首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The circadian rhythm of the photoresponse to blue light in the dinoflagellate Gyrodinium dorsum Kofoid was investigated by the use of a closed circuit television system. The initial cessation of movement upon stimulation (stop-response) was used as the index of light reception. Under constant dark conditions cells grown on a 12L:12D regime show an endogenous circadian rhythm in their stop-response with maximum responsiveness occurring approximately one hour before the beginning of the expected light phase. This rhythmic response was only observed if the cells were irradiated with red light (620 nm) prior to stimulation with blue light. After preirradiation both far-red reversibility and the shift in the stop-response action spectrum from 470 nm to 490 nm could also be demonstrated. These findings may be related to the diurnal migration of marine dinoflagellates.This study was supported by National Science Foundation grant GB 5137.  相似文献   

2.
H. Yatsuhashi  A. Kadota  M. Wada 《Planta》1985,165(1):43-50
An action spectrum for the low-fluencerate response of chloroplast movement in protonemata of the fern Adiantum capillus-veneris L. was determined using polarized light vibrating perpendicularly to the protonema axis. The spectrum had several peaks in the blue region around 450 nm and one in the red region at 680 nm, the blue peaks being higher than the red one. The red-light action was suppressed by nonpolarized far-red light given simultaneously or alternately, whereas the bluelight action was not. Chloroplast movement was also induced by a local irradiation with a narrow beam of monochromatic light. A beam of blue light at low energy fluence rates (7.3·10-3-1.0 W m-2) caused movement of the chloroplasts to the beam area (positive response), while one at high fluence rates (10 W m-2 and higher) caused movement to outside of the beam area (negative response). A red beam caused a positive response at fluence rates up to 100 W m-2, but a negative response at very high fluence rates (230 and 470 W m-2). When a far-red beam was combined with total background irradiation with red light at fluence rates causing a low-fluence-rate response in whole cells, chloroplasts moved out of the beam area. When blue light was used as background irradiation, however, a narrow far-red beam had no effect on chloroplast distribution. These results indicate that the light-oriented movement of Adiantum chloroplasts is caused by red and blue light, mediated by phytochrome and another, unidentified photoreceptor(s), respectively. This movement depends on a local gradient of the far-red-absorbing form of phytochrome or of a photoexcited blue-light photoreceptor, and it includes positive and negative responses for both red and blue light.Abbreviations BL blue light - FR far-red light - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - R red light - UV ultraviolet  相似文献   

3.
Summary Action spectra were determined in the UV region of the spectrum for the first phase of the phototactic response (stop response) and for the phytochrome pigment associated with this response in the dinoflagellate Gyrodinium dorsum Kofoid. Differences between these action spectra indicate the participation of two pigments in phototaxis. Following R (620 nm) irradiation of the phytochrome, the stop response maxima occur at 470 and 280-nm; after FR irradiation they shift to 490 and 300–310 nm. These maxima suggest that the photoreceptor pigment for phototaxis is a carotenoprotein. The action spectrum shift following the different phytochrome conversions may represent a trans to cis isomer change by the carotenoid. The absorption maximum of PR in the UV appears to be at 320 nm, which is consistent with the shift of the R absorption maximum to shorter wavelengths (620 nm) as compared to higher plants. The PFR absorption maximum appears as a broad band between 360 and 390 nm. Comparison of PR to PFR conversions by different intensities of 620-nm and 320-nm light indicates that at lower intensities the logarithm of the threshold for the stop response is inversely proportional to the logarithm of the intensity of the sensitizing light. The ratio of response activation by R and UV light is about 4:1.Abbreviations FR far-red - R red - PFR far-red-absorbing form of phytochrome - PR red-absorbing form of phytochrome - UV ultraviolet  相似文献   

4.
Unilateral irradiation of maize (Zea mays L.) seedlings results in a fluence-rate gradient, and hence below saturation, a gradient of the far-red-absorbing form of phytochrome (Pfr). The Pfr-gradients established by blue, red and far-red light were spectrophotometrically measured in the mesocotyl. Based on these Pfr-gradients and the fluence-response curves of phytochrome photoconversion the fluence-rate gradients were calculated. The fluence-rate gradient in the blue (460 nm) was steeper than that in the red (665 nm), which in turn was steeper than that in the far-red light (725 nm). The fluence-rate ratios front to rear were 1:0.06 (460 nm), 1:0.2 (665 nm), and 1:0.33 (725 nm). The assumption that phytochrome-mediated phototropism of maize mesocotyls is caused by local phytochrome-mediated growth inhibition was tested in the following manner. Firstly, the Pfr response curve for growth inhibition was calculated; these calculations were based on measurements of Pfr-gradients and data from red-light-induced phototropism. Secondly, the Pfr response curve for growth inhibition was used as a basis for calculating fluence-response curves for blue-and far-red-light-induced phototropism. Finally, these calculated results were compared with experimental data. It was concluded that the threshold for phytochrome-mediated phototropism of maize mesocotyls reflects the apparent photoconversion cross section of phytochrome whereas the maximal inducable curvature depends on the steepness of the light (Pfr) gradient across the mesocotyl.Abbreviations Pfr far-red-absorbing form of phytochrome - Ptot total phytochrome - Fr far-red light  相似文献   

5.
Janet R. Hilton 《Planta》1982,155(6):524-528
Seeds ofBromus sterilis L. germinated between 80–100% in darkness at 15° C but were inhibited by exposure to white or red light for 8 h per day. Exposure to far-red light resulted in germination similar to, or less than, that of seeds maintained in darkness. Germination is not permanently inhibited by light as seeds attain maximal germination when transferred back to darkness. Germination can be markedly delayed by exposure to a single pulse of red light following 4 h inhibition in darkness. The effect of the red light can be reversed by a single pulse of far-red light indicating that the photoreversible pigment phytochrome is involved in the response. The response ofB. sterilis seeds to light appears to be unique; the far-red-absorbing form of phytochrome (Pfr) actually inhibiting germination.Abbreviations Pr red absorbing form of phytochrome - Pfr far-red absorbing form of phytochrome  相似文献   

6.
In photoresponses regulated by phytochrome the effect of a red irradiation is not always reversed by far-red. This applies for instance to the influence of red light on the geotropic reactions of Avena coleoptiles. We could induce red/far-red reversibility by a short de-etiolating exposure to red light about 20 h prior to the experimental irradiations. This, was due to a decrease of the sensitivity to the low level of the far-red absorbing form of phytochrome that is established by far-red. Since etiolated plants react also to a wavelength of 520 nm (green light), it is advisable to expose the coleoptiles to a de-etiolating irradiation prior to manipulations in green safelight in order to prevent the plants from reacting to the green light.  相似文献   

7.
Photocontrol of stem elongation in light-grown plants of Fuchsia hybrida   总被引:1,自引:1,他引:0  
D. Vince-Prue 《Planta》1977,133(2):149-156
Stems of the caulescent long-day plant, Fuchsia hybrida cv Lord Byron, showed 2 types of response to light. In one, internode length was increased by far-red irradiation given at the end of an 8 h photoperiod: the response was no greater with prolonged exposure and was less when the start of far-red was delayed. The effect of far-red was reversible by a subsequent exposure to red light. Internode length was inversely proportional to the Pfr/P ratio established before entry to darkness and there was no evidence for loss of Pfr during a 16 h dark period. The inhibitory effect of Pfr acted at a relatively late stage of internode growth. With the development of successive internodes a second response appeared in which stems lengthened following prolonged daily exposures to red or far-red light, or mixtures of the two, or to brief breaks with red or white light. In these later internodes, a short exposure to far-red near the middle of the night was not reversible by red because red alone promoted elongation at this time. Internode length increased with increase in the daily duration of light and, when light was given throughout an otherwise dark period of 16 h, with increase in illuminance to a saturation value of 200 lx from tungsten lamps. Elongation increased as a linear function of decrease in photostationary state of phytochrome down to Pfr/P0.3; however, internodes were shorter in far-red light than in 25% red/red+far-red. It was concluded that stem length is a net response to two modes of phytochrome action. An inductive effect of Pfr inhibits a late stage in internode expansion, and a phytochrome reaction which operates only in light (and may involve pigment cycling) promotes an early stage of internode development. Stem elongation is thus a function both of the daily duration of light and its red/red+far-red content. The outgrowth of axillary buds was controlled by the first type of phytochrome action only.Abbreviations and symbols FR far red light - R red light - P phytochrome - Pfr phytochrome in the far-red light absorbing form - SD 8 h short days - LDP long-day plant - SDP short-day plant  相似文献   

8.
The kinetics of type 1 phytochrome were investigated in green, light-grown wheat. Phytochrome was measured by a quantitative sandwich enzyme-linked immunosorbent assay using monoclonal antibodies. The assay was capable of detecting down to 150 pg of phytochrome. In red light, rapid first-order destruction of the far-red-light-absorbing form of phytochrome (Pfr) with a half-life of 15 min was observed. Following white light terminated by red, phytochrome synthesis was delayed in darkness by about 15 h compared to plants given a terminal far-red treatment. Synthesis of the red-light-absorbing form of phytochrome (Pr) was zero-order in these experiments. Phytochrome synthesis in far-red light was approximately equal to synthesis in darkness in wheat although net destruction occurred in light-grown Avena sativa tissues in continuous far-red light, as has been reported for other monocotyledons. In wheat, destruction of Pfr apparently did not occur below a certain threshold level of Pfr or Pfr/total phytochrome. These results are consistent with an involvement of type 1 phytochrome in the photoperiodic control of flowering in wheat and other long-day plants.Abbreviations ELISA enzyme-linked immunosorbent assay - FR far-red light - HIR high-irradiance response - Pfr farred-light-absorbing form of phytochrome - Pr red-light-absorbing form of phytochrome - Ptot total phytochrome (Pr + Pfr) - R red light The authors wish to thank Prof. Daphne Vince-Prue (University of Reading) for many helpful discussions regarding this work. Hugh Carr-Smith was supported by a Science and Engineering Research Council studentship and Chris Plumpton by an Agricultural and Food Research Council (AFRC) studentship. B. Thomas and G. Butcher were supported by the AFRC.  相似文献   

9.
Summary The mode of phytochrome control of elongation growth was studied in fully-green strawberry (Fragaria x Ananassa Duch.) plants. Petiole growth showed two distinct types of response to light. In one, the end-of-day response, petioles were lengthened by low-intensity far-red irradiation for 1 h immediately following the 8 h photoperiod. The response was little or no greater with prolonged exposure and less when the start of far-red was delayed. It was already evident in the first leaf to emerge after treatment began. With the development of successive leaves a second, photoperiodic, type of response appeared, in which petioles lengthened following only prolonged exposure to red, far-red, mixtures of the two, or tungsten lighting, all at low levels of intensity. As with the inhibition of flowering in previous experiments, irradiation with red light during the second half of the otherwise long dark period gave the greatest response.Abbreviations and Symbols FR far-red light - HIR high irradiance response - R red light - Pr phytochrome in the red light absorbing form - Pfr phytochrome in the far-red light absorbing form - SDP short-day plant - LDP long-day plant - PAR photosynthetically active radiation  相似文献   

10.
Induction of flowering of etiolated Lemna paucicostata Hegelm. T-101, a short-day plant, was inhibited by far-red (FR) or blue light (BL) applied at the beginning of a 72-h inductive dark period which was followed by two short days. In either case the inhibition was reversed by a subsequent exposure of the plants to near-ultraviolet radiation (NUV), with a peak of effectiveness near 380 nm. Inhibition by BL or FR and its reversion by NUV are repeatable, i.e., NUV is acting in these photoresponses like red light although with much lower effectiveness. Thus, it is considered that NUV acts through phytochrome and no specific BL and NUV photoreceptor is involved in photocontrol of floral induction on this plant.Abbreviations BL blue light - FR far-red light - NUV near ultraviolet radiation - P red-absorbing form of phytochrome - Pfr far-red absorbing form of phytochrome - R red light  相似文献   

11.
H. Gabryś 《Planta》1985,166(1):134-140
The profile-to-face chloroplast movement in the green alga Mougeotia has been induced by strong blue and near-ultraviolet light pulses (6 J m-2). Simultaneously, strong red or far-red light (10 W m-2) was applied perpendicularly to the inducing beam. The response was measured photometrically. Against the far-red background the reciprocity law was found to hold for pulse durations varying two orders of magnitude. The action spectrum exhibited a maximum near 450 nm and a distinct increase in near-ultraviolet. The time-course and the spectral dependence of pulse responses of chloroplasts in Mougeotia were similar to those recorded for other plants which are sensitive only to blue. This points to an alternative sensor system active in the short-wavelength region in addition to the phytochrome system.Abbreviations FR far-red light - Pr red absorbing form of phytochrome - Pfr far-red absorbing form of phytochrome - R red light This paper is dedicated to the memory of Professor Jan Zurzycki  相似文献   

12.
Seed germination is often induced by a pulse of red light perceived by phytochrome and cancelled by a subsequent pulse of far-red light. When the pulse of red light is followed by several hours of darkness, a pulse of far-red light is no longer effective and prolonged far-red is necessary to block germination. The aim was to investigate whether the red light pulse and prolonged far-red light act on the same or different processes during germination of Datura ferox seeds. Forty-five hours after the inductive red light pulse, germination could not be blocked by one pulse or six hourly pulses of far-red light, but was significantly reduced by 6 h of continuous far-red light. The pulse of red light increased embryo growth potential and the activities of beta-mannanase and beta-mannosidase extracted from the micropylar region of the endosperm. Continuous far-red light had no effect on embryo growth potential or beta-mannosidase activity, but severely reduced the activity of beta-mannanase. The effect of far-red light had the features of a high-irradiance response of phytochrome. Both germination and beta-mannanase activity were restored by a pulse of red light given after the end of the continuous far-red treatment. It is concluded that the low-fluence response and the high-irradiance response modes of phytochrome have antagonistic effects on seed germination and that the control of beta-mannanase activity is one process where this antagonism is established.  相似文献   

13.
The photometric method was used to test a possibility proposed recently that a new photoreceptor with maximum activity at 620 nm is involved in mediating chloroplast rotation in Mougeotia (Z Lechowski, J Bialczyk [1988] Plant Physiol 88: 189-193). The hypothesis was tested under conditions of continuous dichromatic unilateral or mutually perpendicular irradiation with red light of wavelengths 620 or 660 (680) nanometers and far-red. When the red light was polarized parallel to the long cell axis, chloroplast response could be monitored by changing the direction of far-red irradiation. The level of the response obtained with red and far-red applied from the same direction depended on far-red intensity: at higher fluence rates the maximum response was shifted to longer wavelengths of red light. A high fluence rate of far-red inhibited the response. The absorption coefficients of Mougeotia chloroplasts were measured for the studied wave-lengths using the microphotometric method. Possible impact of absorption by the chloroplast on photoreception has been discussed. Current and previous results can be interpreted in terms of phytochrome action and do not support the involvement of the hypothetical 620 nanometer photoreceptor.  相似文献   

14.
Dennis Gwynn  Joseph Scheibe 《Planta》1972,106(3):247-257
Summary Using a 2-h irradiation period at constant quantum irradiance, a complete action spectrum for inhibition of germination of lettuce seed has been obtained. Action maxima were near 470 and 720 nm, the latter being the most active wavelength. It was also shown, under conditions where light inhibition cannot occur, that phytochrome potentiation of germination is maximal at all wavelengths below 700 nm, including the highly active blue region. Evidence was presented for promotion of germination by a 2-h irradiation in the red which cannot be explained on the basis of conversion of phytochrome to the active form.Abbreviations Bl blue - FR far-red, PFR far-red-absorbing form of phytochrome - R red Supported in part by funds provided for biological and medical research by the State of Washington Initiative Measure No. 171 and the Graduate School Research Funds.  相似文献   

15.
Germination of Rumex obtusifolius L. seeds (nutlets) is low in darkness at 25° C. Germination is stimulated by exposure to 10 min red light (R) and also by a 10-min elevation of temperature to 35° C. A 10-min exposure to far-red light (FR) can reverse the effect of both R (indicating phytochrome control) and 35° C treatment. Fluence-response curves for this reversal of the effect of R and 35° C treatments are quantitatively identical. Treatment for 10 min with light of wavelenght 680, 700, 710 and 730 nm, after R and 35° C treatment, demonstrates that germination induced by 35° C treatment results from increased sensitivity to a pre-existing, active, far-red-absorbing form of phytochrome (Pfr) in the seeds.Abbreviations FR far-red light - P phytochrome - Pr red-absorbing form of P - Pfr far-red-absorbing form of P - R red light  相似文献   

16.
Protonemata of Onoclea sensibilis and Diyopteris filix-mas elongate in response to both red and far-red light. The promotion caused by far-red is larger than that caused by red light. This phenomenon differs from a typical response to phytochrome, the photoreceptor pigment immediately suggested by the activity of red and far-red light. The phenomenon has been explained by two different hypotheses, one of which holds that phytochrome is solely responsible for the response, whereas the other postulates an interaction between phytochrome and P580, a yellow-green light absorbing pigment, to account for the response. The hypothesis that phytochrome is the sole photoreceptor leads to some specific predictions concerning the shapes of the dose-response curves for light-induced protonema elongation. These predictions were tested with both continuous and short-term irradiation. In all instances saturating far-red light caused greater elongation than did saturating red light, and no dose of red light duplicated the activity of saturating far-red light. Other experiments tested the interactions of red and far-red light and the effects of different doses of yellow-green light on protonema elongation. The results of many of the experiments were not in agreement with the hypothesis that phytochrome is the sole photoreceptor, whereas they were in agreement with the assumption that filament elongation is controlled by both phytochrome and P580.  相似文献   

17.
In Trifolium subterraneum, oxidative stress caused by ozone has been shown to result in more severe visible foliar injuries when plants were kept in dim broadband white light during the night (i.e. a long photoperiod) compared to darkness during the night (a short photoperiod). As phytochrome signalling is involved in photoperiod sensing, the effect of night-time red and far-red illumination on the ozone-induced response was studied. T. subterraneum plants were treated with ozone enriched air (70?ppb) for either 1?h for a single day or 6?h for three consecutive days. After the first ozone exposure, plants were separated into six night-time light regimes during the two subsequent nights (10?h?day, 14?h night): (1) darkness, (2) far-red light (FR), (3) a short night-break of red followed by far-red light during an otherwise dark night (R FR), (4) a short night-break of red, far-red and finally red light during an otherwise dark night (R FR R), (5) dim white light (L) and (6) red light (R). The treatments L and R resulted in significantly more severe ozone-induced visible foliar injuries relative to D and FR treatments, indicating a phytochrome-mediated response. The night-breaks resulted in a photoreversible and significantly different ozone response depending on the light quality of the last light interval (R FR or R FR R), supporting a photoreversible (between Pr and Pfr) phytochrome signalling response. Thus, in T. subterraneum, the outcome of oxidative stress due to ozone appears to depend on the photoperiod mediated by the night-time conformation of phytochrome.  相似文献   

18.
Chlorophyll synthesis is stimulated by red light in the green alga Ulva rigida C. Ag. and in the red alga Porphyra umbilicalis (L.) Kützing. Because the effect of red light showed some far-red reversibility in successive red and far-red light treatments, the involvement of phytochrome or a phytochrome-like photoreceptor is suggested. The extent of the response is dependent on exposure and photon fluence rate of red-light pulses. In addition to the effect of red light, a strong stimulation of chlorophyll synthesis by blue light was only observed in Ulva rigida. The effect of blue light shows also some far-red reversibility. In the green alga the accumulated chlorophyll is higher after blue light pulses than after red light pulses. In Porphyra umbilicalis , however, the contrary is observed. In Ulva rigida the involvement of a blue light photoreceptor in addition to phytochrome or a phytochrome-like photoreceptor is proposed. The different responses to red and blue light in both algae are explained in terms of their adaptation to the natural light environment.  相似文献   

19.
The effects of a short exposure to red, far-red or alternate red/far-red light on the germination of seeds after-ripened for different periods of time were studied in dormant lines of wild oat ( Avena fatua L.). Three stages were distinguishable in the after-ripening period in the response of germination to light. Seeds stayed dormant and showed no response to light during stage I. Phytochrome-mediated germination was observed in seeds during stage II. The phytochrome action disappeared during stage III, i.e. seeds fully germinated following treatments of all light qualities. When the seeds were imbibed in polyethylene glycol solutions, dark germination was reduced and phytochrome again had an effect, which suggested the involvement of phytochrome in water uptake of the seed.  相似文献   

20.
The wavelength dependence for a radiation induced increase of phytochrome in mung bean hooks (Vigna radiata L.), preirradiated with red light, was determined between 640 to 800 nm. Radiation between 640 to 700 nm and 780 to 800 nm had little effect on phytochrome concentration in hooks pretreated with red. Two bands of far-red light, one at 710 nm and the other at 750 to 760 nm, were found to increase phytochrome content about four times. Besides the requirement for a photochemical process, one or more dark processes appear to be necessary for the induction of phytochrome increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号