首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present state of knowledge of the formation of the Compounds I of peroxidases and catalases is discussed in terms of the restrictions which must be placed upon a valid mechanism. It is likely that all Compounds I contain one oxygen atom bound to the heme-iron as in the Compound I of chloroperoxidase. Thus the formation of Compound I, obtained after molecular hydrogen peroxide and the enzyme diffuse together, involves a minimum of two bond ruptures and the formation of two new bonds. Yet this amazing reaction proceeds with an activation energy equal to or less than that for the fluidity of water. This result can only be accounted for by including at least one reversible step. Since Compound I formation requires the formation of an “inner sphere” complex, the presence or absence of water in the sixth co-ordination position of the heme-iron is of crucial importance. A comparison of the rates of ligand binding with the rate of Compound I formation indicate that the inner sphere complex leading to Compound I formation is formed by an excellent nucleophile, probably the peroxide anion, formed by a proton transfer from hydrogen peroxide. This proton cannot equilibrate with the bulk solvent. A proton derived from the active site would appear to be added to the hydroxide ion which permits a molecule of water to depart upon oxygen atom addition (or substitution) to (or at) the heme-iron. It is tentatively suggested that Compound I of catalase has a single active site per subunit molecule and that Compound I of peroxidase normally has two reactive sites.  相似文献   

2.
Bromoperoxidase Compound I has been formed in reactions between bromoperoxidase and organic peroxide substrates. The absorbance spectrum of bromoperoxidase Compound I closely resembles the Compound I spectra of other peroxidases. The pH dependence of the second order rate constant for the formation of Compound I with hydrogen peroxide demonstrates the presence of an ionizable group at the enzyme active site having a pKa of 5.3. Protonation of this acidic group inhibits the rate of Compound I formation. This pKa value is higher than that determined for other peroxidases but the overall pH rate profiles for Compound I formation are similar. The one-electron reduction of bromoperoxidase Compound I yields Compound II and a second reduction yields native enzyme. Bromoperoxidase Compound II readily forms Compound III in the presence of an excess of hydrogen peroxide. Compound III passes through an as yet uncharacterized intermediate (III) in its decay to native enzyme. Compound III is produced and accumulates in enzymatic bromination reactions to become the predominate steady state form of the enzyme. Since Compound III is inactive as catalyst for enzymatic bromination, its accumulation leads to an idling reaction pathway which displays an unusual kinetic pattern for the bromination of monochlorodimedone.  相似文献   

3.
The most recently proposed mechanisms for the formation of the Compound I intermediates of the peroxidases and catalases have been based on the crystallographic elucidation of the enzyme structures. It has been assumed that these mechanisms are compatible with an earlier proposal of the formation of a reversible enzyme-substrate intermediate called Compound 0, which was based on data that pre-dated the availability of the enzyme structures. However, it is argued here that this is not the case and some modifications of the existing mechanism are proposed which reconcile the structural, kinetic and energetic data for the reactions. This paper focuses attention on horseradish peroxidase isoenzyme C and particularly on the acid-base properties of the imidazole side chain of distal histidine 42. This imidazole group has an exceptionally low pK(a) value in the resting enzyme, which is higher in Compound I and higher still in Compound II. The pK(a) value must also be greatly increased following Compound 0 formation so that the imidazole can become an effective proton acceptor. An explanation is offered in a dielectric insertion (DI) model, in which the peroxide substrate, or fragments thereof, screens the influence of the positively charged heme iron on the pK(a) value of the imidazole group. It is proposed that Compound 0 is converted to a second intermediate, Compound 0*, by intramolecular proton transfer along a pre-existing hydrogen bond, a process which reduces the energy requirements of charge separation in the deprotonation of hydrogen peroxide.  相似文献   

4.
In the absence of exogenous electron donors monofunctional heme peroxidases can slowly degrade hydrogen peroxide following a mechanism different from monofunctional catalases. This pseudo-catalase cycle involves several redox intermediates including Compounds I, II and III, hydrogen peroxide reduction and oxidation reactions as well as release of both dioxygen and superoxide. The rate of decay of oxyferrous complex determines the rate-limiting step and the enzymes’ resistance to inactivation. Homologous bifunctional catalase-peroxidases (KatGs) are unique in having both a peroxidase and high hydrogen dismutation activity without inhibition reactions. It is demonstrated that KatGs follow a similar reaction pathway as monofunctional peroxidases, but use a unique post-translational distal modification (Met+-Tyr-Trp adduct) in close vicinity to the heme as radical site that enhances turnover of oxyferrous heme and avoids release of superoxide. Similarities and differences between monofunctional peroxidases and bifunctional KatGs are discussed and mechanisms of pseudo-catalase activity are proposed.  相似文献   

5.
The catalysis of class III plant peroxidases is described based on the reaction scheme of horseradish peroxidase. The mechanism consists in four distinct steps: (a) binding of peroxide to the heme-Fe(III) to form a very unstable peroxide complex, Compound 0; (b) oxidation of the iron to generate Compound I, a ferryl species with a pi-cation radical in the porphyrin ring; (c) reduction of Compound I by one substrate molecule to produce a substrate radical and another ferryl species, Compound II; (d) reduction of Compound II by a second substrate molecute to release a second substrate radical and regenerate the native enzyme. Under unfavourable conditions some inactive enzyme species can be formed, known as dead-end species. Two calcium ions are normally found in plant peroxidases and appear to be important for the catalytic efficiency.  相似文献   

6.
The formation of Compound I from Aspergillus niger catalase and methyl hydroperoxide (CH3OOH) has been investigated kinetically by means of rapid-scanning stopped-flow techniques. The spectral changes during the reaction showed distinct isobestic points. The second-order rate constant and the activation energy for the formation of Compound I were 6.4 x 10(3) M-1s-1 and 10.4 kcal.mol-1, respectively. After formation of Compound I, the absorbance at the Soret peak returned slowly to the level of ferric enzyme with a first-order rate constant of 1.7 x 10(-3) s-1. Spectrophotometric titration of the enzyme with CH3OOH indicates that 4 mol of peroxide react with 1 mol of enzyme to form 1 mol of Compound I. The amount of Compound I formed was proportional to the specific activity of the catalase. The irreversible inhibition of catalase by 3-amino-1,2,4-triazole (AT) was observed in the presence of CH3OOH or H2O2. The second-order rate constant of the catalase-AT formation in CH3OOH was 3.0 M-1 min-1 at 37 degrees C and pH 6.8 and the pKa value was estimated to be 6.10 from the pH profile of the rate constant of the AT-inhibition. These results indicate that A. niger catalase forms Compound I with the same properties as other catalases and peroxidases, but the velocity of the Compound I formation is lower than that of the others.  相似文献   

7.
The enzymatic cycle of hydroperoxidases involves the resting Fe(III) state of the enzyme and the high-valent iron intermediates Compound I and Compound II. These states might be characterized by X-ray crystallography and the transition pathways between each state can be investigated using atomistic simulations. Here we review our recent work in the modeling of two key steps of the enzymatic reaction of hydroperoxidases: the formation of Cpd I in peroxidase and the reduction of Cpd I in catalase. It will be shown that small conformational motions of distal side residues (His in peroxidases and His/Asn in catalases), not,or only partially, revealed by the available X-ray structures, play an important role in the catalytic processes examined.  相似文献   

8.
Catalytic mechanisms and regulation of lignin peroxidase.   总被引:3,自引:0,他引:3  
Lignin peroxidase (LiP) is a fungal haemoprotein similar to the lignin-synthesizing plant peroxidases, but it has a higher oxidation potential and oxidizes dimethoxylated aromatic compounds to radical cations. It catalyses the degradation of lignin models but in vitro the outcome is net lignin polymerization. LiP oxidizes veratryl alcohol to radical cations which are proposed to act by charge transfer to mediate in the oxidation of lignin. Phenolic compounds are, however, preferentially oxidized, but transiently inactivate the enzyme. Analysis of the catalytic cycle of LiP shows that in the presence of veratryl alcohol the steady-state turnover intermediate is Compound II. We propose that veratryl alcohol is oxidized by the enzyme intermediate Compound I to a radical cation which now participates in charge-transfer reactions with either veratryl alcohol or another reductant, when present. Reduction of Compound II to native state may involve a radical product of veratryl alcohol or radical product of charge transfer. Phenoxy radicals, by contrast, cannot engage in charge-transfer reactions and reaction of Compound II with H2O2 ensues to form the peroxidatically inactive intermediate, Compound III. Regulation of LiP activity by phenolic compounds suggests feedback control, since many of the products of lignin degradation are phenolic. Such control would lower the concentration of phenolics relative to oxygen and favour degradative ring-opening reactions.  相似文献   

9.
1. The formation of Compound I by the reactions of bacterial and ox liver catalases with peroxoacetic acid was examined. In both cases the process occurs almost entirely by reaction of catalase with un-ionized peroxoacetic acid molecules. The result suggests an important role for the bound peroxidic proton in the enzyme-substrate interaction. 2. The peroxidatic properties of the Compounds I formed when peroxoacetic acid was used were examined by studying the oxidations of ethanol and formate; the results closely resemble those previously reported when H(2)O(2) and alkyl hydroperoxides were used. 3. Compound I formed with bacterial catalase and peroxoacetic acid is remarkably stable in the absence of added donor and the preparation has considerable potential for detailed studies of the nature of this intermediate.  相似文献   

10.
Using radiolytic reduction of the oxy-ferrous horseradish peroxidase (HRP) at 77 K, we observed the formation and decay of the putative intermediate, the hydroperoxo-ferric heme complex, often called "Compound 0." This intermediate is common for several different enzyme systems as the precursor of the Compound I (ferryl-oxo pi-cation radical) intermediate. EPR and UV-visible absorption spectra show that protonation of the primary intermediate of radiolytic reduction, the peroxo-ferric complex, to form the hydroperoxo-ferric complex is completed only after annealing at temperatures 150-180 K. After further annealing at 195-205 K, this complex directly transforms to ferric HRP without any observable intervening species. The lack of Compound I formation is explained by inability of the enzyme to deliver the second proton to the distal oxygen atom of hydroperoxide ligand, shown to be necessary for dioxygen bond heterolysis on the "oxidase pathway," which is non-physiological for HRP. Alternatively, the physiological substrate H2O2 brings both protons to the active site of HRP, and Compound I is subsequently formed via rearrangement of the proton from the proximal to the distal oxygen atom of the bound peroxide.  相似文献   

11.
The reaction of peroxide with cytochrome oxidase generates a peroxide compound having a Soret maximum at 428 nm. X-ray absorption spectroscopy analysis of the local structure of the active site iron shows marked similarity to that of the cytochrome c peroxidase intermediate Compound ES, which contains a short iron to proximal nitrogen distance compared to globins. Reductive titration of the 580 nm band of this compound indicates that the iron is one oxidizing equivalent above the resting oxidized form. These results support the presence of a ferryl iron (Fe(IV) = O) in the peroxide compound similar to that found for the peroxidases.  相似文献   

12.
Peroxidases are heme enzymes found in bacteria, fungi, plants and animals, which exploit the reduction of hydrogen peroxide to catalyze a number of oxidative reactions, involving a wide variety of organic and inorganic substrates. The catalytic cycle of heme peroxidases is based on three consecutive redox steps, involving two high-valent intermediates (Compound I and Compound II), which perform the oxidation of the substrates. Therefore, the thermodynamics and the kinetics of the catalytic cycle are influenced by the reduction potentials of three redox couples, namely Compound I/Fe3+, Compound I/Compound II and Compound II/Fe3+. In particular, the oxidative power of heme peroxidases is controlled by the (high) reduction potential of the latter two couples. Moreover, the rapid H2O2-mediated two-electron oxidation of peroxidases to Compound I requires a stable ferric state in physiological conditions, which depends on the reduction potential of the Fe3+/Fe2+ couple. The understanding of the molecular determinants of the reduction potentials of the above redox couples is crucial for the comprehension of the molecular determinants of the catalytic properties of heme peroxidases.This review provides an overview of the data available on the redox properties of Fe3+/Fe2+, Compound I/Fe3+, Compound I/Compound II and Compound II/Fe3+ couples in native and mutated heme peroxidases. The influence of the electron donor properties of the axial histidine and of the polarity of the heme environment is analyzed and the correlation between the redox properties of the heme group with the catalytic activity of this important class of metallo-enzymes is discussed.  相似文献   

13.
The mechanism of organosulfur oxygenation by peroxidases [lactoperoxidase (LPX), chloroperoxidase, thyroid peroxidase, and horseradish peroxidase] and hydrogen peroxide was investigated by use of para-substituted thiobenzamides and thioanisoles. The rate constants for thiobenzamide oxygenation by LPX/H2O2 were found to correlate with calculated vertical ionization potentials, suggesting rate-limiting single-electron transfer between LPX compound I and the organosulfur substrate. The incorporation of oxygen from 18O-labeled hydrogen peroxide, water, and molecular oxygen into sulfoxides during peroxidase-catalyzed S-oxygenation reactions was determined by LC- and GC-MS. All peroxidases tested catalyzed essentially quantitative oxygen transfer from 18O-labeled hydrogen peroxide into thiobenzamide S-oxide, suggesting that oxygen rebound from the oxoferryl heme is tightly coupled with the initial electron transfer in the active site. Experiments using H2(18)O2, 18O2, and H2(18)O showed that LPX catalyzed approximately 85, 22, and 0% 18O-incorporation into thioanisole sulfoxide oxygen, respectively. These results are consistent with a active site controlled mechanism in which the protein radical form of LPX compound I is an intermediate in LPX-mediated sulfoxidation reactions.  相似文献   

14.
Ivancich A  Mazza G  Desbois A 《Biochemistry》2001,40(23):6860-6866
The occurrence of isozymes in plant peroxidases is poorly understood. Turnip roots contain seven season-dependent isoperoxidases with distinct physicochemical properties. In the work presented here, multifrequency electron paramagnetic resonance spectroscopy has been used to characterize the Compound I intermediate obtained by the reaction of turnip isoperoxidases 1, 3, and 7 with hydrogen peroxide. The broad (2500 G) Compound I EPR spectrum of all three peroxidases was consistent with the formation of an exchange-coupled oxoferryl-porphyrinyl radical species. A dramatic pH dependence of the exchange interaction of the [Fe(IV)=O por(*+)] intermediate was observed for all three isoperoxidases and for a pH range of 4.5-7.7. This result provides substantial experimental evidence for previous proposals concerning the protein effect on the ferro- or antiferromagnetic character of the exchange coupling of Compound I based on model complexes. Turnip isoperoxidase 7 exhibited an unexpected pH effect related to the nature of the Compound I radical. At basic pH, a narrow radical species ( approximately 50 G) was formed together with the porphyrinyl radical. The g anisotropy of the narrow radical Delta(g) = 0.0046, obtained from the high-field (190 and 285 GHz) EPR spectrum, was that expected for tyrosyl radicals. The broad g(x) edge of the Tyr* spectrum centered at a low g(x) value (2.00660) strongly argues for a hydrogen-bonded tyrosyl radical in a heterogeneous microenvironment. The relationship between tyrosyl radical formation and the higher redox potential of turnip isozyme 7, as compared to that of isozyme 1, is discussed.  相似文献   

15.
The active site architecture of Leishmania major peroxidase (LmP) is very similar with both cytochrome c peroxidase and ascorbate peroxidase. We utilized point mutagenesis to investigate if the conserved proximal methionine residues (Met248 and Met249) in LmP help in controlling catalysis. Steady-state kinetics of methionine mutants shows that ferrocytochrome c oxidation is <2% of wild type levels without affecting the second order rate constant of first phase of Compound I formation, while the activity toward a small molecule substrate, guaiacol or iodide, increases. Our diode array stopped-flow spectral studies show that the porphyrin π-cation radical of Compound I in mutant LmP is more stable than wild type enzyme. These results suggest that the electronegative sulfur atoms of the proximal pocket are critical factors for controlling the location of a stable Compound I radical in heme peroxidases and are important in the oxidation of ferrocytochrome c.  相似文献   

16.
The hydroperoxo-ferric complex, or Compound 0 (Cpd 0), is an unstable transient intermediate common for oxygen activating heme enzymes such as the cytochromes P450, nitric oxide synthases, and heme oxygenases, as well as the peroxidases and catalases which utilize hydrogen peroxide as a source of oxygen and reducing equivalents. Detailed understanding of the mechanism of oxygen activation and formation of the higher valent catalytically active intermediates in heme enzyme catalysis requires the structural and spectroscopic characterization of this immediate precursor, Cpd 0. Using the method of cryoradiolytic reduction of the oxy-ferrous heme complex, we have prepared and characterized hydroperoxo-ferric complex in chloroperoxidase (CPO) and compared this to the same intermediate generated in cytochrome P450 CYP101. Optical absorption spectrum of Cpd 0 in CPO has a Soret band at 449 nm and poorly resolved α, β bands at 576 and 546 nm.  相似文献   

17.
1. The kinetics of formation of horseradish peroxidase Compound I were studied by using peroxobenzoic acid and ten substituted peroxobenzoic acids as substrates. Kinetic data for the formation of Compound I with H2O2 and for the reaction of deuteroferrihaem with H2O2 and peroxobenzoic acids, to form a peroxidatically active intermediate, are included for comparison. 2. The observed second-order rate constants for the formation of Compound I with peroxobenzoic acids decrease with increasing pH, in the range pH 5-10, in contrast with pH-independence of the reaction with H2O2. The results imply that the formation of Compound I involves a reaction between the enzyme and un-ionized hydroperoxide molecules. 3. The maximal rate constants for Compound I formation with unhindered peroxobenzoic acids exceed that for H2O2. Peroxobenzoic acids with bulky ortho substituents show marked adverse steric effects. The pattern of substituent effects does not agree with expectations for an electrophilic oxidation of the enzyme by peroxoacid molecules in aqueous solution, but is in agreement with that expected for a reaction involving nucleophilic attack by peroxo anions. 4. Possible reaction mechanisms are considered by which the apparent conflict between the pH-effect and substituent-effect data may be resolved. A model in which it is postulated that a negatively charged 'electrostatic gate' controls access of substrate to the active site and may also activate substrate within the active site, provides the most satisfactory explanation for both the present results and data from the literature.  相似文献   

18.
Heme peroxidases catalyze the H2O2-dependent oxidation of a variety of substrates, most of which are organic. Mechanistically, these enzymes are well characterized: they share a common catalytic cycle that involves formation of a two-electron, oxidized Compound I intermediate followed by two single-electron reduction steps by substrate. The substrate specificity is more diverse--most peroxidases oxidize small organic substrates, but there are prominent exceptions--and there is a notable absence of structural information for a representative peroxidase-substrate complex. Thus, the features that control substrate specificity remain undefined. We present the structure of the complex of ascorbate peroxidase-ascorbate. The structure defines the ascorbate-binding interaction for the first time and provides new rationalization of the unusual functional features of the related cytochrome c peroxidase enzyme, which has been a benchmark for peroxidase catalysis for more than 20 years. A new mechanism for electron transfer is proposed that challenges existing views of substrate oxidation in other peroxidases.  相似文献   

19.
Iodothyronines induced catalatic (H2O2-decomposing) activity of thyroid peroxidase and lactoperoxidase, the effect increasing in the order of thyroxine (T4) greater than triiodothyronine (T3) greater than diiodothyronine (T2). The iodothyronines served as electron donors in the peroxidase reactions, and during the reactions the catalytic intermediate of thyroid peroxidase was confirmed to be Compound II for T4 and Compound I for T3 and T2 and from the Soret absorption spectra obtained by stopped-flow measurements. Rate constants for the reactions between T4 and Compound II, T3 and Compound I, and T2 and Compound I were estimated at 1.9 x 10(5), 1.3 x 10(6), and 7.1 x 10(5) M-1.s-1, respectively. Unlike the case of thyroid peroxidase, the catalytic intermediate of lactoperoxidase observed during the oxidation of iodothyronines was invariably Compound II. From these and other data it was concluded that thyroid peroxidase catalyzed one-electron oxidation of T4 and two-electron oxidations of T2 and T3 while lactoperoxidase catalyzed exclusively one-electron oxidation of the iodothyronines. Iodide was released during the enzymatic oxidation of iodothyronines, irrespective of the mechanism of one-electron and two-electron oxidations. The amount of released iodide increased in the order of T4 greater than T3 greater than T2. The iodothyronines-induced catalatic activity of these peroxidases was ascribable to the release of iodide, but it was also found that the iodide-enhanced catalatic activity was stimulated by iodothyronines. In this case the effect of iodothyronines was greater in the order of T2 greater than T3 greater than T4, which was consistent with the order of iodothyronine activation for the iodinium cation transfer from enzyme to acceptor.  相似文献   

20.
Mycobacterium tuberculosis catalase-peroxidase (KatG) is a heme enzyme considered important for virulence, which is also responsible for activation of the anti-tuberculosis pro-drug isoniazid. Here, we present an analysis of heterogeneity in KatG heme structure using optical, resonance Raman, and EPR spectroscopy. Examination of ferric KatG under a variety of conditions, including enzyme in the presence of fluoride, chloride, or isoniazid, and at different stages during purification in different buffers allowed for assignment of spectral features to both five- and six-coordinate heme. Five-coordinate heme is suggested to be representative of "native" enzyme, since this species was predominant in the enzyme examined immediately after one chromatographic protocol. Quantum mechanically mixed spin heme is the most abundant form in such partially purified enzyme. Reduction and reoxidation of six-coordinate KatG or the addition of glycerol or isoniazid restored five-coordinate heme iron, consistent with displacement of a weakly bound distal water molecule. The rate of formation of KatG Compound I is not retarded by the presence of six-coordinate heme either in wild-type KatG or in a mutant (KatG[Y155S]) associated with isoniazid resistance, which contains abundant six-coordinate heme. These results reveal a number of similarities and differences between KatG and other Class I peroxidases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号