首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 694 毫秒
1.
Human‐associated introduction of pathogens and consequent invasions is very evident in areas where no related organisms existed before. In areas where related but distinct populations or closely related cryptic species already exist, the invasion process is much harder to unravel. In this study, the population structure of the Eucalyptus leaf pathogen Teratosphaeria nubilosa was studied within its native range in Australia, including both commercial plantations and native forests. A collection of 521 isolates from across its distribution was characterized using eight microsatellite loci, resulting in 112 multilocus haplotypes (MLHs). Multivariate and Bayesian analyses of the population conducted in structure revealed three genetically isolated groups (A, B and C), with no evidence for recombination or hybridization among groups, even when they co‐occur in the same plantation. DNA sequence data of the ITS (n = 32), β‐tubulin (n = 32) and 27 anonymous loci (n = 16) were consistent with microsatellite data in suggesting that T. nubilosa should be considered as a species complex. Patterns of genetic diversity provided evidence of biological invasions by the pathogen within Australia in the states of Western Australia and New South Wales and helped unravel the pattern of invasion beyond Australia into New Zealand, Brazil and Uruguay. No significant genetic differences in pathogen populations collected in native forests and commercial plantations were observed. This emphasizes the importance of sanitation in the acquisition of nursery stock for the establishment of commercial plantations.  相似文献   

2.
Gregariousness is a common feature in aposematic insect prey and offers the additional benefit of enhancing the effectiveness of their toxic defences. Aggregations of the aposematic larvae of two species of leaf beetles, Paropsis atomaria and Paropsisterna variicollis, occur together on the same Eucalyptus trees over spring and summer. Conventionally, the colouration of these larvae is thought to provide aposematic protection against vertebrate predators, but supporting evidence is limited. We determine whether environmental preferences contribute to the heterospecific aggregations, and the potential costs for larvae of living in heterospecific aggregations. We surveyed natural aggregations of the larvae of both species in the field and recorded environmental variables of these aggregations. This revealed that heterospecific aggregations occurred more commonly at higher leaf temperatures, and in less visually conspicuous locations. Paropsis atomaria larvae were twice as likely to be found in heterospecific aggregations than Pa. variicollis. Next, we manipulated larval aggregations in the field to investigate the survival and gregarious behaviour of larvae in heterospecific aggregations. The gregarious behaviour of both species of larvae did not differ between heterospecific and monospecific aggregations. Further, the survival of larvae did not significantly differ between heterospecific and monospecific aggregations. We suggest that the preference for P. atomaria larvae to aggregate with Pavariicollis at higher leaf temperature results in the observed heterospecific aggregations, with a potential benefit of lowerer parasitoidism rates for P. atomaria.  相似文献   

3.
Since the 1860s, Australian insects have steadily colonized eucalypts in New Zealand. The rate of colonization has increased markedly over the last two decades. This increase may be related to increasing trade between the two countries. Currently there are 26 specialist eucalypt insect species and approximately 31 polyphagous insect species that can feed on Eucalyptus in New Zealand. The specialist eucalypt insects endemic to Australia have generally caused more damage than polyphagous or native insects. Eucalypt‐specific insects are dominated by sap sucking bugs, particularly psyllids, and defoliating Coleoptera and Lepidoptera. In some cases the major insect pest species have been those that are only occasional pests in Australia, for example Gonipterus scutellatus, Ctenarytaina eucalypti, Eriococcus coriaceus and Phylacteophaga froggatti. Some important insect pests have been rare, or even not described from Australia, prior to their appearance as a pest in New Zealand, for example Paropsis charybdis and Ophelimus eucalypti. Invading eucalypt insects are more likely to establish in the Auckland region than anywhere else in New Zealand.  相似文献   

4.
We present a phylogenetic and morphological study of the grassland earless dragon, Tympanocryptis pinguicolla, an endangered habitat specialist that occurs in a few isolated populations in eastern Australia. Tympanocryptis pinguicolla occurred historically in Victoria in south-eastern Australia, but has not been seen since 1990, and current populations are known in New South Wales and Canberra in south-eastern Australia. Recently, new populations identified as T. pinguicolla were discovered on the Darling Downs, Queensland. Translocation of individuals between these populations has been suggested as a conservation management strategy to maintain genetic diversity. To address this issue, we undertook a phylogenetic study of all major populations of T. pinguicolla using a 1838 bp region of mitochondrial DNA, incorporating ND1, ND2, COI and eight tRNA genes. We incorporated specialized degraded-DNA techniques to amplify DNA from historical museum specimens, as no extant tissue was available for Victorian populations. Our results, which include morphological analysis, provide convincing evidence that populations currently identified as T.␣pinguicolla do not comprise a monophyletic species, as the populations from the Darling Downs are more closely related to T. tetraporophora than to T. pinguicolla. In addition, we find that there is a significant level of haplotype divergence between populations of T. pinguicolla, indicating that these lineages separated at least 1.5 mya. Our results suggest translocation may not be an appropriate management strategy and our findings that Darling Downs populations are not T.␣pinguicolla will significantly influence the conservation management of this species in Queensland.  相似文献   

5.
Abstract The potential distribution of the herbaceous weed Senecio madagascariensis Poir. (fireweed) in Australia was estimated using the Bioclimate Prediction System, BIOCLIM. Climate profiles for S. madagascariensis predicted that suitable areas occurred only in the south-eastern region of Australia. Its potential to spread outside these areas was assessed by comparing the present African and South American distributions of this species with that observed in Australia. The rate of spread of S. madagascariensis in New South Wales was exponential, although in some regions, such as the Gloucester River Valley, the rates had decreased because all farms had become infested. The results indicate that S. madagascariensis may spread and increase in abundance along the far south coast of New South Wales and in south-eastern Queensland. Coastal areas in eastern Victoria and as far north in Queensland as the Tropic of Capricorn may be invaded.  相似文献   

6.
Abstract The amphibian fauna of New Zealand consists of three native species (Leiopelma spp.), and three Litoria species introduced from Australia in the last 140 years. We conducted a molecular phylogeographical study that aimed to identify the Australian origins of two species, Litoria aurea and Litoria raniformis. We used partial sequences of the mitochondrial cytochrome oxidase I (cox1) gene from 59 specimens sampled from across the range of both species to identify the probable source populations for the New Zealand introductions, and to describe the current genetic diversity among New Zealand Litoria populations. Our genetic data suggest that L. aurea was introduced into the North Island of New Zealand from two regions in Australia, once from the northern part of coastal New South Wales and once from the southern part of coastal New South Wales. Our data indicate that L. raniformis introductions originated from the Melbourne region of southern Victoria and once established in the South Island of New Zealand, the species subsequently spread throughout both islands. In addition, we found a distinct haplotype in L. raniformis from Tasmania that strongly suggests, contrary to earlier reports, that this species was not introduced into New Zealand from Tasmania. Finally, we identified two very distinctive mitochondrial lineages of L. raniformis within the mainland Australia distribution, which may be previously unrecognized species.  相似文献   

7.
8.
Abstract The eucalypt plantation industry in Western Australia provides a unique opportunity to study the movement of pathogens between closely related host taxa. Eucalyptus globulus, a native to Tasmania and south‐eastern Australia, is the predominant species in Western Australian plantations, often being planted adjacent to native forest containing Eucalyptus marginata and Eucalyptus diversicolor. Since the commencement of the plantation industry 20 years ago, several fungal species, previously known only to eastern Australia or overseas, have been reported on E. globulus in Western Australia. Botryosphaeria australis is a newly described species, recently found causing cankers on Acacia spp. in eastern Australia. However, during a routine survey, B. australis was found to be the predominant species associated with E. globulus plantations and native Eucalyptus spp. in Western Australia. In this study, six short simple repeat markers were used to evaluate genetic diversity and gene flow between collections of B. australis from native eucalypt forest and E. globulus plantations at two locations in south‐western Australia. In both cases, there was no restriction to gene flow between the plantations and the adjacent native forest. Botryosphaeria australis has now been isolated from a wide range of hosts across south‐western Australia and was not isolated from E. globulus in Tasmania or South Australia. This extensive distribution and host range suggests B. australis is native to Western Australia. This study demonstrates the ability of a pathogen to move between plantation and forests.  相似文献   

9.
Aim There has been considerable debate about pre‐settlement stand structures in temperate woodlands in south‐eastern Australia. Traditional histories assumed massive tree losses across the region, whereas a number of recent histories propose that woodlands were originally open and trees regenerated densely after settlement. To reconcile these conflicting models, we gathered quantitative data on pre‐settlement stand structures in EucalyptusCallitris woodlands in central New South Wales Australia, including: (1) tree density, composition, basal area and canopy cover at the time of European settlement; and (2) post‐settlement changes in these attributes. Location Woodlands dominated by Eucalyptus species and Callitris glaucophylla, which originally occupied approximately 100,000 km2 in central New South Wales, Australia. Methods We recorded all evidence of pre‐settlement trees, including stumps, stags and veteran trees, from 39 relatively undisturbed 1‐ha stands within 16 State Forests evenly distributed across the region. Current trees were recorded in a nested 900 m2 quadrat at each site. Allometric relationships were used to estimate girth over bark at breast height, tree basal area, and crown diameter from the girth of cut stumps. A post‐settlement disturbance index was developed to assess correlations between post‐settlement disturbance and attributes of pre‐settlement stands. Results The densities of all large trees (> 60 cm girth over bark at breast height) were significantly greater in current stands than at the time of European settlement (198 vs. 39 trees ha?1). Pre‐settlement and current stands did not differ in basal area. However, the proportional representation of Eucalyptus and Callitris changed completely. At the time of settlement, stands were dominated by Eucalyptus (78% of basal area), whereas current stands are dominated by Callitris (74%). On average, Eucalyptus afforded 83% of crown cover at the time of settlement. Moreover, the estimated density, basal area and crown cover of Eucalyptus at the time of settlement were significantly negatively correlated with post‐settlement disturbance, which suggests that these results underestimate pre‐settlement Eucalyptus representation in the most disturbed stands. Main conclusions These results incorporate elements of traditional and recent vegetation histories. Since European settlement, State Forests have been transformed from Eucalyptus to Callitris dominance as a result of the widespread clearance of pre‐settlement Eucalyptus and dense post‐settlement recruitment of Callitris. Tree densities did increase greatly after European settlement, but most stands were much denser at the time of settlement than recent histories suggest. The original degree of dominance by Eucalyptus was unexpected, and has been consistently underestimated in the past. This study has greatly refined our understanding of post‐settlement changes in woodland stand structures, and will strengthen the foundation for management policies that incorporate historical benchmarks of landscape vegetation changes.  相似文献   

10.
MtDNA sequencing was used to investigate the genetic population structure of Litoria pearsoniana, a wet forest-restricted hylid frog, endemic to southeast Queensland and northeast New South Wales, Australia. L. pearsoniana is regarded as endangered under Queensland legislation. Significant genetic divergence among populations of frogs from different rainforest isolates was identified, but the lack of reciprocal monophyly among adjacent isolates suggests this is the result of a relatively recent disruption to gene flow. A paired catchment study within a single rainforest isolate, the Conondale Range, revealed no substantial genetic structuring, indicating the occurrence of terrestrial dispersal among nearby streams either in the recent past or currently. Two major reciprocally monophyletic clades of mtDNA alleles were identified. These corresponded to two geographical regions separated by the Brisbane River valley; one consisting of the Conondale and D’Aguilar Ranges, and the other of the southern isolates in the Main, Border and Gibraltar Ranges. Sequence divergence between the two regions was more consistent with a late Miocene or Pliocene rather than late Pleistocene separation, and is similar to that found among phylogeographic divisions of rainforest reptiles and amphibians in north Queensland rainforests. The molecular evidence for long-term separation of these two regions is corroborated by the pattern of species turnover in the distributions of species of rainforest-restricted amphibians and reptiles. Bioclimatic modelling suggests that appropriate conditions for L. pearsoniana would have been restricted to isolated refuges in each phylogeographic division under cooler and drier climates, such as predicted for the last glacial maximum. Currently isolated montane areas may have been connected transiently during the past 2000 years. Identification of long-term zoogeographic divisions among southeast Queensland rainforest herpetofauna has important implications for conservation and management. Conservation management of L. pearsoniana should be applied at the scale of major rainforest isolates and the conservation status of the species should be assessed independently north and south of the historical division.  相似文献   

11.
Many population studies on invasive plant pathogens are undertaken without knowing the center of origin of the pathogen. Most leaf pathogens of Eucalyptus originate in Australia and consequently with indigenous populations available, and it is possible to study the pathways of invasion. Teratosphaeria suttonii is a commonly occurring leaf pathogen of Eucalyptus species, naturally distributed in tropical and subtropical regions of eastern Australia where it is regarded as a minor pathogen infecting older leaves; however, repeated infections, especially in exotic plantations, can result in severe defoliation and tree deaths. Nine polymorphic microsatellite markers were used to assess the genetic structure of 11 populations of T. suttonii of which four where from within its native range in eastern Australia and the remaining seven from exotic Eucalyptus plantations. Indigenous populations exhibited high allele and haplotype diversity, predominantly clonal reproduction, high population differentiation, and low gene flow. The diversity of the invasive populations varied widely, but in general, the younger the plantation industry in a country or region, the lower the diversity of T. suttonii. Historical gene flow was from Australia, and while self‐recruitment was dominant in all populations, there was evidence for contemporary gene flow, with South Africa being the most common source and Uruguay the most common sink population. This points distinctly to human activities underlying long‐distance spread of this pathogen, and it highlights lessons to be learned regarding quarantine.  相似文献   

12.
Australia is unique in having two highly diverse plant genera, Eucalyptus and Acacia, that dominate the vegetation on a continent‐wide scale. The recent shift in plantation forestry away from exotic Pinus radiata to native Eucalyptus species has resulted in much more extensive exchange of biota between native forest and plantation ecosystems than exchange in the past with plantations of exotic species. Growing numbers of hectares are being planted to Eucalyptus globulus across Australia, and plantations are providing resources and corridors for native biota. The present paper focuses on both the benefits and risks of having large‐scale forestry plantations of native species that are closely related to dominant native taxa in local forests. At least 85 species of insects have been recorded as pests of Eucalyptus plantations around Australia; the vast majority of these have been insects using the same host species, or closely related taxa, in native forests. Plantations of native species may also benefit from closely related local forests through the presence of: (i) the diverse array of ectomycorrhizal fungi favourable for tree growth; (ii) natural enemies harboured in native habitats; and (iii) recruitment of other important mutualists, such as pollinators. Exchanges work in two directions: plantations are also likely to influence native forests through the large amount of insect biomass production that occurs in outbreak situations, or through the introduction or facilitation of movements for insects that are not native to all parts of Australia. Finally, older plantations in which trees flower may exchange genes with surrounding forest species, given the high degree of hybridization exhibited by many Eucalyptus species. This is an aspect of exchange for which few data have been recorded. In summary, because of Australia’s unique biogeography, plantation forestry using eucalypt species entails exchanges with natural habitats that are unparalleled in scale and diversity in any other part of the world. More exchanges are likely as plantations occupy greater area, and as the time under cultivation increases.  相似文献   

13.
Thaumastocoris peregrinus is a recently introduced invertebrate pest of non-native Eucalyptus plantations in the Southern Hemisphere. It was first reported from South Africa in 2003 and in Argentina in 2005. Since then, populations have grown explosively and it has attained an almost ubiquitous distribution over several regions in South Africa on 26 Eucalyptus species. Here we address three key questions regarding this invasion, namely whether only one species has been introduced, whether there were single or multiple introductions into South Africa and South America and what the source of the introduction might have been. To answer these questions, bar-coding using mitochondrial DNA (COI) sequence diversity was used to characterise the populations of this insect from Australia, Argentina, Brazil, South Africa and Uruguay. Analyses revealed three cryptic species in Australia, of which only T. peregrinus is represented in South Africa and South America. Thaumastocoris peregrinus populations contained eight haplotypes, with a pairwise nucleotide distance of 0.2–0.9% from seventeen locations in Australia. Three of these haplotypes are shared with populations in South America and South Africa, but the latter regions do not share haplotypes. These data, together with the current distribution of the haplotypes and the known direction of original spread in these regions, suggest that at least three distinct introductions of the insect occurred in South Africa and South America before 2005. The two most common haplotypes in Sydney, one of which was also found in Brisbane, are shared with the non-native regions. Sydney populations of T. peregrinus, which have regularly reached outbreak levels in recent years, might thus have served as source of these three distinct introductions into other regions of the Southern Hemisphere.  相似文献   

14.
Geographic patterns of genetic variation are strongly influenced by historical changes in species habitats. Whether such patterns are common to co‐distributed taxa may depend on the extent to which species vary in ecology and vagility. We investigated whether broad‐scale phylogeographic patterns common to a number of small‐bodied vertebrate and invertebrate species in eastern Australian forests were reflected in the population genetic structure of an Australo‐Papuan forest marsupial, the red‐legged pademelon (Macropodidae: Thylogale stigmatica). Strong genetic structuring of mtDNA haplotypes indicated the persistence of T. stigmatica populations across eastern Australia and southern New Guinea in Pleistocene refugial areas consistent with those inferred from studies of smaller, poorly dispersing species. However, there was limited divergence of haplotypes across two known historical barriers in the northeastern Wet Tropics (Black Mountain Barrier) and coastal mideastern Queensland (Burdekin Gap) regions. Lack of divergence across these barriers may reflect post‐glacial recolonization of forests from a large, central refugium in the Wet Tropics. Additionally, genetic structure is not consistent with the present delimitation of subspecies T. s. wilcoxi and T. s. stigmatica across the Burdekin Gap. Instead, the genetic division occurs further to the south in mideastern Queensland. Thus, while larger‐bodied marsupials such as T. stigmatica did persist in Pleistocene refugia common to a number of other forest‐restricted species, species‐specific local extinction and recolonization events have resulted in cryptic patterns of genetic variation. Our study demonstrates the importance of understanding individualistic responses to historical climate change in order to adequately conserve genetic diversity and the evolutionary potential of species.  相似文献   

15.
Summary Many species of Eucalyptus, one of the dominant genera in Australian forests and woodlands, contain high levels of tannins and other phenols and are also heavily damaged by grazing insects. These phenols do not appear to affect insect attack because a wide range of concentrations of condensed tannins and other phenols in leaves of 13 Eucalyptus sp. influenced neither feeding rates of Paropsis atomaria larvae, nor their nitrogen use efficiencies. We discuss reasons why tannins may not appreciably reduce the availability of nitrogen (N) to these insects. Performance was directly related to leaf N concentration, and growth rates, N gains, and N use efficiencies all increased as leaf N content increased, although absolute feeding rates remained constant. These relationships differ from those found in insects feeding on other plants, and we suggest that the low N contents common in Eucalyptus leaves may be responsble. We propose that the extensive damage observed in many eucalypts is in part related to the high feeding rates maintained by individual larvae.To whom offprint requests shouid be sent  相似文献   

16.
Understanding and interpreting the host plant interactions of “generalist” herbivorous insects requires that species limits are accurately defined, as such taxa frequently harbour cryptic species with restricted host use. We tested for the presence of cryptic species across different host plant species in Australian Frankliniella schultzei using a combination of gene sequencing and newly developed microsatellite markers. We detect deep divergence between three colour morphs (black, brown and yellow) but no discordance between mitochondrial and nuclear genes in areas of sympatry, indicating the presence of at least three species in Australia (and potentially six globally). Microsatellite markers were developed for the brown species but could not be amplified in the black or yellow species because the divergence between them is too great. When applied to six populations across Queensland and New South Wales the microsatellites showed high levels of gene flow across thrips collected from Gossypium hirsutum (cotton), Hibiscus rosa-sinensis and Malvaviscus arboreus, and over distances of at least 950 km, indicating considerable movement by these insects and no host-associated genetic differentiation in the brown species. Significantly, the divergence between the three species in Australia was not associated with any noticeable host specialisation. The substantial overlap in geographical distribution and host plant range raises questions about the process of speciation in generalist insects. Our results provide the basis from which detailed quantification of relative host use can be conducted for each species within the F. schultzei complex; this next step is crucial to fully understanding the host plant relationships of each and, thus, the basis of their speciation.  相似文献   

17.
Abstract Baeoanusia xanthopleuron sp. n. and Avetianella coombsi sp. n. (Hymenoptera: Encyrtidae) are described from New South Wales and Queensland. Photomicrographs are provided to illustrate morphological characters of both species, and their systematic position is discussed on the basis of their morphology and biology. Both species are egg parasitoids of the wood borer Agrianome spinicollis (Macleay), an important pest of pecans in eastern Australia.  相似文献   

18.
Earth mites are pests of crops and pastures in southeastern Australia.Recent studies show differences between earth mite species in their mode ofreproduction, preferred hosts and pesticide tolerance. This paper examines thedistribution and pest status of each species. The southeastern Australiandistribution for each species is mapped, incorporating new data from easternNewSouth Wales, South Australia and Tasmania. A new population of an undescribedspecies previously identified from northwestern Victoria was found in northernNew South Wales. CLIMEX was used to identify climatic factors limiting thedistribution of P. major and P.falcatus, the most broadly distributed species. This analysissuggests tolerance to heat and desiccation limits the inland distribution ofthese two species. A three-year survey of agricultural outbreaks indicates thatall Penthaleus species are major agricultural pestsalthough their pest status on crop types appears to differ. All speciescontributed to chemical control failures. However P.falcatus, previously identified in laboratory tests as havingincreased tolerance to pesticides, was the most common species associated withcontrol failures. A laboratory experiment indicated that mites are sometimespests on crops on which they cannot persist for a generation. Results arediscussed with respect to management of these agricultural pests.  相似文献   

19.
The majority of Mycosphaerella species from eucalypts (Eucalyptus, Corymbia and Angophora) in Australia have been recorded only from trees growing in plantations. This illustrates a bias in research in the past two decades toward commercial enterprise, and it emphasises a lack of understanding of the occurrence of these important fungi under natural conditions. Surveys of foliar fungi in native forests in eastern Australia, as well as adjacent plantations, thus have been initiated in recent years. In this study we describe four new species of Mycosphaerella from Eucalyptus spp. as well as other Myrtaceae. Mycosphaerella tumulosa sp. nov. (anamorph: Pseudocercospora sp.) was found on more than seven species of Eucalyptus and Corymbia in native forests and plantations in northeastern New South Wales and southeastern Queensland and appears to be relatively common, although not damaging to these trees. Mycosphaerella multiseptata sp. nov. was recorded from several locations on species of Angophora in native forests and amenity plantings. Mycosphaerella pseudovespa sp. nov. was found in one location in native forest on E. biturbinata. The first species of Mycosphaerella to be described from Syncarpia, M. syncarpiae sp. nov., was found in native forests in numerous locations from Sydney through to northeastern New South Wales and appears to be relatively common.  相似文献   

20.
Abstract

Panbiogeographic track analysis is applied to the distribution of several groups of mosses which occur in the New Zealand region. The analysis highlights areas of biogeographic interest (nodes) in the New Zealand region as follows: 1. New Guinea, 2. New Caledonia, 3. New South Wales/Queensland border in Australia, 4. northern New Zealand, 5. Rapa Island, 6. subantarctic New Zealand.

New Zealand is connected to these nodes by the following standard tracks: 1. New Guinea—New South Wales/Queensland border—Tasmania—subantarctic New Zealand, 2. New Guinea—New Caledonia—New Zealand—subantarctic New Zealand, 3. a central Tasman Sea transversal track; New South Wales/Queensland border—New Caledonia. Rapa Island is connected to the Tasman region by northern New Zealand and New Caledonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号