首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The regulatory locus ompB, consisting of 2 genes, ompR and envZ, is required for the expression of ompC and ompF genes encoding the major outer membrane porin proteins OmpC and OmpF in Escherichia coli K12. We utilized localized mutagenesis to isolate cold-sensitive mutants in the ompB operon. The isolated mutants exhibited a cold-sensitive OmpC phenotype, but remained OmpF+. Furthermore, ompC expression was still regulated by medium osmolarity. The cold-sensitive OmpC phenotype was complemented by plasmids carrying the wild-type ompB operon, but not by plasmids containing either envZ or ompR genes alone. This suggests that the mutations are in the ompB promotor. We show that the mutations can be used to control expression vectors based on the ompC promotor.  相似文献   

2.
Abstract Electrophoretic analysis of outer membrane proteins showed that Salmonella typhi OmpC expression is not reciprocally regulated relative to OmpF as described for Escherichia coli and S. typhimurium . When bacteria were grown in minimal media, both OmpC and OmpF were repressed as the osmolarity increased. However, in Luria broth, expression of OmpC was slightly induced by osmolarity up to 0.3 osmM. Plasmids bearing E. coli ompC-lacZ or ompF-lacZ gene fusions were studied for their expression in S. typhi and E. coli . Under anaerobic growth conditions, expression of ompC-lacZ in S. typhi was maximal at 0.16 osmM, while in E. coli expression was maximal at 0.7 osmM. ompF-lacZ expression was similarly repressed by medium osmolarity and anaerobiosis in both species. In contrast, a drastic difference in the regulation of OmpF by temperature was observed; at 37 °C ompF-lacZ expression was repressed in E. coli . while in S. typhi it was induced.  相似文献   

3.
It is generally accepted for Escherichia coli that (i) the level of OmpC increases with increased osmolarity when cells are growing in neutral and alkaline media, whereas the level of OmpF decreases at high osmolarity, and that (ii) the two-component system composed of OmpR (regulator) and EnvZ (sensor) regulates porin expression. In this study, we found that OmpC was expressed at low osmolarity in medium of pH below 6 and that the expression was repressed when medium osmolarity was increased. In contrast, the expression of ompF at acidic pH was essentially the same as that at alkaline pH. Neither OmpC nor OmpF was detectable in an ompR mutant at both acid and alkaline pH values. However, OmpC and OmpF were well expressed at acid pH in a mutant envZ strain, and their expression was regulated by medium osmolarity. Thus, it appears that E. coli has a different mechanism for porin expression at acid pH. A mutant deficient in ompR grew slower than its parent strain in low-osmolarity medium at acid pH (below 5.5). The same growth diminution was observed when ompC and ompF were deleted, suggesting that both OmpF and OmpC are required for optimal growth under hypoosmosis at acid pH.  相似文献   

4.
5.
It is generally accepted for Escherichia coli that (i) the level of OmpC increases with increased osmolarity when cells are growing in neutral and alkaline media, whereas the level of OmpF decreases at high osmolarity, and that (ii) the two-component system composed of OmpR (regulator) and EnvZ (sensor) regulates porin expression. In this study, we found that OmpC was expressed at low osmolarity in medium of pH below 6 and that the expression was repressed when medium osmolarity was increased. In contrast, the expression of ompF at acidic pH was essentially the same as that at alkaline pH. Neither OmpC nor OmpF was detectable in an ompR mutant at both acid and alkaline pH values. However, OmpC and OmpF were well expressed at acid pH in a mutant envZ strain, and their expression was regulated by medium osmolarity. Thus, it appears that E. coli has a different mechanism for porin expression at acid pH. A mutant deficient in ompR grew slower than its parent strain in low-osmolarity medium at acid pH (below 5.5). The same growth diminution was observed when ompC and ompF were deleted, suggesting that both OmpF and OmpC are required for optimal growth under hypoosmosis at acid pH.  相似文献   

6.
The synthesis of the OmpF porin in Escherichia coli K-12 was highly and reversibly inhibited by 5 mM salicylate in the bacterial growth medium, and salicylate also inhibited the OmpC porin synthesis, although only weakly. The full expression of the salicylate effect was presumed to require the ompB gene product on comparison between the wild type and ompB mutant strains. The salicylate effect was also observed for the porin protein synthesis in Klebsiella pneumoniae and Serratia marcescens, although an ompB-like gene remains to be identified in both species.  相似文献   

7.
The immunogenic effect of Salmonella typhi OmpC porin during typhoid fever in humans was evaluated in vitro. Peripheral blood mononuclear cells from 17 patients were challenged with outer membrane preparations from Escherichia coli UH302 and UH302/pSTP2K2 strains, both lacking E. coli OmpF and OmpC porins, although UH302/pSTP2K2 expressed a plasmid-encoded S. typhi Ty2 OmpC. The mononuclear cell supernatants, immunized in vitro with OmpC antigen, derived from 10 out of 17 patients activated U937 bactericidal capacity. In contrast, the supernatants from the immunization with outer membrane preparation lacking S. typhi Ty2 OmpC induced a significantly reduced bactericidal capacity of U937 cells. This procedure should prove useful for in vitro characterization of cellular immunogens from exclusive human pathogens.  相似文献   

8.
9.
Supplementation of growth media with high concentrations of substances like sucrose results in the induction of OmpC synthesis and the suppression of OmpF synthesis. We isolated a novel mutant in which OmpF synthesis is in the opposite direction from normal osmoregulation. By transductional mapping, the mutation was localized at 75 min between malA and aroB on the Escherichia coli chromosome map where the ompR-envZ region is. The mutation was suppressed by a plasmid carrying the ompR gene but not by a plasmid carrying the envZ gene alone. The mutation also resulted in the almost complete suppression of OmpC synthesis. However, the remaining OmpC synthesis was osmoregulated normally. Based on these observations, the mechanism of osmoregulation of OmpF-OmpC synthesis is discussed.  相似文献   

10.
In the standard method of transformation of Escherichia coli with extraneous DNA, cells are made competent for DNA uptake by incubating in ice-cold 100?mM CaCl2. Analysis of the whole protein profile of CaCl2-treated E. coli cells by the techniques of one- and two-dimensional gel electrophoresis, MALDI-MS and immunoprecipitation revealed overproduction of outer membrane proteins OmpC, OmpA and heat-shock protein GroEL. In parity, transformation efficiency of E. coli ompC mutant by plasmid pUC19 DNA was found to be about 40?% lower than that of the wild type strain. Moreover, in E. coli cells containing groEL-bearing plasmid, induction of GroEL caused simultaneous overproduction of OmpC. On the other hand, less OmpC was synthesized in E. coli groEL mutant compared to its wild type counterpart, by CaCl2-shock. From these results it can be suggested that in the process of CaCl2-mediated generation of competence, the heat-shock chaperone GroEL has specific role in DNA entry into the cell, possibly through the overproduced OmpC and OmpA porins.  相似文献   

11.
12.
Expression of the ompF and ompC genes coding for major outer membrane proteins OmpF and OmpC is regulated in opposite directions by medium osmolarity. Chimera genes were constructed by a reciprocal exchange of the promoter-signal sequence region between the two genes. The chimera gene construction was designed so that the proteins synthesized by these genes were essentially the same as the OmpC and OmpF proteins. Studies with the chimera genes demonstrated that the osmoregulation of the OmpF-OmpC synthesis was promoter dependent. They also showed that cells grew normally even when the osmoregulation took place in opposite directions. The effects of the ompR2 and envZ mutations, which suppress ompC and ompF expression, respectively, also became reversed. The reduced expression was still subject to the promoter-controlled osmoregulation. Based on these observations, the mechanism of regulation of the ompF-ompC gene expression and its physiological importance are discussed.  相似文献   

13.
The OmpF and OmpC porins are major outer membrane proteins of Escherichia coli. Their expression is affected by medium osmolarity such that OmpF is normally produced at low osmolarity and OmpC at high osmolarity. Potassium ion accumulation is a major means by which cells maintain their internal osmolarity in high osmolarity medium in the absence of organic osmolytes such as glycine-betaine. Starvation for potassium causes cells to become turgor stressed. The effect of turgor stress and potassium ion concentration on OmpF and OmpC expression was examined. It was found that ompF gene expression was switched off by turgor stress but there was no concomitant increase in OmpC. Instead, ompC expression responded to the accumulation of potassium ions by the cell in high osmolarity medium.  相似文献   

14.
Vibrio anguillarum serotype O2 strains express a 40-kDa outer membrane porin protein. Immunoblot analysis revealed that antigenic determinants of the V. anguillarum O2 40-kDa porin were conserved within bacterial species of the genus Vibrio. The relative amounts of the V. anguillarum O2 40-kDa porin were enhanced by growth of V. anguillarum O2 in CM9 medium containing 5 to 10% sucrose or 0.1 to 0.5 M NaCl. In contrast, the levels of the porin were significantly reduced when cells were grown at 37°C, and a novel 60-kDa protein was also observed. However, the osmolarity or ionic concentration of the growth medium did not influence expression of the 60-kDa protein. Growth in medium containing greater than 0.6 mM EDTA reduced production of the V. anguillarum O2 40-kDa porin and enhanced levels of a novel 19-kDa protein. Thus, expression of the V. anguillarum O2 40-kDa porin was osmoregulated and possibly coregulated by temperature. The N-terminal amino acid sequence of the V. anguillarum O2 40-kDa protein and the effect of environmental factors on the cellular levels of the porin suggested that the V. anguillarum O2 40-kDa porin was functionally similar to the OmpC porin of Escherichia coli. However, pore conductance assays revealed that the V. anguillarum O2 40-kDa porin was a general diffusion porin with a pore size in the range of that of the OmpF porin of E. coli.  相似文献   

15.
OmpC-like porin was isolated from the outer membrane (OM) of Yersinia enterocolitica cultured at 37°C (the “warm” variant) and its physicochemical and functional properties were studied. The amino acid sequence of OmpC porin was established, and the primary structure and transmembrane topology of this protein were analyzed in comparison with the OmpF porin isolated from Y. enterocolitica cultured at 6°C (the “cold” variant). Both porins of Y. enterocolitica had a high homology degree (65%) between themselves and with OmpC and OmpF porins from OM of Escherichia coli (58 and 76% homology, respectively). The secondary structure of OmpC and OmpF porins from OM of Y. enterocolitica consists of 16 β-strands connected by short “periplasmic” and longer “extracellular” loops with disordered structure, according to the topological model developed for porins of E. coli. The molecular structures of OmpC and OmpF porins of Y. enterocolitica have significant differences in the structure of the “extracellular” loops and in the position of one of three tryptophan residues. Using the bilayer lipid membrane (BLM) technique, pores formed by OmpC porin of Y. enterocolitica were shown to differ in electrophysiological characteristics from channels of OmpF protein of this microorganism. The isolated OmpC porin reconstructed into BLM displayed functional plasticity similarly to OmpF protein and nonspecific porins of other enterobacteria. The conductivity level of the channels formed by this protein in the BLM was regulated by value of the applied potential.  相似文献   

16.
Ileal lesions of 36.4% of patients with Crohn's disease (CD), an inflammatory bowel disease in humans, are colonized by pathogenic adherent-invasive Escherichia coli (AIEC), and high levels of antibodies directed against E. coli OmpC are present in 37-55% of CD patients. We therefore investigated the expression of OmpC and its role in the interaction of CD-associated adherent-invasive E. coli strain LF82 with intestinal epithelial cells. High osmolarity induced a significant increase in the ability of LF82 bacteria to interact with Intestine-407 cells, which correlates with increased OmpC expression. Deletion of ompC gene markedly decreased the adhesion and invasion levels of the corresponding mutant. A LF82-DeltaompR mutant impaired in OmpC and OmpF expression, showed decreased adhesion and invasion, and unlike a K-12-negative OmpR mutant did not express flagella and type 1 pili. Interestingly, the wild-type phenotype was restored when OmpC or OmpF expression was induced in the LF82-DeltaompR mutant. Overexpression of RpoE in the LF82-DeltaompR isogenic mutant restored a full wild-type phenotype without restoring OmpC expression. Increased expression of RpoE was observed in wild-type strain LF82 at high osmolarity. Hence, the role of OmpC in the AIEC LF82 adhesion and invasion is indirect and involves the sigma(E) regulatory pathway.  相似文献   

17.
18.
Abstract The osmoregulated expression of the porin proteins OmpC and OmpF in S. typhimurium and E. coli is dependent on the regulatory proteins OmpR and EnvZ. The function of the EnvZ protein is not clear. In order to establish the cellular location of EnvZ two different methods of buoyant sucrose density centrifugation was employed. The presence of EnvZ in the different fractions was visualised by immunoblotting. It was conclusively shown that the EnvZ protein is located in the cytoplasmic membrane fraction. The result is in agreement with the available sequence data which shows that the EnvZ polypeptide contains two long hydrophobic stretches.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号