this renders the polar actin cortex vulnerable to rupture during normal contractile activity and that long astral MTs enlarge the blebs. Excessively large blebs displace mitotic spindle position by cytoplasmic flow, triggering the oscillations as the blebs resolve.  相似文献   

7.
《The Journal of cell biology》1995,129(6):1589-1599
The cortical actin gel of eukaryotic cells is postulated to control cell surface activity. One type of protrusion that may offer clues to this regulation are the spherical aneurysms of the surface membrane known as blebs. Blebs occur normally in cells during spreading and alternate with other protrusions, such as ruffles, suggesting similar protrusive machinery is involved. We recently reported that human melanoma cell lines deficient in the actin filament cross-linking protein, ABP-280, show prolonged blebbing, thus allowing close study of blebs and their dynamics. Blebs expand at different rates of volume increase that directly predict the final size achieved by each bleb. These rates decrease as the F-actin concentration of the cells increase over time after plating on a surface, but do so at lower concentrations in ABP-280 expressing cells. Fluorescently labeled actin and phalloidin injections of blebbing cells indicate that a polymerized actin structure is not present initially, but appears later and is responsible for stopping further bleb expansion. Therefore, it is postulated that blebs occur when the fluid-driven expansion of the cell membrane is sufficiently rapid to initially outpace the local rate of actin polymerization. In this model, the rate of intracellular solvent flow driving this expansion decreases as cortical gelation is achieved, whether by factors such as ABP-280, or by concentrated actin polymers alone, thereby leading to decreased size and occurrence of blebs. Since the forces driving bleb extension would always be present in a cell, this process may influence other cell protrusions as well.  相似文献   

8.
Macrophage caldesmon is an actin bundling protein.   总被引:1,自引:0,他引:1  
M P Arias  M Pacaud 《Biochemistry》2001,40(43):12974-12982
A rapid purification procedure was developed for the isolation of caldesmon (CaD) from rabbit alveolar macrophage. The purified protein migrated with an apparent M(r) of 74,000 +/- 4000 on SDS-PAGE and cross-reacted with anti-gizzard CaD antibodies. A higher M(r) isoform was isolated from chicken gizzard. Their actin-binding parameters and effects on actomyosin-ATPase activity were investigated under identical experimental conditions. Electron microscope studies revealed that macrophage CaD was able to cross-link actin filaments into both networks and bundles. Compact F-actin bundles were predominantly or exclusively seen at cross-linker to actin molar ratios in the 1:20 to 1:10 range. Apparent K(a) at extrapolated saturation of the CaD-binding sites on F-actin was 1.2 x 10(6) M(-1) for macrophage CaD and 1.6 x 10(6) M(-1) for chicken gizzard CaD. CaD from either source was able to stimulate the actin-activated ATPase activity of macrophage myosin. Unexpectedly, chicken gizzard CaD also increased the ATPase activity of gizzard myosin. The degree of stimulation was approximately doubled in the presence of a large excess of Ca(2+)-calmodulin but was unaffected by the presence of macrophage tropomyosin. However, macrophage CaD did not behave as a Ca(2+)- and calmodulin-regulated actin-binding protein. These results, together with published data on other well-characterized actin bundling proteins, suggest that nonmuscle CaD could be essentially involved in the formation and organization of actin bundles at adhesion sites and cell surface projections. However, they afforded no evidence that the macrophage isoform might play a specific role in the Ca(2+)-dependent regulation of actin and myosin II interactions.  相似文献   

9.
When neuroblastoma cells are exposed to lysophosphatidic acid (LPA), they undergo a vigorous, but transient blebbing phase. The effect is sensitive to inhibition by staurosporine, KT 5926 (an inhibitor of myosin light chain kinase), and cytochalasin B, suggesting that LPA activates the phosphorylation of myosin light chain and increases the contractile activity of the actomyosin network. Cell contractions increase the intracellular pressure driving bleb formation. Calyculin, an inhibitor of protein phosphatase2A, also causes blebbing which continues as long as the drug is present, presumably by keeping myosin light chain in the phosphorylated state. Blebbing of neuroblastoma cells is regulated by the status of all three cytoskeletal systems: disassembly of microtubules by nocodazole and of intermediate filaments by acrylamide increased the number of blebbing cells. Cytochalasin B, on the other hand, prevents bleb retraction and, after prolonged incubation, bleb formation. These results are discussed in terms of a model viewing the cytoskeleton as an integrated network transmitting force throughout the cell. Bleb retraction was studied by transfecting neuroblastoma cells with a vector containing the gene for gamma-cytoplasmic actin fused to the green fluorescent protein EGFP (EGFP-actin). EGFP-actin was not detected on the membranes of extending blebs, but started accumulating along the cytoplasmic surface of blebs as soon as the extension phase came to an end and retraction set in. These results confirm earlier suggestions that actin polymerization is required for bleb retraction and for the first time directly relate the two events.  相似文献   

10.
Previous studies had led to the conclusion that the globular, single-headed myosins IA and IB from Acanthamoeba castellanii contain two actin-binding sites: one associated with the catalytic site and whose binding to F-actin activates the Mg2+-ATPase activity and a second site whose binding results in the cross-linking of actin filaments and makes the actin-activated ATPase activity positively cooperative with respect to myosin I concentration. We have now prepared a 100,000-Da NH2-terminal peptide and a 30,000-Da COOH-terminal peptide by alpha-chymotryptic digestion of the myosin IA heavy chain. The intact 17,000-Da light chain remained associated with the 100,000-Da fragment, which also contained the serine residue that must be phosphorylated for expression of actin-activated ATPase activity by native myosin IA. The 30,000-Da peptide, which contained 34% glycine and 21% proline, bound to F-actin with a KD less than 0.5 microM in the presence or absence of ATP but had no ATPase activity. The 100,000-Da peptide bound to F-actin with KD = 0.4-0.8 microM in the presence of 2 mM MgATP and KD less than 0.01 microM in the absence of MgATP. In contrast to native myosin IA, neither peptide cross-linked actin filaments. The phosphorylated 100,000-Da peptide had actin-activated ATPase activity with the same Vmax as that of native phosphorylated myosin IA but this activity displayed simple, noncooperative hyperbolic dependence on the actin concentration in contrast to the complex cooperative kinetics observed with native myosin IA. These results provide direct experimental evidence for the presence of two actin-binding sites on myosin IA, as was suggested by enzyme kinetic and filament cross-linking data, and also for the previously proposed mechanism by which monomeric myosins I could support contractile activities.  相似文献   

11.
Two actin-modulating proteins have been purified from toad oocytes. A high-molecular weight protein, similar in structure and function to macrophage actin-binding protein, accounts for the isotropic actin-crosslinking activity in oocyte homogenates. A calcium-dependent activity in toad oocyte homogenates which shortens actin filaments is accounted for by a 95,000-dalton protein which resembles villin, an actin-severing and -bundling protein of avian epithelial brush borders. In the presence of high (? μM) calcium, this protein shortens actin filaments in a concentration-dependent fashion and stimulates filament assembly when added to monomeric actin. In the absence of calcium the protein promotes the formation of actin filament bundles. Therefore, in the toad oocyte actin can be crosslinked into a network by actin-binding protein. Calcium regulation of the actin network may be mediated by villin. These results are different from those reported in echinoderm eggs.  相似文献   

12.
Phagocytosis is a prime example of a cellular event in which cell surface perturbation activates the assembly of a filamentous gel beneath the plasma membrane. This gel may be responsible for movement of the membrane around ingestible particles. The molecular mechanism of these events is being approached by the purification of actin, myosin and associated proteins from phagocytic cells and by the study of a human disease, neutrophil actin dysfunction. Novel contractile proteins discovered in mammalian phagocytes include a cofactor that regulates actin:myosin interaction and an actin-binding protein that promotes assembly and gelation of actin. There is evidence that phagocytosis alters the state of the actin-binding protein, and that this alteration may be an early event in the assembly of the actin gel. Cytochalasin B, which inhibits phagocytosis, acts by interfering with the interaction between actin-binding protein and actin. Actin polymerized poorly in the neutrophils of a human infant, and the affected neutrophils were deficient in phagocytosis. Actin assembly is important in phagocytosis and is amenable to biochemical analysis.  相似文献   

13.
Blebs and F-actin–driven pseudopods are alternative ways of extending the leading edge of migrating cells. We show that Dictyostelium cells switch from using predominantly pseudopods to blebs when migrating under agarose overlays of increasing stiffness. Blebs expand faster than pseudopods leaving behind F-actin scars, but are less persistent. Blebbing cells are strongly chemotactic to cyclic-AMP, producing nearly all of their blebs up-gradient. When cells re-orientate to a needle releasing cyclic-AMP, they stereotypically produce first microspikes, then blebs and pseudopods only later. Genetically, blebbing requires myosin-II and increases when actin polymerization or cortical function is impaired. Cyclic-AMP induces transient blebbing independently of much of the known chemotactic signal transduction machinery, but involving PI3-kinase and downstream PH domain proteins, CRAC and PhdA. Impairment of this PI3-kinase pathway results in slow movement under agarose and cells that produce few blebs, though actin polymerization appears unaffected. We propose that mechanical resistance induces bleb-driven movement in Dictyostelium, which is chemotactic and controlled through PI3-kinase.  相似文献   

14.
The crude extracts of pollen tubes, like other nonmuscle ceils, showed gelation at Iow Ga2+ concentrations and ATP-dependent contraction at higher Ga2+ concentrations. The contracted cytoplasmic clots contained a lot of filaments which were mainly composed of actin, myosin, 105 kD, 67 kD, 48 kD, 38 kD, 34 kD and 28 kD proteins. It is likely that Ca2+ are able to mediate tranformation of acfin from a less ordered state to a more oriented filaments, which interact with actin-binding proteins to form the filamentous network, thus to induce the gel formation of cytoplasm, to regulate the interaction of actin and myosin which transform the chemical energy of ATP into mechanical work of contractile movement of cytoplasm.  相似文献   

15.
The actin-based cytoskeleton is a dynamic component of living cells with major structural and contractile properties involved in fundamental cellular processes. The action of actin-binding proteins can decrease or increase the gel structure. Changes in the actin-based cytoskeleton have long been thought to modulate the myosin II-based contractions involved in these cellular processes, but there has been some debate concerning whether maximal gelation increases or decreases contractile activity. To address this question, we have examined how contractile activity is modulated by the extent of actin gelation. The model system consists of physiologically relevant concentrations and molar ratios of actin filaments (whose lengths are controlled by gelsolin), the actin-cross-linking protein filamin, and smooth muscle myosin II. This system has been studied at the macroscopic and light microscopic levels to relate the gel structure to the rate of contraction. We present results which show that while a minimal amount of structure is necessary to transmit the contractile force, increasing the gel structure inhibits the rate of contraction, despite an increase in the actin-activated Mg(2+)-ATPase activity of myosin. Decreasing the total myosin concentration also inhibits the rate of contraction. Application of cytochalasin D to one side of the contractile network increases the rate of contraction and also induces movement comparable to flare streaming observed in isolated amoeba cytoplasm. These results are interpreted relative to current models of the relationship between the state of gelation and contraction and to the potential effects of such a relationship in the living cell.  相似文献   

16.
Actin-binding protein (ABP) and myosin are proteins that influence the rigidity and movement, respectively, of actin filaments in vitro. We examined the distribution of ABP and myosin molecules in acetone-fixed rabbit lung macrophages by means of immunofluorescence. The staining for both of these proteins in unspread cells was quite uniform, but was reduced in the nucleus and concentrated slightly in the periphery. The peripheral accumulation of staining attenuated in uniformly spread cells, although filopodia and hyaline veils definitely stained. In cells fixed during ingestion of yeast particles, the brightest staining correlated with the disposition of organelle-excluding pseudopodia initially surrounding the yeast. After phagocytosis was complete and the yeasts resided in intracellular vacuoles, no concentration of staining around the ingested yeasts was detectable. We conclude that ABP and myosin molecules are components of the structural unit of the cell responsible for spreading and phagocytosis, the hyaline cortex, a region known to be rich in actin filaments. The findings are consistent with the theory that these molecules control the rigidity and movement of filaments in the periphery of the living macrophage.  相似文献   

17.
Corneal epithelium removed from underlying extracellular matrix (ECM) extends numerous cytoplasmic processes (blebs) from the formerly smooth basal surface. If blebbing epithelia are grown on collagen gels or lens capsules in vitro, the basal surface flattens and takes on the smooth contour typical of epithelium in contact with basal lamina in situ. This study examines the effect of soluble extracellular matrix components on the basal surface. Corneal epithelia from 9- to 11-d-old chick embryos were isolated with trypsin-collagenase or ethylenediamine tetraacetic acid, then placed on Millipore filters (Millipore Corp., Bedford, Mass.), and cultured at the medium-air interface. Media were prepared with no serum, with 10% of calf serum, or with serum from which plasma fibronectin was removed. Epithelia grown on filters in this medium continue to bleb for the duration of the experiments (12-14 h). If soluble collagen, laminin, or fibronectin is added to the medium, however, blebs are withdrawn and by 2-6 h the basal surface is flat. Epithelia grown on filters in the presence of albumin, IgG, or glycosaminoglycans continue to bleb. Epithelia cultured on solid substrata, such as glass, also continue to bleb if ECM is absent from the medium. The basal cell cortex in situ contains a compact cortical mat of filaments that decorate with S-1 myosin subfragments; some, if not all, of these filaments point away from the plasmalemma. The actin filaments disperse into the cytoplasmic processes during blebbing and now many appear to point toward the plasmalemma. In isolated epithelia that flatten in response to soluble collagens, laminin, and fibronectin, the actin filaments reform the basal cortical mat typical or epithelial in situ. Thus, extracellular macromolecules influence and organize not only the basal cell surface but also the actin-rich basal cell cortex of epithelial cells.  相似文献   

18.
Cross-linking of muscle actin filaments by low concentrations of actin-binding protein reduces the concentration of muscle myosin required for contraction of actin. Gelsolin, a macrophage protein that divides actin filaments in the presence of calcium, inhibits the amplifying effect of actin-binding protein on contraction of actomyosin. In a calcium gradient, the actomyosin gel moves from high to low calcium concentrations, indicating that calcium-controlled lattice formation can impart directionality to the movement of an isotropic actin network.  相似文献   

19.
Structural studies of the class I myosin, MyoE, led to the predictions that loop 4, a surface loop near the actin-binding region that is longer in class I myosins than in other myosin subclasses, might limit binding of myosins I to actin when actin-binding proteins, like tropomyosin, are present, and might account for the exclusion of myosin I from stress fibers. To test these hypotheses, mutant molecules of the related mammalian class I myosin, Myo1b, in which loop 4 was truncated (from an amino acid sequence of RMNGLDES to NGLD) or replaced with the shorter and distinct loop 4 found in Dictyostelium myosin II (GAGEGA), were expressed in vitro and their interaction with actin and with actin-tropomyosin was tested. Saturating amounts of expressed fibroblast tropomyosin-2 resulted in a decrease in the maximum actin-activated Mg2+-ATPase activity of wild-type Myo1b but had little or no effect on the actin-activated Mg2+-ATPase activity of the two mutants. In motility assays, few actin filaments bound tightly to Myo1b-WT-coated cover slips when tropomyosin-2 was present, whereas actin filaments both bound and were translocated by Myo1b-NGLD or Myo1b-GAGEGA in both the presence and absence of tropomyosin-2. When expressed in mammalian cells, like the wild type, the mutant myosins were largely excluded from tropomyosin-containing actin filaments, indicating that in the cell additional factors besides loop 4 determine targeting of myosins I to specific subpopulations of actin filaments.  相似文献   

20.
Low concentrations (greater than or equal to 10(-7) M) of cytochalasin B reversibly inhibit the temperature-dependent gelation of actin by an actin-binding protein. The cytochalasin B concentrations which maximally inhibit actin gel formation are 10-fold lower than the concentrations which maximally impair phagocytosis by intact macrophages. Cytochalasin B also prevents the polymerization of monomeric actin in sucrose extracts of macrophages in the absence but not the presence of 0.1 M CKl. 10(-6) M cytochalasin B dissolves macrophage extract gels and gels comprised of purified actin and actin-binding protein by dissociating actin-binding protein from actin filaments. This concentration of cytochalasin B, however, does not depolymerize the actin filatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号