首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hendra virus is a highly pathogenic paramyxovirus classified as a biosafety level four agent. The fusion (F) protein of Hendra virus is critical for promoting viral entry and cell-to-cell fusion. To be fusogenically active, Hendra virus F must undergo endocytic recycling and cleavage by the endosomal/lysosomal protease cathepsin L, but the route of Hendra virus F following internalization and the recycling signals involved are poorly understood. We examined the intracellular distribution of Hendra virus F following endocytosis and showed that it is primarily present in Rab5- and Rab4-positive endosomal compartments, suggesting that cathepsin L cleavage occurs in early endosomes. Hendra virus F transmembrane domain (TMD) residues S490 and Y498 were found to be important for correct Hendra virus F recycling, with the hydroxyl group of S490 and the aromatic ring of Y498 important for this process. In addition, changes in association of isolated Hendra virus F TMDs correlated with alterations to Hendra virus F recycling, suggesting that appropriate TMD interactions play an important role in endocytic trafficking.  相似文献   

2.
Pager CT  Dutch RE 《Journal of virology》2005,79(20):12714-12720
Proteolytic processing of paramyxovirus fusion (F) proteins is essential for the generation of a mature and fusogenic form of the F protein. Although many paramyxovirus F proteins are proteolytically processed by the cellular protease furin at a multibasic cleavage motif, cleavage of the newly emerged Hendra virus F protein occurs by a previously unidentified cellular protease following a single lysine at residue 109. We demonstrate here that the cellular protease cathepsin L is involved in converting the Hendra virus precursor F protein (F(0)) to the active F(1) + F(2) disulfide-linked heterodimer. To initially identify the class of protease involved in Hendra virus F protein cleavage, Vero cells transfected with pCAGGS-Hendra F or pCAGGS-SV5 F (known to be proteolytically processed by furin) were metabolically labeled and chased in the absence or presence of serine, cysteine, aspartyl, and metalloprotease inhibitors. Nonspecific and specific protease inhibitors known to decrease cathepsin activity inhibited proteolytic processing of Hendra virus F but had no effect on simian virus 5 F processing. We next designed shRNA oligonucleotides to cathepsin L which dramatically reduced cathepsin L protein expression and enzyme activity. Cathepsin L shRNA-expressing Vero cells transfected with pCAGGS-Hendra F demonstrated a nondetectable amount of cleavage of the Hendra virus F protein and significantly decreased membrane fusion activity. Additionally, we found that purified human cathepsin L processed immunopurified Hendra virus F(0) into F(1) and F(2) fragments. These studies introduce a novel mechanism for primary proteolytic processing of viral glycoproteins and also suggest a previously unreported biological role for cathepsin L.  相似文献   

3.
Proteolytic cleavage of the Hendra virus fusion (F) protein results in the formation of disulfide-linked F1 and F2 subunits, with cleavage occurring after residue K109 in the sequence GDVK/L. This unusual cleavage site and efficient propagation of Hendra virus in a furin-deficient cell line indicate that the Hendra F protein is not cleaved by furin, the protease responsible for proteolytic activation of many viral fusion proteins. To identify the subcellular site of Hendra F processing, Vero cells transfected with pCAGGS-Hendra F or pCAGGS-SV5 F were metabolically labeled and chased in the absence and presence of inhibitors of exocytosis. The addition of carbonyl-cyanide-3-chlorophenylhydrazone, monensin, brefeldin A, or NaF-AlCl3 or incubation of cells at 20 degrees C all inhibited processing of the Hendra F protein, suggesting that cleavage of Hendra F occurs either in secretory vesicles budding from the trans-Golgi network or at the cell surface. In contrast to proteolytic cleavage of the simian virus 5 (SV5) F protein by the Ca(2+)-dependent protease furin, proteolytic cleavage of the Hendra F protein was not significantly inhibited by decreases in Ca2+ levels following incubation with EGTA or A23187. However, in the presence of weak amines and H+ V-ATPase inhibitors, known to raise intracellular pH, cleavage of Hendra F protein was inhibited while processing of the SV5 F protein was not significantly affected. The subcellular location, sensitivity to pH changes, and decreased Ca2+ requirement suggest that the protease responsible for cleavage of Hendra F protein differs from proteases previously shown to be involved in the processing of other viral glycoproteins.  相似文献   

4.
Gardner AE  Martin KL  Dutch RE 《Biochemistry》2007,46(17):5094-5105
Paramyxoviruses are a diverse family that utilizes a fusion (F) protein to enter cells via fusion of the viral lipid bilayer with a target cell membrane. Although certain regions of the F protein are known to play critical roles in membrane fusion, the function of much of the protein remains unclear. Sequence alignment of a set of paramyxovirus F proteins and analysis utilizing Block Maker identified a region of conserved amino acid sequence in a large domain between the heptad repeats of F1, designated CBF1. We employed site-directed mutagenesis to analyze the function of completely conserved residues of CBF1 in both the simian virus 5 (SV5) and Hendra virus F proteins. The majority of CBF1 point mutants were deficient in homotrimer formation, proteolytic processing, and transport to the cell surface. For some SV5 F mutants, proteolytic cleavage and surface expression could be restored by expression at 30 degrees C, and varying levels of fusion promotion were observed at this temperature. In addition, the mutant SV5 F V402A displayed a hyperfusogenic phenotype at both 30 and 37 degrees C, indicating that this mutation allows for efficient fusion with only an extremely small amount of cleaved, active protein. The recently published prefusogenic structure of PIV5/SV5 F (Yin, H. S., et al. (2006) Nature 439, 38-44) indicates that residues within and flanking CBF1 interact with the fusion peptide domain. Together, these data suggest that CBF1-fusion peptide interactions are critical for the initial folding of paramyxovirus F proteins from this important viral family and can also modulate subsequent membrane fusion promotion.  相似文献   

5.
Hendra virus (HeV) is a recently identified paramyxovirus that is fatal in humans and could be used as an agent of bioterrorism. The HeV receptor-binding protein (G) is required in order for the fusion protein (F) to mediate fusion, and analysis of the triggering/activation of HeV F by G should lead to strategies for interfering with this key step in viral entry. HeV F, once triggered by the receptor-bound G, by analogy with other paramyxovirus F proteins, undergoes multistep conformational changes leading to a six-helix bundle (6HB) structure that accomplishes fusion of the viral and cellular membranes. The ectodomain of paramyxovirus F proteins contains two conserved heptad repeat regions (HRN and HRC) near the fusion peptide and the transmembrane domains, respectively. Peptides derived from the HRN and HRC regions of F are proposed to inhibit fusion by preventing F, after the initial triggering step, from forming the 6HB structure that is required for fusion. HeV peptides have previously been found to be effective at inhibiting HeV fusion. However, we found that a human parainfluenza virus 3 F-peptide is more effective at inhibiting HeV fusion than the comparable HeV-derived peptide.  相似文献   

6.
The nipah virus fusion protein is cleaved within the endosomal compartment   总被引:1,自引:0,他引:1  
Nipah virus (NiV) is a recently emerged and highly pathogenic paramyxovirus that causes a systemic infection in animals and humans and can infect a wide range of cultured cells. Interestingly, the NiV fusion (F) protein has a single arginine at the cleavage site similar to paramyxoviruses that are activated by exogenous trypsin-like enzymes only present in specific cells and tissues and therefore only cause localized infections. We show here that NiV F activation is not mediated by an exogenous serum protease but by an endogenous ubiquitous cellular protease after endocytosis of the protein. In addition to endocytosis, acidification of the endosome is a prerequisite for F cleavage. These results show that activation of the NiV F protein depends on a type of proteolytic cleavage that is clearly different from what is known for other paramyxoviral and orthomyxoviral fusion proteins. To our knowledge, this is the first example of a viral class I fusion protein whose activation depends on clathrin-mediated constitutive endocytosis.  相似文献   

7.
Paramyxoviruses utilize both an attachment protein and a fusion (F) protein to drive virus-cell and cell-cell fusion. F exists functionally as a trimer of two disulfide-linked subunits: F(1) and F(2). Alignment and analysis of a set of paramyxovirus F protein sequences identified three conserved blocks (CB): one in the fusion peptide/heptad repeat A domain, known to play important roles in fusion promotion, one in the region between the heptad repeats of F(1) (CBF(1)) (A. E. Gardner, K. L. Martin, and R. E. Dutch, Biochemistry 46:5094-5105, 2007), and one in the F(2) subunit (CBF(2)). To analyze the functions of CBF(2), alanine substitutions at conserved positions were created in both the simian virus 5 (SV5) and Hendra virus F proteins. A number of the CBF(2) mutations resulted in folding and expression defects. However, the CBF(2) mutants that were properly expressed and trafficked had altered fusion promotion activity. The Hendra virus CBF(2) Y79A and P89A mutants showed significantly decreased levels of fusion, whereas the SV5 CBF(2) I49A mutant exhibited greatly increased cell-cell fusion relative to that for wild-type F. Additional substitutions at SV5 F I49 suggest that both side chain volume and hydrophobicity at this position are important in the folding of the metastable, prefusion state and the subsequent triggering of membrane fusion. The recently published prefusogenic structure of parainfluenza virus 5/SV5 F (H. S. Yin et al., Nature 439:38-44, 2006) places CBF(2) in direct contact with heptad repeat A. Our data therefore indicate that this conserved region plays a critical role in stabilizing the prefusion state, likely through interactions with heptad repeat A, and in triggering membrane fusion.  相似文献   

8.
Viral fusion proteins are intriguing molecular machines that undergo drastic conformational changes to facilitate virus-cell membrane fusion. During fusion a hydrophobic region of the protein, termed the fusion peptide (FP), is inserted into the target host cell membrane, with subsequent conformational changes culminating in membrane merger. Class I fusion proteins contain FPs between 20 and 30 amino acids in length that are highly conserved within viral families but not between. To examine the sequence dependence of the Hendra virus (HeV) fusion (F) protein FP, the first eight amino acids were mutated first as double, then single, alanine mutants. Mutation of highly conserved glycine residues resulted in inefficient F protein expression and processing, whereas substitution of valine residues resulted in hypofusogenic F proteins despite wild-type surface expression levels. Synthetic peptides corresponding to a portion of the HeV F FP were shown to adopt an α-helical secondary structure in dodecylphosphocholine micelles and small unilamellar vesicles using circular dichroism spectroscopy. Interestingly, peptides containing point mutations that promote lower levels of cell-cell fusion within the context of the whole F protein were less α-helical and induced less membrane disorder in model membranes. These data represent the first extensive structure-function relationship of any paramyxovirus FP and demonstrate that the HeV F FP and potentially other paramyxovirus FPs likely require an α-helical structure for efficient membrane disordering and fusion.  相似文献   

9.
Popa A  Pager CT  Dutch RE 《Biochemistry》2011,50(6):945-952
The paramyxovirus family includes important human pathogens such as measles, mumps, respiratory syncytial virus, and the recently emerged, highly pathogenic Hendra and Nipah viruses. The viral fusion (F) protein plays critical roles in infection, promoting both the virus-cell membrane fusion events needed for viral entry as well as cell-cell fusion events leading to syncytia formation. We describe the surprising finding that addition of the short epitope HA tag to the cytoplasmic tail (CT) of the Hendra virus F protein leads to a significant increase in the extent of cell-cell membrane fusion. This increase was not due to alterations in surface expression, cleavage state, or association with lipid microdomains. Addition of a Myc tag of similar length did not alter Hendra F protein fusion activity, indicating that the observed stimulation was not solely a result of lengthening the CT. Three tyrosine residues within the HA tag were critical for the increase in the extent of fusion, suggesting C-terminal tyrosines may modulate Hendra fusion activity. The effects of addition of the HA tag varied with other fusion proteins, as parainfluenza virus 5 F-HA showed a decreased level of surface expression and no stimulation of fusion. These results indicate that additions to the C-terminal end of the F protein CT can modulate protein function in a sequence specific manner, reinforcing the need for careful analysis of epitope-tagged glycoproteins. In addition, our results implicate C-terminal tyrosine residues in the modulation of the membrane fusion reaction promoted by these viral glycoproteins.  相似文献   

10.
The Hendra virus fusion (F) protein contains five potential sites for N-linked glycosylation in the ectodomain. Examination of F protein mutants with single asparagine-to-alanine mutations indicated that two sites in the F(2) subunit (N67 and N99) and two sites in the F(1) subunit (N414 and N464) normally undergo N-linked glycosylation. While N-linked modification at N414 is critical for protein folding and transport, F proteins lacking carbohydrates at N67, N99, or N464 remained fusogenically active. As N464 lies within heptad repeat B, these results contrast with those seen for several paramyxovirus F proteins.  相似文献   

11.
Paramyxoviruses initiate infection by attaching to cell surface receptors and fusing viral and cell membranes. Viral attachment proteins, hemagglutinin-neuraminidase (HN), hemagglutinin (HA), or glycoprotein (G), bind receptors while fusion (F) proteins direct membrane fusion. Because paramyxovirus fusion is pH independent, virus entry occurs at host cell plasma membranes. Paramyxovirus fusion also usually requires co-expression of both the attachment protein and the fusion (F) protein. Newcastle disease virus (NDV) has assumed increased importance as a prototype paramyxovirus because crystal structures of both the NDV F protein and the attachment protein (HN) have been determined. Furthermore, analysis of structure and function of both viral glycoproteins by mutation, reactivity of antibody, and peptides have defined domains of the NDV F protein important for virus fusion. These domains include the fusion peptide, the cytoplasmic domain, as well as heptad repeat (HR) domains. Peptides with sequences from HR domains inhibit fusion, and characterization of the mechanism of this inhibition provides evidence for conformational changes in the F protein upon activation of fusion. Both proteolytic cleavage of the F protein and interactions with the attachment protein are required for fusion activation in most systems. Subsequent steps in membrane merger directed by F protein are poorly understood.  相似文献   

12.
Structure and function of a paramyxovirus fusion protein   总被引:21,自引:0,他引:21  
Paramyxoviruses initiate infection by attaching to cell surface receptors and fusing viral and cell membranes. Viral attachment proteins, hemagglutinin-neuraminidase (HN), hemagglutinin (HA), or glycoprotein (G), bind receptors while fusion (F) proteins direct membrane fusion. Because paramyxovirus fusion is pH independent, virus entry occurs at host cell plasma membranes. Paramyxovirus fusion also usually requires co-expression of both the attachment protein and the fusion (F) protein. Newcastle disease virus (NDV) has assumed increased importance as a prototype paramyxovirus because crystal structures of both the NDV F protein and the attachment protein (HN) have been determined. Furthermore, analysis of structure and function of both viral glycoproteins by mutation, reactivity of antibody, and peptides have defined domains of the NDV F protein important for virus fusion. These domains include the fusion peptide, the cytoplasmic domain, as well as heptad repeat (HR) domains. Peptides with sequences from HR domains inhibit fusion, and characterization of the mechanism of this inhibition provides evidence for conformational changes in the F protein upon activation of fusion. Both proteolytic cleavage of the F protein and interactions with the attachment protein are required for fusion activation in most systems. Subsequent steps in membrane merger directed by F protein are poorly understood.  相似文献   

13.
Nipah virus (NiV), a highly pathogenic paramyxovirus, causes a systemic infection in vivo and is able to replicate in cultured cells of many species and organs. Such pantropic paramyxoviruses generally encode fusion (F) proteins with multibasic cleavage sites activated by furin or other ubiquitous intracellular host cell proteases. In contrast, NiV has an F protein with a single arginine (R109) at the cleavage site, as is the case with paramyxoviruses that are activated by trypsin-like proteases only present in specific cells or tissues and therefore only cause localized infections. Unlike these viruses, cleavage of the NiV F protein is ubiquitous and does not require the addition of exogenous proteases in cell culture. To determine the importance of the amino acid sequence at the NiV F protein cleavage site for ubiquitous activation, we generated NiV F proteins with mutations around R109. Surprisingly, neither the exchange of amino acids upstream of R109 nor replacement of the basic residue itself interfered with F cleavage. Thus, R109 is not essential for F cleavage and activation. Our data demonstrate that NiV F-protein activation depends on a novel type of proteolytic cleavage that has not yet been described for any other paramyxovirus F protein. NiV F activation is mediated by a ubiquitous protease that requires neither a monobasic nor a multibasic cleavage site and therefore differs from the furin- or trypsin-like proteases known to activate other ortho- and paramyxovirus fusion proteins.  相似文献   

14.
Hydrophobic fusion peptides (FPs) are the most highly conserved regions of class I viral fusion-mediating glycoproteins (vFGPs). FPs often contain conserved glycine residues thought to be critical for forming structures that destabilize target membranes. Unexpectedly, a mutation of glycine residues in the FP of the fusion (F) protein from the paramyxovirus simian parainfluenza virus 5 (SV5) resulted in mutant F proteins with hyperactive fusion phenotypes (C. M. Horvath and R. A. Lamb, J. Virol. 66:2443-2455, 1992). Here, we constructed G3A and G7A mutations into the F proteins of SV5 (W3A and WR isolates), Newcastle disease virus (NDV), and human parainfluenza virus type 3 (HPIV3). All of the mutant F proteins, except NDV G7A, caused increased cell-cell fusion despite having slight to moderate reductions in cell surface expression compared to those of wild-type F proteins. The G3A and G7A mutations cause SV5 WR F, but not NDV F or HPIV3 F, to be triggered to cause fusion in the absence of coexpression of its homotypic receptor-binding protein hemagglutinin-neuraminidase (HN), suggesting that NDV and HPIV3 F have stricter requirements for homotypic HN for fusion activation. Dye transfer assays show that the G3A and G7A mutations decrease the energy required to activate F at a step in the fusion cascade preceding prehairpin intermediate formation and hemifusion. Conserved glycine residues in the FP of paramyxovirus F appear to have a primary role in regulating the activation of the metastable native form of F. Glycine residues in the FPs of other class I vFGPs may also regulate fusion activation.  相似文献   

15.
Cell entry by paramyxoviruses requires fusion between viral and cellular membranes. Paramyxovirus infection also gives rise to the formation of multinuclear, fused cells (syncytia). Both types of fusion are mediated by the viral fusion (F) protein, which requires proteolytic processing at a basic cleavage site in order to be active for fusion. In common with most paramyxoviruses, fusion mediated by Sendai virus F protein (F(SeV)) requires coexpression of the homologous attachment (hemagglutinin-neuraminidase [HN]) protein, which binds to cell surface sialic acid receptors. In contrast, respiratory syncytial virus fusion protein (F(RSV)) is capable of fusing membranes in the absence of the viral attachment (G) protein. Moreover, F(RSV) is unique among paramyxovirus fusion proteins since F(RSV) possesses two multibasic cleavage sites, which are separated by an intervening region of 27 amino acids. We have previously shown that insertion of both F(RSV) cleavage sites in F(SeV) decreases dependency on the HN attachment protein for syncytium formation in transfected cells. We now describe recombinant Sendai viruses (rSeV) that express mutant F proteins containing one or both F(RSV) cleavage sites. All cleavage-site mutant viruses displayed reduced thermostability, with double-cleavage-site mutants exhibiting a hyperfusogenic phenotype in infected cells. Furthermore, insertion of both F(RSV) cleavage sites in F(SeV) reduced dependency on the interaction of HN with sialic acid for infection, thus mimicking the unique ability of RSV to fuse and infect cells in the absence of a separate attachment protein.  相似文献   

16.
Fusion proteins from a group of widely disparate viruses, including the paramyxovirus F protein, the HIV and SIV gp160 proteins, the retroviral Env protein, the Ebola virus Gp, and the influenza virus haemagglutinin, share a number of common features. All contain multiple glycosylation sites, and must be trimeric and undergo proteolytic cleavage to be fusogenically active. Subsequent to proteolytic cleavage, the subunit containing the transmembrane domain in each case has an extremely hydrophobic region, termed the fusion peptide, or at near its newly generated N-terminus. In addition, all of these viral fusion proteins have 4–3 heptad repeat sequences near both the fusion peptide and the transmembrane domain. These regions have been demonstrated from a tight complex, in which the N-terminal heptad repeat forms a trimeric-coiled coil, with the C-terminal heptad repeat forming helical regions that buttress the coiled-coil in an anti-parallel manner. The significance of each of these structuralelements in the processing and function of these viral fusion proteins is discussed.  相似文献   

17.
Paramyxovirus fusion (F) proteins promote membrane fusion between the viral envelope and host cell membranes, a critical early step in viral infection. Although mutational analyses have indicated that transmembrane (TM) domain residues can affect folding or function of viral fusion proteins, direct analysis of TM-TM interactions has proved challenging. To directly assess TM interactions, the oligomeric state of purified chimeric proteins containing the Staphylococcal nuclease (SN) protein linked to the TM segments from three paramyxovirus F proteins was analyzed by sedimentation equilibrium analysis in detergent and buffer conditions that allowed density matching. A monomer-trimer equilibrium best fit was found for all three SN-TM constructs tested, and similar fits were obtained with peptides corresponding to just the TM region of two different paramyxovirus F proteins. These findings demonstrate for the first time that class I viral fusion protein TM domains can self-associate as trimeric complexes in the absence of the rest of the protein. Glycine residues have been implicated in TM helix interactions, so the effect of mutations at Hendra F Gly-508 was assessed in the context of the whole F protein. Mutations G508I or G508L resulted in decreased cell surface expression of the fusogenic form, consistent with decreased stability of the prefusion form of the protein. Sedimentation equilibrium analysis of TM domains containing these mutations gave higher relative association constants, suggesting altered TM-TM interactions. Overall, these results suggest that trimeric TM interactions are important driving forces for protein folding, stability and membrane fusion promotion.  相似文献   

18.
The role of residues in the conserved hydrophobic N-terminal fusion peptide of the paramyxovirus fusion (F) protein in causing cell-cell fusion was examined. Mutations were introduced into the cDNA encoding the simian virus 5 (SV5) F protein, the altered F proteins were expressed by using an eukaryotic vector, and their ability to mediate syncytium formation was determined. The mutant F proteins contained both single- and multiple-amino-acid substitutions, and they exhibited a variety of intracellular transport properties and fusion phenotypes. The data indicate that many substitutions in the conserved amino acids of the simian virus 5 F fusion peptide can be tolerated without loss of biological activity. Mutant F proteins which were not transported to the cell surface did not cause cell-cell fusion, but all of the mutants which were transported to the cell surface were fusion competent, exhibiting fusion properties similar to or better than those of the wild-type F protein. Mutant F proteins containing glycine-to-alanine substitutions had altered intracellular transport characteristics, yet they exhibited a great increase in fusion activity. The potential structural implications of this substitution and the possible importance of these glycine residues in maintaining appropriate levels of fusion activity are discussed.  相似文献   

19.
Hendra virus (HeV) and Nipah virus (NiV) constitute the Henipavirus genus of paramyxoviruses, both fatal in humans and with the potential for subversion as agents of bioterrorism. Binding of the HeV/NiV attachment protein (G) to its receptor triggers a series of conformational changes in the fusion protein (F), ultimately leading to formation of a postfusion six-helix bundle (6HB) structure and fusion of the viral and cellular membranes. The ectodomain of paramyxovirus F proteins contains two conserved heptad repeat regions, the first (the N-terminal heptad repeat [HRN]) adjacent to the fusion peptide and the second (the C-terminal heptad repeat [HRC]) immediately preceding the transmembrane domain. Peptides derived from the HRN and HRC regions of F are proposed to inhibit fusion by preventing activated F molecules from forming the 6HB structure that is required for fusion. We previously reported that a human parainfluenza virus 3 (HPIV3) F peptide effectively inhibits infection mediated by the HeV glycoproteins in pseudotyped-HeV entry assays more effectively than the comparable HeV-derived peptide, and we now show that this peptide inhibits live-HeV and -NiV infection. HPIV3 F peptides were also effective in inhibiting HeV pseudotype virus entry in a new assay that mimics multicycle replication. This anti-HeV/NiV efficacy can be correlated with the greater potential of the HPIV3 C peptide to interact with the HeV F N peptide coiled-coil trimer, as evaluated by thermal unfolding experiments. Furthermore, replacement of a buried glutamic acid (glutamic acid 459) in the C peptide with valine enhances antiviral potency and stabilizes the 6HB conformation. Our results strongly suggest that conserved interhelical packing interactions in the F protein fusion core are important determinants of C peptide inhibitory activity and offer a strategy for the development of more-potent analogs of F peptide inhibitors.  相似文献   

20.
Human metapneumovirus (HMPV) is a recently described human pathogen of the pneumovirus subfamily within the paramyxovirus family. HMPV infection is prevalent worldwide and is associated with severe respiratory disease, particularly in infants. The HMPV fusion protein (F) amino acid sequence contains features characteristic of other paramyxovirus F proteins, including a putative cleavage site and potential N-linked glycosylation sites. Propagation of HMPV in cell culture requires exogenous trypsin, which cleaves the F protein, and HMPV, like several other pneumoviruses, is infectious in the absence of its attachment protein (G). However, little is known about HMPV F-promoted fusion, since the HMPV glycoproteins have yet to be analyzed separately from the virus. Using syncytium and luciferase reporter gene fusion assays, we determined the basic requirements for HMPV F protein-promoted fusion in transiently transfected cells. Our data indicate that proteolytic cleavage of the F protein is a stringent requirement for fusion and that the HMPV G protein does not significantly enhance fusion. Unexpectedly, we also found that fusion can be detected only when transfected cells are treated with trypsin and exposed to low pH, indicating that this viral fusion protein may function in a manner unique among the paramyxoviruses. We also analyzed the F protein cleavage site and three potential N-linked glycosylation sites by mutagenesis. Mutations in the cleavage site designed to facilitate endogenous cleavage did so with low efficiency, and our data suggest that all three N-glycosylation sites are utilized and that each affects cleavage and fusion to various degrees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号