首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIM: To develop a multiplex identification method for trichothecene- and moniliformin-producing Fusarium species. METHOD AND RESULTS: In this article, we present a single nucleotide polymorphism (SNP) assay to simultaneously detect and identify 16 trichothecene- and moniliformin-producing Fusarium species. A number of SNP primers are designed to detect clades of species with particular mycotoxigenic synthetic abilities. The assay is based on minisequencing using SNaPshot reactions and the SNP primers are designed based on motifs derived from phylogenetic analyses of translation elongation factor-1alpha sequences. The present version of the Fusarium SNP assay can distinguish major groups of trichothecene producers; the strict-type-A, the strict-type-B, the type-A and type-B trichothecene producers and the putative moniliformin producers. The SNP assay was validated against five naturally infected cereal samples that previously had been analysed morphologically, chemically and by a multiplex DNA array hybridization. CONCLUSIONS: The Fusarium SNP assay reveals the advantages of using SNPs for multiplex species identification. Significance AND IMPACT OF THE STUDY: The current assay may qualify as a high-throughput screening method for small-grain cereals in the feed and food chain, and may facilitate detection of new or introduced Fusarium species.  相似文献   

2.
Fusarium species are worldwide causal agents of ear rot in cereals. Their toxigenic potential is a health risk for both humans and animals. In Argentina, most identification of these fungi has been based on morphological and cross-fertility criteria which are time consuming and require considerable expertise in Fusarium taxonomy and physiology. DNA based approaches have been reported as rapid, sensitive and specific alternatives to identify the main fumonisin and trichothecene-producing Fusarium species. In this work, we used PCR assays and the partial sequence of TEF1-alpha gene (Translation Elongation Factor-1 alpha) to identify the fumonisin and trichothecene-producing species in Fusarium isolates from diverse regions of Argentina. The relative efficiency and reliability of those methods to improve mycotoxin risk prediction in this country were also assessed. Species-specific PCR assays were targeted toward multicopy IGS (Intergenic Spacer of rDNA units) and on the toxin biosynthetic genes FUM1 (fumonisins) and TRI13 and TRI7 genes (trichothecenes). PCR assays based on FUM1 gene and IGS sequences allowed detection and discrimination of the fumonisin producers Fusarium proliferatum and Fusarium verticillioides. Molecular identification of nonfumonisin producers from Gibberella fujikuroi species complex was possible after determination of TEF1-alplha gene sequences, which indicated the presence of Fusarium subglutinans, Fusarium andiyazi and Fusarium thapsinum. TEF-1 alpha gene sequences also allowed discrimination of the different species of the Fusarium graminearum complex (F. graminearum sensu lato) as F. graminearum sensu stricto, Fusarium meridionale and Fusarium boothii. The last two species belonged to NIV chemotype and were detected for the first time in the subtropical region of Argentina while F. graminearum sensu stricto was DON producer only, which was also confirmed by specific PCR assays based on TRI137/TRI7 genes. Our results indicated that the PCR assays evaluated in this work are reliable diagnostic tools to detect the main toxigenic Fusarium species associated to cereal grains in Argentina. An extensive epidemiological survey based on the approach presented in this work is currently in progress to know the mycotoxigenic hazard of Fusarium species in cereal grains from the subtropical region of Argentina.  相似文献   

3.
Cereal grain may be infected with a number of Fusarium species some of which are producers of highly toxic compounds such as the trichothecenes. Correct identification of these species is essential for risk assessment of cereal grain for human or animal consumption. Most of the available methods for identification are either time consuming or aimed at only one or a few target species. Microarray technology offers parallel analysis of a high number of DNA targets. In this study 57 capture oligonucleotides (CO) were designed based upon Fusarium ITS2 rDNA sequences, and used for microarray production. From this array COs could be selected that were able to hybridise specifically to labelled PCR products from the ITS region of Fusarium graminearum/Fusarium culmorum, Fusarium pseudograminearum, Fusarium poae, Fusarium sporotrichioides, Fusarium equiseti, Fusarium langsethiae and Fusarium tricinctum/Fusarium avenaceum. A few COs showed some cross hybridisation to non-target species. In a preliminary experiment it was shown that this cross hybridisation could be eliminated by increasing hybridisation stringency. The array could be used to detect individual Fusarium species in mixed samples and in environmental samples. This study demonstrates the feasibility of oligonucleotide microarrays for parallel detection of a number of Fusarium species.  相似文献   

4.
AIMS: Development of a fast, sensitive and easy to handle method for the detection of Fusarium graminearum contamination in cereal samples by PCR. METHODS AND RESULTS: DNA Detection Test Strips were used for PCR-product detection and the method was compared to agarose gel electrophoresis. A minimum of 0.26 ng of purified target DNA was detectable with the Test Strip Detection limit in less contaminated samples was slightly lower when gel electrophoresis was used for amplicon detection. In highly contaminated samples, detection limits of both methods were similar. CONCLUSIONS: Detection of PCR products was performed in 20 min without the need of special technical equipment or hazardous fluorescent DNA dyes. SIGNIFICANCE AND IMPACT OF THE STUDY: The new method described is useful for the screening of cereals in industrial quality control.  相似文献   

5.
The currently available morphological and molecular diagnostic techniques for Fusarium redolens and the three phylogenetic clades of Fusarium oxysporum are problematic. Aligned translation elongation factor 1 alpha (TEF-1 alpha) gene sequences from these species and their close relatives were used to design F. redolens-specific primers, and to identify restriction sites that discriminate among the three clades of F. oxysporum. The F. redolens-specific primers distinguished this species from all others included in the study. There were three TEF-1 alpha-RFLP patterns among formae speciales of F. oxysporum. These PCR-RFLP patterns corresponded with the three clades. These techniques provide simple and inexpensive diagnostic methods for the identification of F. redolens and members of the three clades of F. oxysporum.  相似文献   

6.
Rolling Circle Amplification (RCA) of DNA is a sensitive and cost effective method for the rapid identification of pathogenic fungi without the need for sequencing. Amplification products can be visualized on 1% agarose gel to verify the specificity of probe-template binding or directly by adding fluorescent dyes. Fusarium Head Blight (FHB) is currently the world's largest threat to the production of cereal crops with the production of a range of mycotoxins as an additional risk. We designed sets of RCA padlock probes based on polymorphisms in the elongation factor 1-α (EF-1α) gene to detect the dominant FHB species, comprising lineages of the Fusarium graminearum species complex (FGSC). The method also enabled the identification of species of the Fusarium oxysporum (FOSC), the Fusarium incarnatum-equiseti (FIESC), and the Fusarium tricinctum (FTSC) species complexes, and used strains from the CBS culture collection as reference. Subsequently probes were applied to characterize isolates from wheat and wild grasses, and inoculated wheat kernels. The RCA assays successfully amplified DNA of the target fungi, both in environmental samples and in the contaminated wheat samples, while no cross reactivity was observed with uncontaminated wheat or related Fusarium species. As RCA does not require expensive instrumentation, the technique has a good potential for local and point of care screening for toxigenic Fusarium species in cereals.  相似文献   

7.
AIMS: The aim of the study was to develop a sensitive detection method of Fusarium culmorum contamination in cereal samples. METHODS AND RESULTS: A nested-PCR method using a single closed tube was developed for the detection of F. culmorum in infected cereal samples. The concentrations of the first primer pair was diluted 10,000 times compared to the concentration used for the second primer pair. Differing annealing temperatures allowed both first and second polymerase chain reaction (PCR) reactions to be performed subsequently in the same closed tube. The detection limit was 5-50 fg of purified target DNA and allowed the detection of 1% infected seeds of wheat in a mixture with uninfected grains. CONCLUSIONS: F. culmorum can be specifically detected in cereal samples by the highly sensitive method of nested-PCR in a single closed tube. SIGNIFICANCE AND IMPACT OF THE STUDY: This work describes the detection of F. culmorum in cereal samples that is approximately 100 times more sensitive than previous PCR methods, involves low risk of cross contaminations between samples, low costs and reduced hands-on time as compared to standard nested-PCR protocols.  相似文献   

8.
AIMS: To determine whether microarray analysis could be employed for the differential identification of a range of environmental Bacillus sp. from four strains of Bacillus anthracis. METHODS AND RESULTS: Oligonucleotide probes were designed that were specific to virulence factor genes of B. anthracis (pag, lef and cap), the variable number tandem repeat region of the B. anthracis vrrA gene and to the 16S-23S rRNA intergenic transcribed spacer region (ITS) and pleiotropic regulator (plcR) regions of the Bacillus cereus subgroup species. Generic probes were also designed to hybridize with conserved regions of the 16S rRNA genes of Bacillus (as a positive control), Neisseria sp., Pseudomonas sp., Streptococcus sp., Mycobacterium sp. and to all members of the Enterobacteriaceae to allow simultaneous detection of these bacteria. Identification of B. anthracis was found to rely entirely on hybridization of DNA specific to regions of the pag, lef and cap genes. Cross-reaction was observed between B. anthracis and other Bacillus species with all the other Bacillus probes tested. Results obtained using microarray hybridizations were confirmed using conventional microbiological techniques and found to have very high comparability. CONCLUSIONS: Microarray-based assays are an effective method for the identification of B. anthracis from mixed-culture environmental samples without problems of false-positivity that have been observed with conventional PCR assays. SIGNIFICANCE AND IMPACT OF THE STUDY: Identification of environmental Bacillus sp. by conventional PCR is prone to potential for reporting false-positives. This study provides a method for the exclusion of such isolates.  相似文献   

9.
In North America, asparagus (Asparagus officinalis) production suffers from a crown and root rot disease mainly caused by Fusarium oxysporum f. sp. asparagi and F. proliferatum. Many other Fusarium species are also found in asparagus fields, whereas accurate detection and identification of these organisms, especially when processing numerous samples, is usually difficult and time consuming. In this study, a PCR-denaturing gradient gel electrophoresis (DGGE) method was developed to assess Fusarium species diversity in asparagus plant samples. Fusarium-specific PCR primers targeting a partial region of the translation elongation factor-1 alpha (EF-1 alpha) gene were designed, and their specificity was tested against genomic DNA extracted from a large collection of closely and distantly related organisms isolated from multiple environments. Amplicons of 450 bp were obtained from all Fusarium isolates, while no PCR product was obtained from non-Fusarium organisms. The ability of DGGE to discriminate between Fusarium taxa was tested over 19 different Fusarium species represented by 39 isolates, including most species previously reported from asparagus fields worldwide. The technique was effective to visually discriminate between the majority of Fusarium species and/or isolates tested in pure culture, while a further sequencing step permitted to distinguish between the few species showing similar migration patterns. Total genomic DNA was extracted from field-grown asparagus plants naturally infested with different Fusarium species, submitted to PCR amplification, DGGE analysis and sequencing. The two to four bands observed for each plant sample were all affiliated with F. oxysporum, F. proliferatum or F. solani, clearly supporting the reliability, sensitivity and specificity of this approach for the study of Fusarium diversity from asparagus plants samples.  相似文献   

10.
Surveys (in 2002 and 2003) were performed for fungal endophytes in roots of 24 plant species growing at 12 sites (coastal and inland soils, both sandy soils and salt marshes) under either water or salt stress in the Alicante province (Southeast Spain). All plant species examined were colonized by endophytic fungi. A total of 1830 fungal isolates were obtained and identified by morphological and molecular [internal transcribed spacer (ITS) and translation elongation factor-1alpha gene region (TEF-1alpha) sequencing] techniques. One hundred and forty-two fungal species were identified, belonging to 57 genera. Sterile mycelia were assigned to 177 morphospecies. Fusarium and Phoma species were the most frequent genera, followed by Aspergillus, Alternaria and Acremonium. Fungal root endophytic communities were influenced by the soil type where their respective host plants grew, but not by location (coastal or inland sites). Fusarium oxysporum, Aspergillus fumigatus and Alternaria chlamydospora contributed most to the differences found between endophytic communities from sandy and saline soils. Host preference was found for three Fusarium species studied. Fusarium oxysporum and Fusarium solani were especially isolated from plants of the family Leguminosae, while Fusarium equiseti showed a preference for Lygeum spartum (Gramineae). In some cases, specificity could be related to intra-specific variability as shown by sequencing of the TEF-1alpha in the genus Fusarium.  相似文献   

11.
12.
Aims: For identification of members of the fungal order Eurotiales, an 18S rRNA gene‐based oligonucleotide microarray was developed and optimized. Methods and Results: Eurotiales‐specific probes covering most members of the Eurotiales as well as species‐specific probes were designed and evaluated with three pure cultures (two fungi from the Eurotiales and one fungus from the Hypocreales). Nearly complete 18S rRNA genes of each reference culture were amplified and fluorescently labelled by random priming. Conclusions: Positive and negative hybridization results confirmed that the Eurotiales probes tested in this study could correctly identify members of the Eurotiales. The species‐specific probes were also capable of species‐level detection. Significance and Impact of the Study: These findings demonstrate the potential applications of a phylogenetic oligonucleotide microarray approach to characterizing fungal species and populations in environmental and other samples.  相似文献   

13.
Identification of Fusarium species by traditional methods requires specific skill and experience and there is an increased interest for new molecular methods for identification and quantification of Fusarium from food and feed samples. Real-time PCR with probe technology (Taqman) can be used for the identification and quantification of several species of Fusarium from cereal grain samples. There are several critical steps that need to be considered when establishing a real-time PCR-based method for DNA quantification, including extraction of DNA from the samples. In this study, several DNA extraction methods were evaluated, including the DNeasy Plant Mini Spin Columns (Qiagen), the Bio robot EZ1 (Qiagen) with the DNeasy Blood and Tissue Kit (Qiagen), and the Fast-DNA Spin Kit for Soil (Qbiogene). Parameters such as DNA quality and stability, PCR inhibitors, and PCR efficiency were investigated. Our results showed that all methods gave good PCR efficiency (above 90%) and DNA stability whereas the DNeasy Plant Mini Spin Columns in combination with sonication gave the best results with respect to Fusarium DNA yield. The modified DNeasy Plant Mini Spin protocol was used to analyse 31 wheat samples for the presence of F. graminearum and F. culmorum. The DNA level of F. graminearum could be correlated to the level of DON (r(2) = 0.9) and ZEN (r(2) = 0.6) whereas no correlation was found between F. culmorum and DON/ZEA. This shows that F. graminearum and not F. culmorum, was the main producer of DON in Swedish wheat during 2006.  相似文献   

14.
AIMS: To create a fast, sensitive and specific method for identifying Fusarium oxysporum f. sp. cucumerinum and F. o. luffae. METHODS AND RESULTS: Specific DNA bands were selected as probes from RAPD profiles of 13 formae speciales of F. oxysporum. The forma specialis-specific probe OPC18300c and OPC18520f could be used to identify F. o. cucumerinum and F. o. luffae by RAPD-PCR followed dot blot hybridization, respectively. CONCLUSIONS: A specific method for identifying F. o. cucumerinum and F. o. luffae was achieved. SIGNIFICANCE AND IMPACT OF THE STUDY: F. oxysporum formae speciales identification with a DNA probe can be relatively rapid and provides a method to identify the pathogen without host inoculation tests.  相似文献   

15.
AIMS: Correlations between DNA content of trichothecene-producing Fusarium spp. and concentration of the key mycotoxin deoxynivalenol (DON) in cereal samples. METHODS AND RESULTS: A LightCycler PCR-based assay was used to quantify the DNA from trichothecene-producing Fusarium spp. in 300 wheat samples. DNA concentrations ranged from not detectable to 16.3 mg kg-1 whereas DON concentrations (GC/MS data) varied from not detectable to 34.3 mg kg-1. Data analysis revealed a coefficient of correlation r=0.9557 between DON concentrations and DNA-amounts over all samples. An interval of confidence for P=95% was calculated based on samples with DON concentrations < or = 1.5 mg kg-1 (n=234). CONCLUSIONS: Quantification of 32 samples of Fusarium-contaminated wheat was performed within 45 min. Data analysis allowed estimation of DON contamination from quantitative PCR data in the wheat samples. SIGNIFICANCE AND IMPACT OF THE STUDY: The method described is useful for the screening of cereals in industrial quality control.  相似文献   

16.
Culicoides species of the Obsoletus group (Diptera: Ceratopogonidae) are potential vectors of bluetongue virus serotype 8 (BTV 8), which was introduced into central Western Europe in 2006. Correct morphological species identification of Obsoletus group females is especially difficult and molecular identification is the method of choice. In this study we present a new molecular tool based on probe hybridization using a DNA microarray format to identify Culicoides species of the Obsoletus group. The internal transcribed spacer 1 (ITS1) gene sequences of 55 Culicoides belonging to 13 different species were determined and used, together with 19 Culicoides ITS1 sequences sourced from GenBank, to design species-specific probes for the microarray test. This test was evaluated using the amplified ITS1 sequences of another 85 Culicoides specimens, belonging to 11 species. The microarray test successfully identified all samples (100%) of the Obsoletus group, identifying each specimen to species level within the group. This test has several advantages over existing polymerase chain reaction (PCR)-based molecular tools, including possible capability for parallel analysis of many species, high sensitivity and specificity, and low background signal noise. Hand-spotting of the microarray slide and the use of detection chemistry make this alternative technique affordable and feasible for any diagnostic laboratory with PCR facilities.  相似文献   

17.
A microarray analytic system that uses a silicon chip with immobilized in microreactor test-system for multiplex analysis of DNA by real-time polymerase chain reaction (RT-PCR) was developed and optimized. We suggested the method of immobilization of PCR-components of a test-system, chose the stabilizer, and conducted the optimization of the composition of reaction mixture to achieve permanent stability of a microarray. We conducted optimization of preparation of samples using magnetic sorbent and indicated that, with 2.6 x 10(4) copies/ml, 60 min are necessary to obtain positive identification including time for preparation of model probes. The abilities of the created system were demonstrated on the example of microarray analysis of samples with different content of DNA, low absolute limits of identification (20 DNA copies in microreactor), and high reproducibility of the analysis.  相似文献   

18.
Oligonucleotide microarray for identification of Enterococcus species   总被引:7,自引:0,他引:7  
For detection of most members of the Enterococcaceae, the specificity of a novel oligonucleotide microarray (ECC-PhyloChip) consisting of 41 hierarchically nested 16S or 23S rRNA gene-targeted probes was evaluated with 23 pure cultures (including 19 Enterococcus species). Target nucleic acids were prepared by PCR amplification of a 4.5-kb DNA fragment containing large parts of the 16S and 23S rRNA genes and were subsequently labeled fluorescently by random priming. Each tested member of the Enterococcaceae was correctly identified on the basis of its unique microarray hybridization pattern. The evaluated ECC-PhyloChip was successfully applied for identification of Enterococcus faecium and Enterococcus faecalis in artificially contaminated milk samples demonstrating the utility of the ECC-PhyloChip for parallel identification and differentiation of Enterococcus species in food samples.  相似文献   

19.
In order to design a method for the accurate detection and identification of food-borne pathogens, we used comparative genomics to select 70-mer oligonucleotide probes specific for 11 major food-borne pathogens (10 overlapping probes per pathogen) for use in microarray analysis. We analyzed the hybridization pattern of this constructed microarray with the Cy3-labeled genomic DNA of various food-borne pathogens and other bacteria. Our microarray showed a highly specific hybridization pattern with the genomic DNA of each food-borne pathogen; little unexpected cross-hybridization was observed. Microarray data were analyzed and clustered using the GenePix Pro 6.0 and GeneSpring GX 7.3.1 programs. The analyzed dendrogram revealed the discriminating power of constructed microarray. Each food-borne pathogen clustered according to its hybridization specificity and non-pathogenic species were discriminated from pathogenic species. Our method can be applied to the rapid and accurate detection and identification of food-borne pathogens in the food industry. In addition, this study demonstrates that genome sequence comparison and DNA microarray analysis have a powerful application in epidemiologic and taxonomic studies, as well as in the food safety and biodefense fields.  相似文献   

20.
Rapid identification of enteropathogenic bacteria in stool samples is critical for clinical diagnosis and antimicrobial therapy. In this study, we describe the development of an approach that couples multiplex PCR with hybridization to a DNA microarray, to allow the simultaneous detection of the 10 pathogens. The microarray was synthesized with 20-mer oligonucleotide probes that were designed to be specific for virulence-factor genes of each strain. The detection limit for genomic DNA from a single strain was approximately 10 fg. In the presence of heterogeneous non-target DNA, the detection sensitivity of the array decreased to approximately 100 fg. We did not observe any non-specific hybridization. In addition, we successfully used this oligonucleotide-based DNA microarray to identify the causative agents in clinical stool samples from patients with food-borne enteritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号