首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Novel sheddable micelles having hydrophilic coronas capable of being shed from biodegradable polylactide (PLA) cores by the cleavage of disulfide linkages in response to thiols were prepared by aqueous micellization of PLA-based amphiphilic block copolymers functionalized with disulfides at block junctions. These well-defined copolymers were synthesized by a combination of ring-opening polymerization and atom transfer radical polymerization in the presence of a new disulfide-functionalized double-head initiator having both terminal OH and Br groups. (1)H NMR and GPC results indicate that both polymerizations were well-controlled with molecular weight distribution as low as M(w)/M(n) < 1.2. Aqueous micellization to form core/shell micelles with disulfides at the interface of PLA cores and hydrophilic coronas and their thiol-responsive degradation were investigated. In the presence of water-soluble thiols, disulfide linkages in the micelles were cleaved and hydrophilic coronas were lost, causing PLA cores to precipitate due to the loss of colloidal stability. In a biomedical perspective, the new sheddable micelles were not cytotoxic and hence biocompatible.  相似文献   

2.
A series of novel amphiphilic triblock copolymers of poly(ethyl ethylene phosphate) and poly(-caprolactone) (PEEP-PCL-PEEP) with various PEEP and PCL block lengths were synthesized and characterized. These triblock copolymers formed micelles composed of a hydrophobic core of poly(-caprolactone) (PCL) and a hydrophilic shell of poly(ethyl ethylene phosphate) (PEEP) in aqueous solution. The micelle morphology was spherical, determined by transmission electron microscopy. It was found that the size and critical micelle concentration values of the micelles depended on both hydrophobic PCL block length and PEEP hydrophilic block length. The in vitro degradation characteristics of the triblock copolymers were investigated in micellar form, showing that these copolymers were completely biodegradable under enzymatic catalysis of Pseudomonas lipase and phosphodiesterase I. These triblock copolymers were used for paclitaxel (PTX) encapsulation to demonstrate the potential in drug delivery. PTX was successfully loaded into the micelles, and the in vitro release profile was found to be correlative to the polymer composition. These biodegradable triblock copolymer micelles are potential as novel carriers for hydrophobic drug delivery.  相似文献   

3.
Li G  Liu J  Pang Y  Wang R  Mao L  Yan D  Zhu X  Sun J 《Biomacromolecules》2011,12(6):2016-2026
The hydrophobic block of polymeric micelles formed by amphiphilic copolymers has no direct therapeutical effect, and the metabolites of these hydrophobic segments might lead to some unexpected side effects. Here the hydrophobic core of polymeric micelles is replaced by highly water-insoluble drugs themselves, forming a new micellar drug delivery system. By grafting hydrophobic drugs of paclitaxel (PTX) onto the surface of hydrophilic hyperbranched poly(ether-ester) (HPEE), we constructed an amphiphilic copolymer (HPEE-PTX). HPEE-PTX could self-assemble into micellar nanoparticles in aqueous solution with tunable drug contents from 4.1 to 10.7%. Moreover, the hydrolysis of HPEE-PTX in serum resulted in the cumulative release of PTX. In vivo evaluation indicated that the dosage toleration of PTX in mice had been improved greatly and HPEE-PTX micellar nanoparticles could be used as an efficient prodrug with satisfactory therapeutical effect. We believe that most of the lipophilic drugs could improve their characters through this strategy.  相似文献   

4.
The synthesis of core-shell star copolymers via living free radical polymerization provides a convenient route to three-dimensional nanostructures having a poly(ethylene glycol) outer shell, a hydrophilic inner shell bearing reactive functional groups, and a central hydrophobic core. By starting with well-defined linear diblock copolymers, the thickness of each layer, overall size/molecular weight, and the number of internal reactive functional groups can be controlled accurately, permitting detailed structure/performance information to be obtained. Functionalization of these polymeric nanoparticles with a DOTA-ligand capable of chelating radioactive (64)Cu nuclei enabled the biodistribution and in vivo positron emission tomography (PET) imaging of these materials to be studied and correlated directly to the initial structure. Results indicate that nanoparticles with increasing PEG shell thickness show increased blood circulation and low accumulation in excretory organs, suggesting application as in vivo carriers for imaging, targeting, and therapeutic groups.  相似文献   

5.
Giant and stable worm micelles formed from poly(ethylene glycol) (PEG)-based diblock copolymer amphiphiles have the potential advantage compared to smaller assemblies for delivery of a large quantity of hydrophobic drugs or dyes per carrier. Here we show that worm micelles can be targeted to cells with internalization and delivery of nontoxic dyes as well as cytotoxic drugs. Constituent copolymers are end-biotinylated to mediate high affinity binding of worm micelles to both avidin-bearing surfaces and biotin-specific receptors on smooth muscle cells. Pristine worm micelles, that lack biotin, show much less frequent and nonspecific point attachments to the same surfaces. Biotinylated worm micelles prove stable in aqueous solution for at least a month and also prove capable of loading, retaining, and delivering hydrophobic dyes and drugs. The results thus demonstrate the feasibility of targeted delivery by polymeric worm micelles.  相似文献   

6.
Lee CT  Huang CP  Lee YD 《Biomacromolecules》2006,7(4):1179-1186
Novel polymeric amphiphilic copolymers were synthesized using chondroitin sulfate (CS) as a hydrophilic segment and poly(L-lactide) (PLLA) as a hydrophobic segment. Micelles of those copolymers were formed in an aqueous phase and were characterized by 1H NMR spectra, fluorescence techniques, dynamic light scattering (DLS), atomic force microscopy (AFM), and confocal microscopy. Their critical aggregation concentrations (CAC) are in the range of 0.0043-0.0091 mg/mL at 25 degrees C. The partition equilibrium constants, Kv, of the pyrene probe in the aqueous solution were from 3.65 x 10(5) to 1.41 x 10(6) at 25 degrees C. The mean diameters of the micelles were below 200 nm, and their sizes were narrowly distributed. The AFM images revealed that the self-aggregates were spherical. Additionally, the CSn-PLLA micelles can efficiently transport within the cells via endocytosis as observed from confocal microscopy.  相似文献   

7.
Amphiphilic diblock copolymers with varying compositions of hydrophilic poly(ethylene oxide) (PEO) and hydrophobic poly[bis(ethyl glycinat-N-yl)phosphazene] (PNgly) were synthesized via the controlled cationic-induced polymerization of a phosphoranimine (Cl(3)P=NSiMe(3)) at ambient temperature using a PEO-phosphoranimine macroinitiator. The aqueous-phase transition behavior of PEO-PNgly-3 (M(n) = 10,000) and micelle formation of both PEO-PNgly-3 and PEO-PNgly-4 (M(n) = 8,500) were investigated using fluorescence techniques and dynamic light scattering. The critical micelle concentrations (cmc's) of PEO-PNgly-3 and PEO-PNgly-4 were determined to be 3 and 12 mg/L with the mean diameters of micelles being 120 and 130 nm, respectively. The hydrolytic degradation of these diblock copolymers was also studied in solution. These studies coupled with the biodegradability of the poly[bis(ethyl glycinat-N-yl)phosphazene] block to give benign products make PEO-PNgly copolymers well-suited for a wide variety of biomedical applications including novel biodegradable drug-delivery systems.  相似文献   

8.
Lee H  Zeng F  Dunne M  Allen C 《Biomacromolecules》2005,6(6):3119-3128
Six amphiphilic diblock copolymers based on methoxy poly(ethylene glycol) (MePEG) and poly(delta-valerolactone) (PVL) with varying hydrophilic and hydrophobic block lengths were synthesized via a metal-free cationic polymerization method. MePEG-b-PVL copolymers were synthesized using MePEG with Mn = 2000 or Mn = 5000 as the macroinitiator. 1H NMR and GPC analyses confirmed the synthesis of diblock copolymers with relatively narrow molecular weight distributions (Mn/Mw = 1.05-1.14). DSC analysis revealed that the melting temperatures (Tm) of the copolymers (47-58 degrees C) approach the Tm of MePEG as the PVL content is decreased. MePEG-b-PVL copolymer aggregates loaded with the hydrophobic anti-cancer drug paclitaxel were found to have effective mean diameters ranging from 31 to 970 nm depending on the composition of the copolymers. A MePEG-b-PVL copolymer of a specific composition was found to form drug-loaded micelles of 31 nm in diameter with a narrow size distribution and improve the apparent aqueous solubility of paclitaxel by more than 9000-fold. The biological activity of paclitaxel formulated in the MePEG-b-PVL micelles was confirmed in human MCF-7 breast and A2780 ovarian cancer cells. Furthermore, the biocompatibility of the copolymers was established in CHO-K1 fibroblast cells using a cell viability assay. The in vitro hydrolytic and enzymatic degradation of the micelles was also evaluated over a period of one month. The present study indicates that the MePEG-b-PVL copolymers are suitable biomaterials for hydrophobic drug formulation and delivery.  相似文献   

9.
To realize safer and effective drug administration, novel well-defined and biocompatible amphiphilic block copolymers containing phospholipid polymer sequences were synthesized. At first, the homopolymer of 2-methacryloyloxyethylphosphorylcholine (MPC) was synthesized in water by reversible addition-fragmentation chain transfer (RAFT) controlled radical polymerization. The "living" polymerization was confirmed by the fact that the number-average molecular weight increased linearly with monomer conversion while the molecular weight distribution remained narrow independent of the conversion. The poly(MPC) thus prepared is end-capped with a dithioester moiety. Using the dithioester-capped poly(MPC) as a macro chain transfer agent, AB diblock copolymers of MPC and n-butyl methacrylate (BMA) were synthesized. Associative properties of the amphiphilic block copolymer (pMPC(m)-BMA(n)) with varying poly(BMA) block lengths were investigated using NMR, fluorescence probe, static light scattering (SLS), and quasi-elastic light scattering (QELS) techniques. Proton NMR data in D2O indicated highly restricted motions of the n-butyl moieties, arising from hydrophobic associations of poly(BMA) blocks. Fluorescence spectra of N-phenyl-1-naphthylamine indicated that the probes were solubilized in the polymer micelles in water. The formation of polymer micelles comprising a core with poly(BMA) blocks and shell with hydrophilic poly(MPC) blocks was suggested by SLS and QELS data. The size and mass of the micelle increased with increasing poly(BMA) block length. With an expectation of a pharmaceutical application of pMPC(m)-BMA(n), solubilization of a poorly water-soluble anticancer agent, paclitaxel (PTX), was investigated. PTX dissolved well in aqueous solutions of pMPC(m)-BMA(n) as compared with pure water, implying that PTX is incorporated into the hydrophobic core of the polymer micelle. Since excellent biocompatible poly(MPC) sequences form an outer shell of the micelle, pMPC(m)-BMA(n) may find application as a promising reagent to make a good formulation with a hydrophobic drug.  相似文献   

10.
Well-defined amphiphilic diblock copolymers comprising thermoresponsive polymer segments of poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) (PID) and hydrophobic polymer segments, poly(benzyl methacrylate) (PBzMA), were synthesized by controlled living radical polymerization. Terminal derivatization of PID segments to either hydroxyl or phenyl groups was achieved through reactions of coupling agents with thiol groups exposed by cleavage of terminal dithiobenzoate groups. Diblock copolymers formed core-shell type polymeric micelles with thermoresponsive outer shells. Hydrodynamic micellar diameters ranged from 12 to 31 nm, controlled by varying PID chain lengths. Differences in PID terminal groups did not affect the critical micelle concentration or micellar diameters. However, these groups demonstrated a significant influence on the micellar thermoresponses. Hydroxylated PID/PBzMA micelles exhibited a phase transition of approximately 40 degrees C, independent of PID molecular weights. Even though molecular weights and compositions of PID chains were equivalent except for terminal groups, micelles having the outermost surface phenyl groups exhibited drastically lower phase transition temperature shifts, especially for micelles with low molecular weight PID chains.  相似文献   

11.
Liu J  Pang Y  Huang W  Huang X  Meng L  Zhu X  Zhou Y  Yan D 《Biomacromolecules》2011,12(5):1567-1577
A new type of biodegradable micelles for glutathione-mediated intracellular drug delivery was developed on the basis of an amphiphilic hyperbranched multiarm copolymer (H40-star-PLA-SS-PEP) with disulfide linkages between the hydrophobic polyester core and hydrophilic polyphosphate arms. The resulting copolymers were characterized by nuclear magnetic resonance (NMR), Fourier transformed infrared (FTIR), gel permeation chromatography (GPC), and differential scanning calorimeter (DSC) techniques. Benefiting from amphiphilic structure, H40-star-PLA-SS-PEP was able to self-assemble into micelles in aqueous solution with an average diameter of 70 nm. Moreover, the hydrophilic polyphosphate shell of these micelles could be detached under reduction-stimulus by in vitro evaluation, which resulted in a rapid drug release due to the destruction of micelle structure. The glutathione-mediated intracellular drug delivery was investigated against a Hela human cervical carcinoma cell line. Flow cytometry and confocal laser scanning microscopy (CLSM) measurements demonstrated that H40-star-PLA-SS-PEP micelles exhibited a faster drug release in glutathione monoester (GSH-OEt) pretreated Hela cells than that in the nonpretreated cells. Cytotoxicity assay of the doxorubicin-loaded (DOX-loaded) micelles indicated the higher cellular proliferation inhibition against 10 mM of GSH-OEt pretreated Hela cells than that of the nonpretreated ones. As expected, the DOX-loaded micelles showed lower inhibition against 0.1 mM of buthionine sulfoximine (BSO) pretreated Hela cells. These reduction-responsive and biodegradable micelles show a potential to improve the antitumor efficacy of hydrophobic chemotherapeutic drugs.  相似文献   

12.
Liu X  Ma R  Shen J  Xu Y  An Y  Shi L 《Biomacromolecules》2012,13(5):1307-1314
Oral administration of ionic drugs generally encounters with significant fluctuation in plasma concentration due to the large variation of pH value in the gastrointestinal tract and the pH-dependent solubility of ionic drugs. Polymeric complex micelles with charged channels on the surface provided us with an effective way to reduce the difference in the drug release rate upon change in pH value. The complex micelles were prepared by self-assembly of PCL-b-PAsp and PCL-b-PNIPAM in water at room temperature with PCL as the core and PAsp/PNIPAM as the mixed shell. With an increase in temperature, PNIPAM collapsed and enclosed the PCL core, while PAsp penetrated through the PNIPAM shell, leading to the formation of negatively charged PAsp channels on the micelle surface. Release behavior of ionic drugs from the complex micelles was remarkably different from that of usual core-shell micelles where diffusion and solubility of drugs played a key role. Specifically, it was mainly dependent on the conformation of the PAsp chains and the electrostatic interaction between PAsp and drugs, which could partially counteract the influence of pH-dependent diffusion and solubility of drugs. As a result, the variation of drug release rate with pH value was suppressed, which was favorable for acquiring relatively steady plasma drug concentration.  相似文献   

13.
Saccharide-functionalized shell cross-linked (SCK) polymer micelles designed as polyvalent nanoscaffolds for selective interactions with receptors on Gram negative bacteria were constructed from mixed micelles composed of poly(acrylic acid-b-methyl acrylate) and mannosylated poly(acrylic acid-b-methyl acrylate). The mannose unit was conjugated to the hydrophilic chain terminus of the amphiphilic diblock copolymer precursor, from which the SCK nanoparticles were derived, by the growth of the diblock copolymer from a mannoside functionalized atom transfer radical polymerization (ATRP) initiator. Mixed micelle formation between the amphiphilic diblock copolymer and mannosylated amphiphilic diblock copolymer was followed by condensation-based cross-linking between the acrylic acid residues present in the periphery of the polymer micelles to afford SCK nanoparticles. SCKs presenting variable numbers of mannose functionalities were prepared from mixed micelles of controlled stoichiometric ratios of mannosylated and nonmannosylated diblock copolymers. The polymer micelles and SCKs were characterized by dynamic light scattering (DLS), electrophoretic light scattering, atomic force microscopy (AFM), transmission electron microscopy (TEM), and analytical ultracentrifugation (AU). Surface availability and bioactivity of the mannose units were evaluated by interactions of the nanostructures with the model lectin Concanavalin A via DLS studies, with red blood cells (rabbit) via agglutination inhibition assays and with bacterial cells (E. coli) via TEM imaging.  相似文献   

14.
Wan X  Liu T  Liu S 《Biomacromolecules》2011,12(4):1146-1154
We report on the facile synthesis of well-defined amphiphilic and thermoresponsive tadpole-shaped linear-cyclic diblock copolymers via ring-opening polymerization (ROP) directly initiating from cyclic precursors, their self-assembling behavior in aqueous solution, and the application of micellar assemblies as controlled release drug nanocarriers. Starting from a trifunctional core molecule containing alkynyl, hydroxyl, and bromine moieties, alkynyl-(OH)-Br, macrocyclic poly(N-isopropylacrylamide) (c-PNIPAM) bearing a single hydroxyl functionality was prepared by atom transfer radical polymerization (ATRP), the subsequent end group transformation into azide functionality, and finally the intramacromolecular ring closure reaction via click chemistry. The target amphiphilic tadpole-shaped linear-cyclic diblock copolymer, (c-PNIPAM)-b-PCL, was then synthesized via the ROP of ε-caprolactone (CL) by directly initiating from the cyclic precursor. In aqueous solution at 20 °C, (c-PNIPAM)-b-PCL self-assembles into spherical micelles consisting of hydrophobic PCL cores and well-solvated coronas of cyclic PNIPAM segments. For comparison, linear diblock copolymer with comparable molecular weight and composition, (l-PNIPAM)-b-PCL, was also synthesized. It was found that the thermoresponsive coronas of micelles self-assembled from (c-PNIPAM)-b-PCL exhibit thermoinduced collapse and aggregation at a lower critical thermal phase transition temperature (T(c)) compared with those of (l-PNIPAM)-b-PCL. Temperature-dependent drug release profiles from the two types of micelles of (c-PNIPAM)-b-PCL and (l-PNIPAM)-b-PCL loaded with doxorubicin (Dox) were measured, and the underlying mechanism for the observed difference in releasing properties was proposed. Moreover, MTT assays revealed that micelles of (c-PNIPAM)-b-PCL are almost noncytotoxic up to a concentration of 1.0 g/L, whereas at the same polymer concentration, micelles loaded with Dox lead to ~60% cell death. Overall, chain topologies of thermoresponsive block copolymers, that is, (c-PNIPAM)-b-PCL versus (l-PNIPAM)-b-PCL, play considerable effects on the self-assembling and thermal phase transition properties and their functions as controlled release drug nanocarriers.  相似文献   

15.
Pluronic mimicking poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer having multiple hydroxyl groups in the PPO middle segment (core-functionalized Pluronic: CF-PLU) was synthesized for conjugation of doxorubicin (DOX). DOX was conjugated on the multiple hydroxyl groups of CF-PLU via an acid-labile hydrazone linkage (CF-PLU-DOX). In aqueous solution, CF-PLU-DOX copolymers self-assembled to form a core/shell-type micelle structure consisting of a hydrophobic DOX-conjugated PPO core and a hydrophilic PEO shell layer. The conjugated DOX from CF-PLU-DOX micelles was released out more rapidly at pH 5 than pH 7.4, indicating that the hydrazone linkage was cleaved under acidic condition. CF-PLU-DOX micelles exhibited greatly enhanced cytotoxicity for MCF-7 human breast cancer cells compared to naked DOX, while CF-PLU copolymer itself showed extremely low cytotoxicity. Flow cytometry analysis revealed that the extent of cellular uptake for CF-PLU-DOX micelles was greater than free DOX. Confocal image analysis also showed that CF-PLU-DOX micelles had a quite different intracellular distribution profile from free DOX. CF-PLU-DOX micelles were mainly distributed in the cytoplasm, endosomal/lysosomal vesicles, and nucleus, while free DOX was localized mainly within the nucleus, suggesting that CF-PLU-DOX micellar formulation might be advantageously used for overcoming the multidrug resistance (MDR) effect, which gradually develops in many tumor cells during repeated drug administration.  相似文献   

16.
Poly(ethylene glycol)-b-poly(γ-benzyl L-glutamate)s bearing the disulfide bond (PEG-SS-PBLGs), which is specifically cleavable in intracellular compartments, were prepared via a facile synthetic route as a potential carrier of camptothecin (CPT). Diblock copolymers with different lengths of PBLG were synthesized by ring-opening polymerization of benzyl glutamate N-carboxy anhydride in the presence of a PEG macroinitiator (PEG-SS-NH(2)). Owing to their amphiphilic nature, the copolymers formed spherical micelles in an aqueous condition, and their particle sizes (20-125 nm in diameter) were dependent on the block length of PBLG. Critical micelle concentrations of the copolymers were in the range 0.005-0.065 mg/mL, which decreased as the block length of PBLG increased. CPT, chosen as a model anticancer drug, was effectively encapsulated up to 12 wt % into the hydrophobic core of the micelles by the solvent casting method. It was demonstrated by the in vitro optical imaging technique that the fluorescence signal of doxorubicin, quenched in the PEG-SS-PBLG micelles, was highly recovered in the presence of glutathione (GSH), a tripeptide reducing disulfide bonds in the cytoplasm. The micelles released CPT completely within 20 h under 10 mM GSH, whereas only 40% of CPT was released from the micelles in the absence of GSH. From the in vitro cytotoxicity test, it was found that CPT-loaded PEG-SS-PBLG micelles showed higher toxicity to SCC7 cancer cells than CPT-loaded PEG-b-PBLG micelles without the disulfide bond. Microscopic observation demonstrated that the disulfide-containing micelle could effectively deliver the drug into nuclei of SCC7 cells. These results suggest that PEG-SS-PBLG diblock copolymer is a promising carrier for intracellular delivery of CPT.  相似文献   

17.
Cao W  Zhou J  Mann A  Wang Y  Zhu L 《Biomacromolecules》2011,12(7):2697-2707
A folate-functionalized degradable amphiphilic dendrimer-like star polymer (FA-DLSP) with a well-defined poly(L-lactide) (PLLA) star polymer core and six hydrophilic polyester dendrons based on 2,2-bis(hydroxymethyl) propionic acid was successfully synthesized to be used as a nanoscale carrier for cancer cell-targeted drug delivery. This FA-DLSP hybrid formed unimolecular micelles in the aqueous solution with a mean particle size of ca. 15 nm as determined by dynamic light scattering and transmission electron microscopy. To study the feasibility of FA-DLSP micelles as a potential nanocarrier for targeted drug delivery, we encapsulated a hydrophobic anticancer drug, doxorubicin (DOX), in the hydrophobic core, and the loading content was determined by UV-vis analysis to be 4 wt %. The DOX-loaded FA-DLSP micelles demonstrated a sustained release of DOX due to the hydrophobic interaction between the polymer core and the drug molecules. The hydrolytic degradation in vitro was monitored by weight loss and proton nuclear magnetic resonance spectroscopy to gain insight into the degradation mechanism of the FA-DLSP micelles. It was found that the degradation was pH-dependent and started from the hydrophilic shell gradually to the hydrophobic core. Flow cytometry and confocal microscope studies revealed that the cellular binding of the FA-DLSP hybrid against human KB cells with overexpressed folate-receptors was about twice that of the neat DLSP (without FA). The in vitro cellular cytotoxicity indicated that the FA-DLSP micelles (without DOX) had good biocompatibility with KB cells, whereas DOX-loaded micelles exhibited a similar degree of cytotoxicity against KB cells as that of free DOX. These results clearly showed that the FA-DLSP unimolecular micelles could be a promising nanosize anticancer drug carrier with excellent targeting property.  相似文献   

18.
Two types of 32 arm star polymers incorporating amphiphilic block copolymer arms have been synthesized and characterized. The first type, stPCL-PEG 32, is composed of a polyamidoamine (PAMAM) dendrimer as the core with radiating arms having poly(epsilon-caprolactone) (PCL) as an inner lipophilic block in the arm and poly(ethylene glycol) (PEG) as an outer hydrophilic block. The second type, stPLA-PEG 32, is similar but with poly(L-lactide) (PLA) as the inner lipophilic block. Characterization with SEC, (1)H NMR, FTIR, and DSC confirmed the structure of the polymers. Micelle formation by both star copolymers was studied by fluorescence spectroscopy. The stPCL-PEG 32 polymer exhibited unimolecular micelle behavior. It was capable of solubilizing hydrophobic molecules, such as pyrene, in aqueous solution, while not displaying a critical micelle concentration. In contrast, the association behavior of stPLA-PEG 32 in aqueous solution was characterized by an apparent critical micelle concentration of ca. 0.01 mg/mL. The hydrophobic anticancer drug etoposide can be encapsulated in the micelles formed from both polymers. Overall, the stPCL-PEG 32 polymer exhibited a higher etoposide loading capacity (up to 7.8 w/w % versus 4.3 w/w % for stPLA-PEG 32) as well as facile release kinetics and is more suitable as a potential drug delivery carrier.  相似文献   

19.
Efficient entry of synthetic polymers inside cells is a central issue in polymeric drug delivery. Though polymers are widely believed to interact nonspecifically with plasma membrane, we present unexpected evidence that amphiphilic block copolymers, depending on their aggregation state, can distinguish between caveolae- and clathrin-mediated endocytosis. A block copolymer of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), Pluronic P85 (P85), below critical micelle concentration (CMC) exists as single molecule coils (unimers) and above CMC forms 14.6 nm aggregated micelles with a hydrophobic PPO core and hydrophilic PEO shell. The internalization pathways of P85 in mammalian cells were elucidated using endocytosis inhibitors and colocalization with endocytosis markers (clathrin-specific antibodies and transferrin for clathrin and caveolin-1-specific antibodies and cholera toxin B for caveolae). Altogether, our results indicate that P85 unimers internalize through caveolae-mediated endocytosis, while P85 micelles internalize through clathrin-mediated endocytosis. Furthermore, at concentrations above 0.01% P85 inhibits caveolae-mediated endocytosis (cholera toxin B), while having little or no effect on the clathrin-mediated endocytosis (transferrin). Selective interaction of Pluronic with caveolae may explain its striking pharmacological activities including inhibition of drug efflux transport, activation of gene expression, and dose-dependent hyperlipidemia.  相似文献   

20.
"Schizophrenic" diblock copolymers containing nonionic and zwitterionic blocks were prepared with well-controlled molecular weights via atom-transfer radical polymerization (ATRP). In this work, we report a systematic study of how morphological changes of poly(N-isopropylacrylamide)-block-poly(sulfobetaine methacrylate) (PNIPAAm-b-PSBMA) copolymers affect hemocompatibility in human blood solution. The "schizophrenic" behavior of PNIPAAm-b-PSBMA was observed by (1)H NMR, dynamic light scattering (DLS), and turbidity measurement with double morphological transition, exhibiting both lower critical solution temperature (LCST) and upper critical solution temperature (UCST) in aqueous solution. Below the UCST of PSBMA block, micelles were obtained with a core of insoluble PSBMA association and a shell of soluble PNIPAAm, whereas the opposite micelle structure was observed above the LCST of PNIPAAm block. In between the UCST and LCST, unimers with both soluble blocks were detected. Hydrodynamic size of prepared polymers and copolymers is determined to illustrate the correlations between intermolecular nonionic/zwitterionic associations and blood compatibility of PNIPAAm, PNIPAAm-b-PSBMA, and PSBMA suspension in human blood. Human fibrinogen adsorption onto the PNIPAAm-b-PSBMA copolymers from single-protein solutions was measured by DLS to determine the nonfouling stability of copolymer suspension. The new nonfouling nature of PNIPAAm-b-PSBMA copolymers was demonstrated to show extremely high anticoagulant activity and antihemolytic activity in human blood over a wide range of explored temperatures from 4 to 40 °C. The temperature-independent blood compatibility of nonionic/zwitterionic block copolymer along with their schizophrenic phase behavior in aqueous solution suggests their potential in blood-contacting applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号