首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Na(+)-Ca2+ exchanger from Drosophila was expressed in Xenopus and characterized electrophysiologically using the giant excised patch technique. This protein, termed Calx, shares 49% amino acid identity to the canine cardiac Na(+)-Ca2+ exchanger, NCX1. Calx exhibits properties similar to previously characterized Na(+)-Ca2+ exchangers including intracellular Na+ affinities, current-voltage relationships, and sensitivity to the peptide inhibitor, XIP. However, the Drosophila Na(+)-Ca2+ exchanger shows a completely opposite response to cytoplasmic Ca2+. Previously cloned Na(+)-Ca2+ exchangers (NCX1 and NCX2) are stimulated by cytoplasmic Ca2+ in the micromolar range (0.1- 10 microM). This stimulation of exchange current is mediated by occupancy of a regulatory Ca2+ binding site separate from the Ca2+ transport site. In contrast, Calx is inhibited by cytoplasmic Ca2+ over this same concentration range. The inhibition of exchange current is evident for both forward and reverse modes of transport. The characteristics of the inhibition are consistent with the binding of Ca2+ at a regulatory site distinct from the transport site. These data provide a rational basis for subsequent structure-function studies targeting the intracellular Ca2+ regulatory mechanism.  相似文献   

2.
The deduced amino acid sequence of the cardiac sarcolemmal Na(+)-Ca2+ exchanger has a region which could represent a calmodulin binding site. As calmodulin binding regions of proteins often have an autoinhibitory role, a synthetic peptide with this sequence was tested for functional effects on Na(+)-Ca2+ exchange activity. The peptide inhibits the Na(+)-dependent Ca2+ uptake (KI approximately 1.5 microM) and the Nao(+)-dependent Ca2+ efflux of sarcolemmal vesicles in a noncompetitive manner with respect to both Na+ and Ca2+. The peptide is also a potent inhibitor (KI approximately 0.1 microM) of the Na(+)-Ca2+ exchange current of excised sarcolemmal patches. The binding site for the peptide on the exchanger is on the cytoplasmic surface of the membrane. The exchanger inhibitory peptide binds calmodulin with a moderately high affinity. From the characteristics of the inhibition of the exchange of sarcolemmal vesicles, we deduce that only inside-out sarcolemmal vesicles participate in the usual Na(+)-Ca2+ exchange assay. This contrasts with the common assumption that both inside-out and right-side-out vesicles exhibit exchange activity.  相似文献   

3.
4.
The sarcolemmal Na(+)-Ca2+ exchanger is regulated by intracellular Ca2+ at a high affinity Ca2+ binding site separate from the Ca2+ transport site. Previous data have suggested that the Ca2+ regulatory site is located on the large intracellular loop of the Na(+)-Ca2+ exchange protein, and we have identified a high-affinity 45Ca2+ binding domain on this loop (Levitsky, D. O., D. A. Nicoll, and K. D. Philipson. 1994. Journal of Biological Chemistry. 269:22847-22852). We now use electrophysiological and mutational analyses to further define the Ca2+ regulatory site. Wild-type and mutant exchangers were expressed in Xenopus oocytes, and the exchange current was measured using the inside- out giant membrane patch technique. Ca2+ regulation was measured as the stimulation of reverse Na(+)-Ca2+ exchange (intracellular Na+ exchanging for extracellular Ca2+) by intracellular Ca2+. Single-site mutations within two acidic clusters of the Ca2+ binding domain lowered the apparent Ca2+ affinity at the regulatory site from 0.4 to 1.1-1.8 microM. Mutations had parallel effects on the affinity of the exchanger loop for 45Ca2+ binding (Levitsky et al., 1994) and for functional Ca2+ regulation. We conclude that we have identified the functionally important Ca2+ binding domain. All mutant exchangers with decreased apparent affinities at the regulatory Ca2+ binding site also have a complex pattern of altered kinetic properties. The outward current of the wild-type Na(+)-Ca2+ exchanger declines with a half time (th) of 10.8 +/- 3.2 s upon Ca2+ removal, whereas the exchange currents of several mutants decline with th values of 0.7-4.3 s. Likewise, Ca2+ regulation mutants respond more rapidly to Ca2+ application. Study of Ca2+ regulation has previously been possible only with the exchanger operating in the reverse mode as the regulatory Ca2+ and the transported Ca2+ are then on opposite sides of the membrane. The use of exchange mutants with low affinity for Ca2+ at regulatory sites also allows demonstration of secondary Ca2+ regulation with the exchanger in the forward or Ca2+ efflux mode. In addition, we find that the affinity of wild-type and mutant Na(+)-Ca2+ exchangers for intracellular Na+ decreases at low regulatory Ca2+. This suggests that Ca2+ regulation modifies transport properties and does not only control the fraction of exchangers in an active state.  相似文献   

5.
L-type Ca2+ current (I(Ca)) is reduced in myocytes from cardiac-specific Na+-Ca2+ exchanger (NCX) knockout (KO) mice. This is an important adaptation to prevent Ca2+ overload in the absence of NCX. However, Ca2+ channel expression is unchanged, suggesting that regulatory processes reduce I(Ca). We tested the hypothesis that an elevation in local Ca2+ reduces I(Ca) in KO myocytes. In patch-clamped myocytes from NCX KO mice, peak I(Ca) was reduced by 50%, and inactivation kinetics were accelerated as compared to wild-type (WT) myocytes. To assess the effects of cytosolic Ca2+ concentration on I(Ca), we used Ba2+ instead of Ca2+ as the charge carrier and simultaneously depleted sarcoplasmic reticular Ca2+ with thapsigargin and ryanodine. Under these conditions, we observed no significant difference in Ba2+ current between WT and KO myocytes. Also, dialysis with the fast Ca2+ chelator BAPTA eliminated differences in both I(Ca) amplitude and decay kinetics between KO and WT myocytes. We conclude that, in NCX KO myocytes, Ca2+-dependent inactivation of I(Ca) reduces I(Ca) amplitude and accelerates current decay kinetics. We hypothesize that the elevated subsarcolemmal Ca2+ that results from the absence of NCX activity inactivates some L-type Ca2+ channels. Modulation of subsarcolemmal Ca2+ by the Na+-Ca2+ exchanger may be an important regulator of excitation-contraction coupling.  相似文献   

6.
We constructed a recombinant baculovirus containing cardiac Na(+)-Ca2+ exchanger cDNA under control of the polyhedrin promoter. When either Sf9 or Sf21 insect cells are infected with the recombinant baculovirus, both Na(+)-Ca2+ exchanger protein and Na(+)-Ca2+ exchange activity are expressed at high level. The exchanger protein can be detected either by immunoblot or by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of whole cell lysate. At maximal expression, the exchanger protein comprises about 3-5% of total cell protein. The Na(+)-Ca2+ exchanger can be purified by alkaline extraction of infected cells followed by elution from a Bio-Rad Prep Cell. The expressed exchanger, in contrast to the native sarcolemmal exchanger, is not glycosylated. Sf9 cells expressing the exchanger are intensely stained by anti-exchanger antibodies as observed by immunofluorescence. The expressed exchanger is predominantly in the cell plasma membrane since it is susceptible to extracellular trypsin. In 45Ca2+ flux experiments, the expressed Na(+)-Ca2+ exchange activity is about 4-fold higher than that in cultured neonatal rat heart cells. The expressed exchanger was also analyzed electrophysiologically using whole cell patch clamp techniques. The characteristics of inward exchange currents in infected Sf21 cells are very similar to those of ventricular myocytes, although of a larger magnitude.  相似文献   

7.
8.
9.
Activity-dependent modulation of synaptic transmission is an essential mechanism underlying many brain functions. Here we report an unusual form of synaptic modulation that depends on Na+ influx and mitochondrial Na(+)-Ca2+ exchanger, but not on Ca2+ influx. In Ca(2+)-free medium, tetanic stimulation of Xenopus motoneurons induced a striking potentiation of transmitter release at neuromuscular synapses. Inhibition of either Na+ influx or the rise of Ca2+ concentrations ([Ca2+]i) at nerve terminals prevented the tetanus-induced synaptic potentiation (TISP). Blockade of Ca2+ release from mitochondrial Na(+)-Ca2+ exchanger, but not from ER Ca2+ stores, also inhibited TISP. Tetanic stimulation in Ca(2+)-free medium elicited an increase in [Ca2+]i, which was prevented by inhibition of Na+ influx or mitochondrial Ca2+ release. Inhibition of PKC blocked the TISP as well as mitochondrial Ca2+ release. These results reveal a novel form of synaptic plasticity and suggest a role of PKC in mitochondrial Ca2+ release during synaptic transmission.  相似文献   

10.
The Na(+)-Ca2+ exchanger contains internal regions of sequence homology known as the alpha repeats. The first region (alpha-1 repeat) includes parts of transmembrane segments (TMSs) 2 and 3 and a linker modeled to be a reentrant loop. To determine the involvement of the reentrant loop and TMS 3 portions of the alpha-1 repeat in exchanger function, we generated a series of mutants and examined ion binding and transport and regulatory properties. Mutations in the reentrant loop did not substantially modify transport properties of the exchanger though the Hill coefficient for Na+ and the rate of Na(+)-dependent inactivation were decreased. Mutations in TMS 3 had more striking effects on exchanger activity. Of mutations at 10 positions, 3 behaved like the wild-type exchanger (V137C, A141C, M144C). Mutants at two other positions expressed no activity (Ser139) or very low activity (Gly138). Six different mutations were made at position 143; only N143D was active, and it displayed wild-type characteristics. The highly specific requirement for an asparagine or aspartate residue at this position may indicate a key role for Asn143 in the transport mechanism. Mutations at residues Ala140 and Ile147 decreased affinity for intracellular Na+, whereas mutations at Phe145 increased Na+ affinity. The cooperativity of Na+ binding was also altered. In no case was Ca2+ affinity changed. TMS 3 may form part of a site that binds Na+ but not Ca2+. We conclude that TMS 3 is involved in Na+ binding and transport, but previously proposed roles for the reentrant loop need to be reevaluated.  相似文献   

11.
Antisense oligodeoxynucleotides (AS-ODNs) were used in combination with transient functional expression of the cardiac Na(+)-Ca2+ exchanger (NCX1) to correlate suppression of the Na(+)-Ca2+ exchange function with down-regulation of NCX1 protein expression. In a de-novo expression system (Sf9 cells), a decrease in both, NCX1 mRNA and protein after AS-ODN application was paralleled by diminished NCX1 activity, a typical hallmark of a true "antisense effect". Although AS-ODN uptake was also efficient in rat neonatal cardiac myocytes, in whole-cell extracts of these cells treated with AS-ODNs, the amount of NCX1 protein determined in a quantitative binding assay remained almost unchanged, despite a prompt loss of NCX1 function. Immunocytochemical staining of myocytes revealed that most of the immunoreactivity was not localized in the plasma membrane, but in intracellular compartments and was barely affected by AS-ODN treatment. These results indicate that the "functional half-life" of the NCX1 protein in the plasma membrane of neonatal cardiac myocytes is surprisingly short, much shorter than reported half-lifes of about 30 h for other membrane proteins.  相似文献   

12.
We have used a series of monoclonal antibodies (mAbs) to determine the degree of microscopic structural homology between the retinal Na+-Ca2+, K+ and the cardiac Na+-Ca2+ exchange proteins. Sets of mAbs were raised separately to partially purified preparations of either the retinal or the recombinant myocardial exchanger. Each panel of mAbs was then screened for crossreactivity with the respective heterologous exchanger using enzyme-linked immunoassay and immunoblotting techniques. Out of 43 anti-retinal exchanger mAbs, we found 3 detecting the cardiac exchanger on immunoblots, while 4 out of 36 anti-cardiac exchanger mAbs reacted with the retinal exchanger. The strength of the crossreactions was generally weak and suggested that only low affinity epitopes were available on the heterologous proteins. For two crossreacting anti-retinal mAbs the apparent binding affinities to the cardiac exchanger were lower by more than two orders of magnitude. The overall low degree of epitope sharing among the two sets of mAbs confirms that in spite of their obvious functional and topological similarities, microscopic structural homologies between the two proteins are scarce.  相似文献   

13.
14.
15.
The transport of Na+ and Ca2+ ions in the cardiac Na(+)-Ca2+ exchanger can be described as separate events (Khananshvili, D. (1990) Biochemistry 29, 2437-2442). Thus, the Na(+)-Na+ and Ca(2+)-Ca2+ exchange reactions reflect reversible partial reactions of the transport cycle. The effect of diffusion potentials (K(+)-valinomycin) on different modes of the Na(+)-Ca2+ exchanger (Na(+)-Ca2+, Ca(2+)-Ca2+, and Na(+)-Na+ exchanges) were tested in reconstituted proteoliposomes, obtained from the Triton X-100 extracts of the cardiac sarcolemmal membranes. The initial rates of the Nai-dependent 45Ca-uptake (t = 1 s) were measured in EGTA-entrapped proteoliposomes at different voltages. At the fixed values of voltage [45 Ca]o was varied from 4 to 122 microM, and [Na]i was saturating (150 mM). Upon varying delta psi from -94 to +91 mV, the Vmax values were increased from 9.5 +/- 0.5 to 26.5 +/- 1.5 nmol.mg-1.s-1 and the Km from 17.8 +/- 2.5 to 39.1 +/- 5.2 microM, while the Vmax/Km values ranged from only 0.53 +/- 0.08 to 0.73 +/- 0.17 nmol.mg-1.s-1.microM-1. The equilibrium Ca(2+)-Ca2+ exchange was voltage sensitive at very low [Ca]o = [Ca]i = 2 microM, while at saturating [Ca]o = [Ca]i = 200 microM the Ca(2+)-Ca2+ exchange became voltage-insensitive. The rates of the equilibrium Na(+)-Na+ exchange appears to be voltage insensitive at saturating [Na]o = [Na]i = 160 mM. Under the saturating ionic conditions, the rates of the Na(+)-Na+ exchange were at least 2-3-fold slower than the Ca(2+)-Ca2+ exchange. The following conclusions can be drawn. (a) The near constancy of the Vmax/Km for Na(+)-Ca2+ exchange at different voltages is compatible with the ping-pong model proposed previously. (b) The effects of voltage on Vmax of Na(+)-Ca2+ exchange are consistent with the existence of a single charge carrying transport step. (c) It is not yet possible to clearly assign this step to the Na+ or Ca2+ transport half of the cycle although it is more likely that 3Na(+)-transport is a charge carrying step. Thus, the unloaded ion-binding domain contains either -2 or -3 charges (presumably carboxyl groups). (d) The binding of Na+ and Ca2+ appears to be weakly voltage-sensitive. The Ca(2+)-binding site may form a small ion-well (less than 2-3 A).  相似文献   

16.
Recent studies in heart cells have shown taurine to induce a sustained increase of both intracellular Ca2+ and Na+. These results led us to believe that the increase in Na+ by taurine could be due to Na+ entry through the taurine-Na+ cotransporter which in turn favours transarcolemmal Ca2+ influx through Na+-Ca2+ exchange. Therefore, we investigated the effect of -alanine, a blocker of the taurine-Na+ cotransporter and low concentrations of CBDMB (a pyrazine derivative, 5-(N-4chlorobenzyl)-2,4-dimethylbenzamil), a Na+-Ca2+ exchanger blocker on taurine-induced [Ca]i increase in embryonic chick heart cells. Using Fura-2 Ca2+ imaging and Fluo-3 Ca2+ confocal microscopy techniques, taurine (20 mM) as expected, induced a sustained increase in [Ca]i at both the cytosolic and the nuclear levels. Preexposure to 500 M of the blocker of the taurine-Na+ cotransporter, -alanine, prevented the amino acid-induced increase of total [Ca]i. On the other hand, application of -alanine did not reverse the action of taurine on total [Ca]i. However, low concentrations of the Na+-Ca2+ exchanger blocker, CBDMB, reversed the taurine-induced sustained increase of cytosolic and nuclear free calcium (in presence or absence of -alanine). Thus, the effect of taurine on [Ca]i in heart cells appears to be due to Na+ entry through the taurine-Na+ cotransporter which in turn favours transarcolemmal Ca2+ influx through the Na+-Ca2+ exchanger.  相似文献   

17.
The electrophoretic mobility of the cardiac Na(+)-Ca(2+) exchange protein is different under reducing and nonreducing conditions. This mobility shift is eliminated in a cysteine-less exchanger, suggesting that the presence or absence of an intramolecular disulfide bond alters the conformation and mobility of the exchanger. Using cysteine mutagenesis and biochemical analysis, we have identified the cysteine residues involved in the disulfide bond. Cysteine 792 in loop h of the exchanger forms a disulfide bond with either cysteine 14 or 20 near the NH(2) terminus. Because the NH(2) terminus is extracellular, the data establish that loop h must also be extracellular. A rearrangement of disulfide bonds has previously been implicated in the stimulation of exchange activity by combinations of reducing and oxidizing agents. We have investigated the role of cysteines in the stimulation of the exchanger by the combination of FeSO(4) and dithiothreitol (Fe-DTT). Using the giant excised patch technique, we find that stimulation of the wild type exchanger by Fe-DTT is primarily due to the removal of a Na(+)-dependent inactivation process. Analysis of mutated exchangers, however, indicates that cysteines are not responsible for stimulation of the exchange activity by Fe-DTT. Ca(2+) blocks modification of the exchanger by Fe-DTT. Disulfide bonds are not involved in redox stimulation of the exchanger, and the modification reaction is unknown. Modulation of Na(+)-dependent inactivation may be a general mechanism for regulation of Na(+)-Ca(2+) exchange activity and may have physiological significance.  相似文献   

18.
Xenopus oocytes were injected with total mRNA isolated from hearts of 1-day-old chicks. After 5 days of incubation the follicular cell layers were removed and the oocytes were loaded with Na+ by incubation in hypertonic EGTA solution at 37 degrees C. The Na+-loaded oocytes accumulated 45Ca2+ from a Na+-free medium at a 3-18-fold higher rate than noninjected oocytes or oocytes injected with control solution containing no mRNA. Oocytes not subjected to the Na+-loading procedure showed no mRNA-dependent 45Ca2+ uptake. Size fractionation of the mRNA using sucrose density gradient centrifugation under denaturing conditions led to the identification of a 25 S fraction competent for induction of the Na+-Ca2+ exchange system.  相似文献   

19.
20.
The cardiac sarcolemmal Na(+)-Ca2+ exchanger is the primary mechanism for extrusion of calcium from the cardiac myocyte and therefore is important in regulating cardiac contractility. As part of an effort to determine whether the exchanger is associated with any genetic disorders of the heart or blood pressure, we have assigned the exchanger gene (designated NCX1) to human chromosome 2p21-p23 by analysis of a panel of mouse-human somatic cell hybrids and by in situ hybridization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号