首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The 8 days old seedlings of pea (cv. Ilowiecki) and maize (cv. Alma F1) were subjected to differentiated aeration conditions (control — with pore water tension about 15 kPa and flooded treatment) for 12 days at three soil temperatures (7, 15 and 25 °C). The shoots were grown at 25 °C while the soil temperature was differentiated by keeping the cylinders with the soil in thermostated water bath of the appropriate temperature. Lowering the root temperature with respect to the shoot temperature caused under control (oxic) conditions a decrease of the root penetration depth, their mass and porosity as well as a decrease of shoot height, their mass and chlorophyll content; the changes being more pronounced in maize as compared to the pea plants. Flooding the soil diminished the effect of temperature on the investigated parameters; the temperature effect remaining significant only in the case of shoot biomass and root porosity of pea plants. Root porosity of pea plants ranged from 2 to 4 % and that of maize plants — from 4 to 6 % of the root volume. Flooding the soil caused an increase in the root porosity of the pea plants in the entire temperature range and in maize roots at lower temperatures by about 1 % of the root volume. Flooding the soil caused a decrease of root mass and penetration depth as well as a decrease of plant height, biomass and leaf chlorophyll content.  相似文献   

2.
The effects of light, temperature, and salinity on growth, net CO2 exchange and leaf anatomy of Distichlis spicata were investigated in controlled environment chambers. When plants were grown at low light, growth rates were significantly reduced by high substrate salinity or low temperature. However, when plants were grown at high light, growth rates were not significantly affected by temperature or salinity. The capacity for high light to overcome depressed growth at high salinity cannot be explained completely by rates of net photosynthesis, since high salinity caused decreases in net photosynthesis at all environmental conditions. This salinity-induced decrease in net photosynthesis was caused largely by stomatal closure, although plants grown at low temperature and low light showed significant increases in internal leaf resistance to CO2 exchange. Increased salinity resulted in generally thicker leaves with lower stomatal density but no significant differences in the ratio of mesophyll cell surface area to leaf area. Salinity and light during growth did not significantly affect rates of dark respiration. The mechanisms by which Distichlis spicata tolerates salt appear to be closely coulpled to the utilization of light energy. Salt-induced leaf succulence is of questionable importance to gas exchange at high salinity in this C4 species.  相似文献   

3.
The kelp Laminaria saccharina dominates soft bottoms in 4–10 m depth in Kiel Bay. Experimental sporophytes transplanted to 2 and 5 m depth showed the typical annual growth pattern of Laminaria species. Surprisingly, 2 m plants died after the first resting phase, whereas 5 m plants survived and showed outgrowth of a new blade generation. Thalli at both depths were infected with the brown algal endophyte Streblonema aecidioides, with host deformations being significantly stronger in 2 m plants. Growth rates of infected sporophytes were reduced. Exclusion of UV light in 2 m depth resulted in less infected thalli. Discs excised from L. saccharina and cultivated in different photon fluence rates from 10–600 µmol m–2 s–1 did not differ in growth rate, photosynthesis or dark respiration. Hence, an exclusion of L. saccharina from shallow depths caused by high light cannot be concluded. We suggest the biological interaction with the endophyte S. aecidioides, amplified by UV light, to be most important for the exclusion of L. saccharina from shallow depths in the western Baltic.  相似文献   

4.
Stem photosynthesis can contribute significantly to woody plant carbon balance, particularly in times when leaves are absent or in ‘open’ crowns with sufficient light penetration. We explored the significance of woody tissue (stem) photosynthesis for the carbon income in three California native plant species via measurements of chlorophyll concentrations, radial stem growth, bud biomass and stable carbon isotope composition of sugars in different plant organs. Young plants of Prunus ilicifolia, Umbellularia californica and Arctostaphylos manzanita were measured and subjected to manipulations at two levels: trunk light exclusion (100 and 50%) and complete defoliation. We found that long‐term light exclusion resulted in a reduction in chlorophyll concentration and radial growth, demonstrating that trunk assimilates contributed to trunk carbon income. In addition, bud biomass was lower in covered plants compared to uncovered plants. Excluding 100% of the ambient light from trunks on defoliated plants led to an enrichment in 13C of trunk phloem sugars. We attributed this effect to a reduction in photosynthetic carbon isotope discrimination against 13C that in turn resulted in an enrichment in 13C of bud sugars. Taken together our results reveal that stem photosynthesis contributes to the total carbon income of all species including the buds in defoliated plants.  相似文献   

5.
Rubisco activase (RCA) is an important enzyme that can catalyze the carboxylation and oxygenation activities of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco), which is involved in the photosynthetic carbon reduction cycle. Here, we studied the effects of changes in RCA activity on photosynthesis, growth and development, as well as the low temperature and weak light tolerance of RCA overexpressing transgenic cucumber (Cucumis sativus) plants. CsRCA overexpression increased the plant height, leaf area and dry matter, and decreased the root/top ratio in transgenic cucumber plants compared with the wild‐type (WT) plants. Low temperature and low light stress led to decreases in the CsRCA expression and protein levels, the photosynthetic rate (Pn) and the stomatal conductance (Gs), but an increase in the intercellular CO2 (Ci) concentration in cucumber leaves. The actual photochemical efficiency and maximal photochemical efficiency of photosystem II in cucumber seedlings also declined, but the initial fluorescence increased during low temperature and weak light stress. Transgenic plants showed a lower decrease in the CsRCA expression level and actual and maximal photochemical efficiencies, as well as increases in the Ci and initial fluorescence relative to the WT plants. Low temperature and low light stress resulted in a significant increase in the malondialdehyde (MDA) content; however, this increase was reduced in transgenic plants compared with that in WT plants. Thus, the overexpression of CsRCA may promote the growth and low temperature and low light tolerance of cucumber plants in solar greenhouses.  相似文献   

6.
7.
The circadian clock is known to increase plant growth and fitness, and is thought to prepare plants for photosynthesis at dawn and dusk; whether this happens in nature was unknown. We transformed the native tobacco, Nicotiana attenuata to silence two core clock components, NaLHY (irLHY) and NaTOC1 (irTOC1). We characterized growth and light‐ and dark‐adapted photosynthetic rates (Ac) throughout a 24 h day in empty vector‐transformed (EV), irLHY, and irTOC1 plants in the field, and in NaPhyA‐ and NaPhyB1‐silenced plants in the glasshouse. The growth rates of irLHY plants were lower than those of EV plants in the field. While irLHY plants reduced Ac earlier at dusk, no differences between irLHY and EV plants were observed at dawn in the field. irLHY, but not EV plants, responded to light in the night by rapidly increasing Ac. Under controlled conditions, EV plants rapidly increased Ac in the day compared to dark‐adapted plants at night; irLHY plants lost these time‐dependent responses. The role of NaLHY in gating photosynthesis is independent of the light‐dependent reactions and red light perceived by NaPhyA, but not NaPhyB1. In summary, the circadian clock allows plants not to respond photosynthetically to light at night by anticipating and gating red light‐mediated in native tobacco.  相似文献   

8.
The frequency of penetration from appressoria of Puccinia graminis avenae and P. coronata avenae varied among Avena species and between oat cultivars, although both rusts produced susceptible infection type pustules on the cultivars tested. Penetration on cv. Garry was significantly less than that on the Avena species (A. barbata, A.fatua and A. sterilis) studied and penetration of these Avena species was significantly less than on the cvs Algerian and Fulmark. When the rusts were allowed to develop into pustules on seedlings which had been inoculated with fixed amounts of inoculum, there was a direct relationship between number of pustules produced and penetration frequency. The effects of temperature, light and dew period on penetration from appressoria of ‘single race’ and ‘mixed race’ inocula was also studied on these cultivars and species. Penetration by P. graminis avenae was greatest at 30–35 °C and at light intensities of 5625 lux and above, whereas that by P. coronata avenae was greatest at 20 °C and was unaffected by artificial light intensities up to n 250 lux. Maximal penetration by P. graminis avenae and P. coronata avenae was observed after inoculated plants had been exposed to dew periods of 16 and 12 h respectively. Some penetration was observed after a dew period of 8 h. The time taken for each rust to attain maximum penetration varied from 36 to 52 h after inoculation, depending on the environment, and was usually less for P. coronata avenae than for P. graminis avenae.  相似文献   

9.
The DnaK/Hsp70 family is a molecular chaperone that binds non-native states of other proteins, and concerns to various physiological processes in the bacterial, plant and animal cells. Previously, we showed that overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica (ApDnaK) enhances tolerance to abiotic stresses such as high salinity and high temperature in tobacco plants. Here, we tested the transformation of poplar (Populus alba) with ApDnaK for enhancing the growth of transformed poplar plants. Under control growth conditions, transgenic poplar plants exhibited similar growth rates with the wild-type plants during young seedlings under low light intensity, whereas they showed faster growth, larger plant size, and higher cellulose contents when poplar plants were grown under high light intensity. Transgenic young poplar plants exhibited more rapid recovery from the stresses of high salinity, drought, and low temperature compared with those of the wild type plants when poplar plants were grown under low light intensity. These results suggest that ApDnaK could be useful to enhance the growth rate as well as to increase the stress tolerance.  相似文献   

10.
Depth limits and minimum light requirements of freshwater macrophytes   总被引:25,自引:1,他引:25  
1. Data for maximum colonization depth (Zc) of five groups of submerged macrophytes and light attenuation were collected for forty-five Danish lakes and 108 non-Danish lakes. The macrophyte groups were bryophytes, charophytes, caulescent angiosperms, rosette-type angiosperms and Isoetes spp. 2. The data showed systematic differences among the groups in the relationship of Zc to water transparency. In lakes with low transparency (Secchi disc transparency (Zs) less than 7 m) caulescent angiosperms and charophytes penetrated deepest followed by bryophytes and Isoetes spp. In more transparent lakes bryophytes grew deepest, followed by charophytes, caulescent angiosperms and Isoetes spp. Rosette-type angiosperms had the lowest Zc in all types of lakes. Charophytes and caulescent angiosperms had similar depth limits in lakes with Zs < 4 m but charophytes grew deeper in more transparent lakes. The depth limits of both groups were independent of light penetration in lakes with very low transparency (Zs < 1 m). The annual light exposure for the deepest growing macrophytes (bryophytes) was 20–95 mol photons m–2. 3. The relationship between Zc, macrophyte type and lake transparency could be explained by three distinct processes regulating Zc. In lakes with low transparency (Zs < 1 m), tall macrophytes (caulescent angiosperms and charophytes) compensate for light limitation by shoot growth towards the water surface and Zc is therefore independent of transparency. In lakes with medium transparency (1 m < Zs < 4 m) Zc for angiosperms, charophytes and Isoetes spp. is constrained by light attenuation in the water column, corresponding to a linear relationship between Zc and Zs. This pattern also applies to bryophytes, despite lake transparency. In transparent lakes, the minimum light requirement at Zc increased with increasing transparency for angiosperms, charophytes and Isoetes spp. 4. The minimum light requirements among submersed macrophytes (including marine macroalgae) depend on their plant-specific carbon value (plant biomass per unit of light-absorbing surface area) for the species/group, indicating that the light requirements of submersed plants are tightly coupled to the plants’ possibility to harvest light and hence to the growth form. 5. The light requirements increased on average 0.04% surface irradiance per degree increase in latitude corresponding to an average decrease in Zc of 0.12 m per degree latitude.  相似文献   

11.
Former laboratory results indicate that shoot elongation at low light intensities of Chara aspera is absent already at 10 psu which is within the physiologically optimal salinity range for brackish water populations. To investigate if similar restrictions occur in the field, density and morphology of C. aspera were compared between three freshwater and three brackish water sites along its depth range. The lower depth limit of C. aspera varied considerably among sites (30–600 cm) related to turbidity. Light availability at the lower depth limit corresponded to about 15% of surface irradiance in freshwater and brackish water with lower salinity (3.4 psu). Total length increased and fresh weight:length ratio decreased with depth at these sites indicating shoot elongation related to lower light availability. Due to shoot elongation, light availability was far higher at the upper parts of the shoot than at the bottom in the turbid sites. Light availability at the lower depth limit was higher (about 40%) at two sites with higher salinity (7–8 psu), where no shoot elongation was observed at the lower depth limit. Instead, the plants were stunted and often covered with filamentous algae or shaded by other rooted submerged macrophytes indicating competitive disadvantages of C. aspera at higher salinities. As growth in high densities (mat formation) exposes the plants to severe self-shading, it is suggested that shoot elongation is a prerequisite to mat formation. Dense vegetation of C. aspera was found only in freshwater and brackish water with lower salinity. Single, richly branched plants occurred in clearwater sites with higher salinity. C. aspera was not found in “double stress” environments with both high turbidity and high salinity: We asume that the species is a poor competitor under these conditions. Our results indicate that morphological differences between freshwater and brackish water populations of C. aspera are at least partly explained by salinity rather than genetic differences.  相似文献   

12.
Aquatic macrophytes in saline lakes of the Canadian prairies   总被引:7,自引:4,他引:3  
Vascular macrophyte species richness decreases with increasing salinity. Only three species of submerged plants (Potamogeton pectinatus, Ruppia maritima, R. occidentalis) tolerate hypersaline waters (>50 g l-1, total of ionic constituents). Eight emergent species occur in more saline habitats but only five (Scirpus maritimus var. paludosus, Distichlisstricta, Puccinellia nuttalliana, Scirpus americanus, Triglochin maritima) occur commonly over a range of saline lakes into the hypersaline category. Usually, species tolerant of high salinities are found over the entire saline spectrum and even extend into subsaline waters (<3 g l-1) and thrive there. A major increase in the number of species occurs below 5 g l-1. As the water recedes plants such as Salicornia rubra, Suaeda calceoliformes, Hordeum jubatum and Sonchus arvensis invade.Submerged angiosperm distribution is controlled by total ion concentration and substrate texture plays no apparent role. Although angiosperms normally grow in all kinds of substrates, they occupy coarse substrates in Wakaw lake because suitable fine substrates are densely colonized by charophytes. In this lake light limited growth occurs to a depth of 5% of surface light. Light was not limiting in Redberry Lake but angiosperm growth was limited to the upper 8 m (10% or more of surface light). Thermal stratification and depth (pressure) were probably limiting istead. In meromictic Waldsea Lake the depth of the chemocline (6 m, 5% surface light) delimits angiosperm growth.  相似文献   

13.
An examination is made of the effect of light attenuation in the water column on the hydrodynamics, and in particular on temperature stratification in reservoirs. Numerical experiments are described which examine the differences in light profile in the water column when the spectral character of the incident radiation and light penetration is and is not taken into account. It was found that the exponential character of light penetration remains but the exponent may be increased by up to 20% in clear waterbodies and less in waterbodies with higher extinction values when I0(λ) and Kd(λ) are incorporated. The error may be higher when the spectral character of the extinction is due to colored organics rather than phytoplankton. The numerical, one dimensional hydrodynamic model DYRESM is used to isolate and examine the influence of changing the light attenuation in the water column in a reservoir, and on its hydrodynamics, when keeping other conditions unchanged. Not surprisingly, the simulations show that when the extinction rate increases, mixing depth decreases markedly, and although the same energy enters the water column, surface temperatures increase slightly while deep temperatures decrease. Some other surprising effects were found and are described. The results presented and comparison of the model results with real-world data indicate that the pronounced dependence of mixing depth on light extinction is a general phenomenon which cannot be ignored.  相似文献   

14.
Muhlenbergia sobolifera (Muhl.) Trin., a C4 grass, occurs in understory habitats in the northeastern United States. Plants of M. sobolifera were grown at 23 and 30°C at 150 and 700 μmol photons m−2 s−1. The photosynthetic CO2 compensation point, maximum CO2 assimilation, dark respiration and the absorbed quantum use efficiency (QUE) were measured at 23 and 30°C at 2 and 20% O2. Photosynthetic CO2 compensation points ranged from 4 to 14mm3 dm−3 CO2 and showed limited O2 sensitivity. The mean photosynthetic CO2 compensation point of plants grown at 30°C (4·5 mm3 dm−3) was 57% lower and 80% less inhibited by O2 than that of plants grown at 23°C. Photosynthesis was similarly affected by growth temperature, with 70% more O2 inhibition in plants grown at 23°C; suppression over all treatments ranging from 2 to 11%. Unlike typical C4 species, plants of M. sobolifera from both temperature regimes exhibited higher CO2 assimilation rates when grown at low light. Growth temperature and light also affected QUE; plants grown at low light and 23°C had the highest value (0·068 mol CO2/mol quanta). Measurement temperature and growth light regime significantly affected dark respiration; however, O2 did not affect QUE or dark respiration under any growth or measurement conditions. The results indicate that M. sobolifera is adapted to low PPFD, and that complete suppression of photorespiration is dependent upon high growth temperature.  相似文献   

15.
Primula nutans Georgi is widely distributed in hummock-and-hollow wetlands on the Qinghai-Tibetan Plateau. To assess the ecophysiology of this species in responding to microenvironments, we examined the photosynthetic characteristics and individual carbon gain of plants growing in different microsites from a hummock-and-hollow wetland on the Qinghai-Tibetan Plateau and under laboratory conditions. Plants from wetland hummock microsites showed significantly higher light-saturated photosynthetic CO2 uptake (A max) than those from microsites in hollows at a controlled temperature of 15°C in leaf chamber. Leaf dark respiration rate (R) was only significantly higher in plants from hummocks than hollows at the measuring temperature of 35°C. Optimum temperature for A max was 15°C for all plants in the field despite different microsites. In plants growing under laboratory conditions differing in light and temperature, both A max and R were significantly higher under higher growth light (photosynthetic photon flux density, PPFD: 800 or 400 μmol m−2 s−1) than low light of 90 μmol m−2 s−1. No statistically significant differences in A max and R existed in plants differing in growing temperatures. Estimates derived from the photosynthetic parameters of field plants, and microsite environmental measures including PPFD, air temperature and soil temperature showed that the optimum mean daily temperature for net daily carbon gain was around 10°C and the net daily carbon gain was largely limited under lower daily total PPFD. These results suggest that the differences in A max and R in P. nutans are strongly affected by growing light regimes but not by temperature regimes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Growth and Dormancy in Norway Spruce Ecotypes   总被引:3,自引:0,他引:3  
Height and radial growth of spruce in years n+ 1, n+ 2, and n+ 3 as affected by photoperiod and temperature in year n have been studied in controlled environments and in the field. In agreement with common opinion apical shoot growth in year n+ 1 was strongly dependent on the temperature conditions prevailing in the period following budset in year n. This was found mainly to be a direct effect upon the differentiation of the shoot and needle primordia for next year's growth. A similar, although less pronounced effect, was found also on radial growth, possibly an indirect effect elicited through the effect on apical growth. A rather wide temperature optimum of 18 to 24°C was found in three Norwegian ecotypes and a somewhat lower optimum (15 to 18 C) in an Austrian high altitude ecotype. The shorter the bud differentiation period, the higher was the temperature optimum in all ecotypes (heat sum effect). Photoperiod which is the main factor controlling the time of budset, thus had a great after-effect. The after-effect was strongly modified by photoperiod and to a lesser extent also by temperature in the current growing season. It is concluded that in second-year or older spruce plants the important effect of photoperiod in the current growing season is to control quantitatively and qualitatively the amount of secondary (lammas) shoot formation, and to modify shoot extension in the main growth flush. Longer photoperiods were needed for continuation or resumption of growth in second-year plants than for maintenance of uninterrupted growth in first-year seedlings. Delayed flushing was observed in plants maturing at high temperatures, indicating that these plants had entered a deeper state of dormancy than those maturing at lower temperatures. Also in years n+ 2 and n+ 3 apical and radical growth was significantly related to photoperiod and temperature conditions in year n. This effect gradually became an indirect one through the effects on general plant size (leaf and root area). The results are discussed in the light of previous work in the field.  相似文献   

17.
Plant responses in Ludwigia peploides (Kunth) Raven ssp. montevidensis (Spreng.) Raven and Marsilea mutica Mett., and the introduced Myriophyllum aquaticum (Vellozo) Verdc. were observed and related to co-existence of the species in a freshwater lagoon in the Sydney basin. Water levels vary in the lagoon, and plants of all three species grow readily from stem fragments on freely draining, waterlogged and submerged soils. In Marsilea, sporelings develop rapidly from ruptured sporocarps when wet. In Ludwigia, the seeds germinate in white and in red light, but not in darkness or far-red light. They germinate readily on soil and in water, floating or when held submerged. At 30°C, germination is rapid, at 40°C slower and less, and at 10°C nil, but seeds imbibed at 10°C and then exposed at 15°C have greater and more rapid germination than seeds maintained at 15°C. In relation to seasonal variation, plants of all three species grew at 10, 20, 30 and 40°C on freely draining, waterlogged and submerged soils, with the optimum temperature for growth apparently lower in Myriophyllum than in the other two species. In relation to water depth, plants of all three species grew when submerged to I m; the stems of Ludwigia and Myriophyllum elongating and reaching the water surface, and the petioles in Marsilea elongating bringing the leaf blades on to the surface, each within a week during summer. The floating leaf blades in Marsilea increase in size with depth of submergence of the subtending shoots. Mean relative growth rates (R?) under the most favourable experimental conditions were least in plants of Marsilea, the species occurring along more exposed parts of the shoreline in the lagoon. It was concluded that, while water levels in the lagoon were stable, differences in growth form between the species were probably more critical in their co-existence than quantitative differences in their growth: the floating leaves of Marsilea, being more resistant to wind and wave action than the floating shoots of Ludwigia and Myriophyllum, occupy the more exposed parts of the lagoon 'S edge. The most sheltered parts are occupied by the shoots of Myriophyllum which ride high on the water and overtop shoots of Ludwigia. Shoots of Ludwigia appear to be more resistant than those of Myriophyllum to removal and damage by wind and wave action, and achieve their greatest abundance on the water surface in situations of intermediate exposure to wind and wave action. Using Grubb's (1977) classification of niches, in Bushells Lagoon the three species appear to be primarily differentiated in habitat niche, less in regeneration niche and even less in phenological niche. In the lagoon, their habitat niches apparently overlap in water depth but are differentiated along a gradient of exposure.  相似文献   

18.
19.
SUMMARY. Populations of Potamogeton richardsonii in Sparrow Lake, Ontario, vary greatly in leaf dimensions and internode length. Leaf length/breadth (L/B) ratio is increased by low irradiance, significantly at 4% daylight and, in a contrary fashion, by ontogenetic drift at high irradiances of shallow water. L/B ratio was not correlated with substrate. These findings suggest that this ratio is of doubtful value taxonomically or as an integrator, as specific leaf area is confirmed to be, of factors like photosynthetically active radiation (PAR). Longest internodes belong to plants from deep(1.8 m) water, and, in a summer-grown high-density population, internode length decreases logarithmically as depth lessens; both observations implicate PAR and ageing. Relative to undisturbed, shallow-water shoots, young transplants in full daylight elongate almost twice as fast because of the production of more, and longer, internodes. Young shoots in 12% daylight lengthen even more rapidly than those in full daylight (and four times faster than undisturbed shoots) in the same period because of quicker elongation of the same number of internodes. At ambient summer temperatures, this rate of elongation is inversely related to PAR. Experimental and seasonal field data indicate that maximal internode extension occurs on young shoots in very low irradiances at temperatures of 9–15°C; in nature, effects of increasing water temperatures are depressed by increasing irradiances and ageing until minimal extension takes place in old shoots at mid- to late-summer temperatures and in high irradiances. In tanks (40 m3) in full daylight, nutrients limit growth of plants on sand before they limit growth on clay (with marl intermediate) whereas, at 12% daylight, light limits growth on sand before soil nutrients do. The leaf area index on silty sand on an exposed shore was 0.4 at 0.5 m depth, in contrast to a cultured population where it was 4.0 in silty loam at the same depth. Thus, while it has not been possible to explain some variations in leaf morphology of P. richardsonii in environmental terms, the differential effects of ontogeny, PAR and temperature on shoot growth have been assessed, along with overall effects of light and nutrients on biomass and of shelter on leaf area index.  相似文献   

20.
The optimal conditions for the germination, growth, and flowering of an Indian strain of Arabidopsis thaliana were investigated in sterile culture. Seeds require a cold treatment to germinate, and the most effective temperature is 8?C for 48 hours. Germination after vernalization is promoted by red light and inhibited by far-red. Unvernalized seeds germinated after 31 days and flower buds appeared in 61 days. On verbalization and subsequent transfer to a temperature of 25?C and a light intensity of 4300 lux of fluorescent light, plants flowered in 25 days. Under 7000 lux of light rich in both blue and red region of the spectum, plants flowered in only 12 days. A minimum of five long-day photocyeles appeared to be necessary for flowering. Kinetin (10?7M) and gibberellic acid (10?7M, 10?6M) accelerated flower formation. Kinetin and 2,4-D also catised specific types of callussing from different regions of the plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号