首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Peroxynitrite anion (ONOO-) is a potent oxidant that mediates oxidation of both nonprotein and protein sulfhydryls. Endothelial cells, macrophages, and neutrophils can generate superoxide as well as nitric oxide, leading to the production of peroxynitrite anion in vivo. Apparent second order rate constants were 5,900 M-1.s-1 and 2,600-2,800 M-1.s-1 for the reaction of peroxynitrite anion with free cysteine and the single thiol of albumin, respectively, at pH 7.4 and 37 degrees C. These rate constants are 3 orders of magnitude greater than the corresponding rate constants for the reaction of hydrogen peroxide with sulfhydryls at pH 7.4. Unlike hydrogen peroxide, which oxidizes thiolate anion, peroxynitrite anion reacts preferentially with the undissociated form of the thiol group. Peroxynitrite oxidizes cysteine to cystine and the bovine serum albumin thiol group to an arsenite nonreducible product, suggesting oxidation beyond sulfenic acid. Peroxynitrous acid was a less effective thiol-oxidizing agent than its anion, with oxidation presumably mediated by the decomposition products, hydroxyl radical and nitrogen dioxide. The reactive peroxynitrite anion may exert cytotoxic effects in part by oxidizing tissue sulfhydryls.  相似文献   

2.
Concomitant production of nitric oxide and superoxide in human macrophages   总被引:2,自引:0,他引:2  
Many harmful effects of nitric oxide are caused by the reaction of NO with superoxide anion. The present study was carried out to find out the concomitant production of superoxide and to investigate a suitable inhibitor of NO, which is produced by iNOS. THP-1 cells were differentiated into macrophages by PMA and cytokine. Addition of L-NAME showed decrement in superoxide production. Addition of apocynin, aminoguanidine or ONO 1714 brought about a significant reduction in superoxide production. The expressions of p67 and p47(phox) were reduced by the addition of apocynin, aminoguanidine or ONO 1714 whereas xanthine oxidase and cyclooxygenase did not have a major role in superoxide production. The results of the present study show that iNOS and NADPH oxidase play an important role in superoxide release. It suggests that addition of iNOS inhibitor together with apocynin may be more effective in case of therapeutic application in disease conditions like atherosclerosis.  相似文献   

3.
4.
5.
A large body of evidence supports the key role of oxidized low-density lipoprotein in atherosclerosis. The aim of this study was to compare the capacity of natural polyphenols (PP) from Vitis vinifera and Olea europea at protecting LDL against oxidation brought about by Cu 2+ , oxygen-centered radical-generating AAPH, or peroxynitrite-generating SIN-1 in vitro systems, or at impairing superoxide production in promonocyte cells (THP-1) conveniently differentiated into adherent macrophages. PP were either from the whole grape (fraction A) containing mainly procyanidins, (epi)-catechin and anthocyanins, or from grape seed extracts (fractions B and C) consisting of tannins and procyanidin oligomers with a higher content in B than in C, or from a grape skin extract (fraction D) consisting mainly of anthocyanins, or from a hydrosoluble olive mill wastewater PP extract (fraction E) containing hydroxytyrosol and oleuropein. Chlorogenic acid (F) and catechin (G) were taken as archetypes of PP preventing oxidation partly as copper scavenger and as radical scavenger only, respectively. All grape fractions were efficient towards Cu 2+ system (equally or more efficient than F), whereas they were rather poorly efficient towards AAPH and SIN-1 (less efficient than G but as efficient as F). Among the PP fractions, B was the most effective at protecting LDL in the SIN-1 system and at impairing THP-1 superoxide production. Taken together, these data suggest that the PP fraction from grape seed rich in procyanidins achieves the best compromise between the direct and indirect (i.e. cell-mediated) types of action in protecting LDL against oxidation, strengthening the need for improving the knowledge of its bioavailability in humans.  相似文献   

6.
Human inducible nitric oxide synthase (iNOS) is most readily observed in macrophages from patients with inflammatory diseases like atherosclerosis. The aim of the present study was to find out the combined effect of male sex hormone; testosterone and apocynin (NADPH oxidase inhibitor) on cytokine-induced iNOS production. THP-1 cells were differentiated into macrophages by phorbol myristate acetate (PMA). Expression of iNOS was induced by the addition of cytokine mixture? Testosterone was added at different concentrations (10(-6)-10(-12) M) with apocynin (1 mM). Testosterone (10(-8), 10(-10) M) inhibited NOx production in cytokine-added THP-1 cells which was further confirmed by quantikine assay of iNOS protein and RT-PCR analysis. Testosterone treatment decreased 40% of superoxide anion production. Testosterone showed inhibition of NADPH oxidase, especially expression of p67phox and p47phox (cytosol subunits). Addition of testosterone with apocynin further decreased the expression of p67phox and p47phox subunits of NADPH oxidase. The findings of the present study suggest that, testosterone; the male androgen plays an important role in the prevention of atherogenesis. Even though apocynin does not have any role on NO production, addition of apocynin together with testosterone is effective in suppressing iNOS activity.  相似文献   

7.
A large body of evidence supports the key role of oxidized low-density lipoprotein in atherosclerosis. The aim of this study was to compare the capacity of natural polyphenols (PP) from Vitis vinifera and Olea europea at protecting LDL against oxidation brought about by Cu 2+ , oxygen-centered radical-generating AAPH, or peroxynitrite-generating SIN-1 in vitro systems, or at impairing superoxide production in promonocyte cells (THP-1) conveniently differentiated into adherent macrophages. PP were either from the whole grape (fraction A) containing mainly procyanidins, (epi)-catechin and anthocyanins, or from grape seed extracts (fractions B and C) consisting of tannins and procyanidin oligomers with a higher content in B than in C, or from a grape skin extract (fraction D) consisting mainly of anthocyanins, or from a hydrosoluble olive mill wastewater PP extract (fraction E) containing hydroxytyrosol and oleuropein. Chlorogenic acid (F) and catechin (G) were taken as archetypes of PP preventing oxidation partly as copper scavenger and as radical scavenger only, respectively. All grape fractions were efficient towards Cu 2+ system (equally or more efficient than F), whereas they were rather poorly efficient towards AAPH and SIN-1 (less efficient than G but as efficient as F). Among the PP fractions, B was the most effective at protecting LDL in the SIN-1 system and at impairing THP-1 superoxide production. Taken together, these data suggest that the PP fraction from grape seed rich in procyanidins achieves the best compromise between the direct and indirect (i.e. cell-mediated) types of action in protecting LDL against oxidation, strengthening the need for improving the knowledge of its bioavailability in humans.  相似文献   

8.
The epoxyalkyl (1-->3)-beta-D-pentaglucosides 2 and 3 were synthesized in order by acetylation, glycosidation, oxidation, and deacetylation of 1. The immunological activities (superoxide anion production activity, phagocytic activity, and lymphocyte proliferation) and scavenging ability toward superoxide anion of (1-->3)-beta-D-pentaglucoside (1) and its epoxyalkyl derivatives (2 and 3) were investigated. Superoxide anion released from human blood monocytes was measured by the reduction of ferricytochrome c. Phagocytosis by peritoneal macrophages was detected through a teal ingesting that measured the chicken red blood cells (CRBC). Lymphocyte proliferation was determined by the MTT method. The scavenging ability of 1, 2, and 3 toward superoxide anions was evaluated by means of chemiluminescence (CL). The results showed that 2 and 3 had a little higher immunological activity and scavenging ability toward superoxide anion than 1, which indicated that the reducing end of the oligoglucosides was quite important for maximum biological activity.  相似文献   

9.
The identity of the neutral cholesteryl ester hydrolase (CEH) in human monocyte/macrophages is uncertain. Prior studies indicate that hormone sensitive lipase (HSL) is a major CEH in mouse macrophages, and that HSL mRNA is present in human THP-1 monocytes. In the present study, HSL mRNA expression was examined in THP-1 cells as a function of differentiation status and cholesterol enrichment. By RT-PCR with primer pairs that span exon boundaries, HSL mRNA was demonstrated in THP-1 monocytes and phorbol-ester differentiated THP-1 macrophages. cDNA identities were confirmed by sequencing. By Northern blotting, with HSL cDNA as probe, THP-1 monocytes were found to contain HSL mRNA of approximately 3 and 3.9 kb. In THP-1 macrophages, the 3 kb mRNA was greatly diminished, while the level of the 3.9 kb mRNA was maintained. mRNA of approximately 3 and 3.9 kb are those expected of the 86-kDa (adipocyte) and 117-kDa (testicular) HSL isoforms, respectively. The presence of the testicular isoform mRNA was confirmed in THP-1 cells by amplification and sequencing of an isoform-specific cDNA. Additionally, Northern-blot comparisons showed that the 3 and 3.9 kb mRNA in THP-1 comigrated with the HSL mRNA in 3T3-L1 adipocytes and rat testis, respectively. The level of the 3.9 kb mRNA did not vary greatly with cholesterol enrichment. Thus, the HSL gene is transcribed in THP-1 cells both before and after differentiation into macrophages; after differentiation, the predominant mRNA is that for the 117-kDa isoform. This isoform is a CEH, and may mediate some CE turnover in THP-1 cells.  相似文献   

10.
We developed an in vitro model to evaluate the effect of products secreted from different colorectal cancer (CRC) cell lines on specific phenotypic switching and functional alterations in THP-1 cells. We co-cultured the human monocytic cell line, THP-1, or phorbol-12-myristate-13-acetate (PMA)-treated THP-1 cells, (THP-1p), with supernatants from either the HT-29 (Dukes’ B), HCT-15 (Dukes’ C), or Colo205 (Dukes’ D) cell lines, and assessed the cells for macrophage differentiation. The surface marker and cytokine profiles suggested that secreted CRC factors differentiated THP-1 cells into a “mixed” M1/M2 phenotype, although HT-29 and Colo205 supernatants induced THP-1p cells into predominantly M1-like macrophages and M2-like macrophages, respectively. Further, all three CRC supernatants enhanced the phagocytic capacity and migration of THP-1 and THP-1p cells, altering their phenotype to a more M2-kind. Therefore, different CRC cell lines induced specific phenotype switching and functional polarization of THP-1 cells.  相似文献   

11.
Macrophage phagocytosis activates NADPH oxidase, an electron transport system in the plasma membrane. This study examined the feasibility of utilizing electrons transferred through the plasma membrane via NADPH oxidase to run a biofuel cell. THP-1 human monocytic cells were chemically stimulated to differentiate into macrophages. Further they were activated to induce a phagocytic response. During differentiation, cells became adherent to a plain gold electrode which was used as anode in a two-compartment fuel cell system. The current production in the fuel cell always corresponded to the NADPH oxidase activity, which was evaluated by the amount of superoxide anion produced upon stimulation in combination with the expression levels of the different NADPH oxidase subunits in cells. Moreover, our results of different inhibitory tests let us conclude that (i) the current observed in the fuel cell originates from NADPH oxidase in activated macrophages and (ii) there are multiple electron transport pathways from the cells to the electrode. One pathway involves superoxide anions produced upon stimulation, additional not yet identified electron transport occurs independently of superoxide anions.This type of novel biofuel cell driven by living human cells may eventually develop into a battery replacement for small medical devices.  相似文献   

12.
Scavenger receptor (SR)-BI mediates the selective uptake of high density lipoprotein (HDL) cholesteryl esters and the efflux of free cholesterol. In Chinese hamster ovary (CHO) cells, SR-BI is predominantly associated with caveolae which we have recently demonstrated are the initial loci for membrane transfer of HDL cholesteryl esters. Because cholesterol accumulation in macrophages is a critical event in atherogenesis, we investigated the expression of SR-BI and caveolin-1 in several macrophage cell lines. Human THP-1 monocytes were examined before and after differentiation to macrophages by treatment with 200 nm phorbol ester for 72 h. Undifferentiated THP-1 cells expressed caveolin-1 weakly whereas differentiation up-regulated caveolin-1 expression greater than 50-fold. In contrast, both undifferentiated and differentiated THP-1 cells expressed similar levels of SR-BI. Differentiation of THP-1 cells increased the percent of membrane cholesterol associated with caveolae from 12% +/- 1.9% to 38% +/- 3.1%. The increase in caveolin-1 expression was associated with a 2- to 3-fold increase in selective cholesterol ether uptake from HDL. Two mouse macrophage cell lines, J774 and RAW, expressed levels of SR-BI similar to differentiated THP-1 cells but did not express detectable levels of caveolin-1. In comparison to differentiated THP-1 cells, RAW and J774 cells internalized 9- to 10-fold less cholesteryl ester. We conclude that differentiated THP-1 cells express both caveolin-1 and SR-BI and that their co-expression is associated with enhanced selective cholesteryl ester uptake.  相似文献   

13.
Chlamydiae are intracellular bacterial pathogens that infect mucosal surfaces, i.e., the epithelium of the lung, genital tract, and conjunctiva of the eye, as well as alveolar macrophages. In the present study, we show that pulmonary surfactant protein A (SP-A) and surfactant protein D (SP-D), lung collectins involved in innate host defense, enhance the phagocytosis of Chlamydia pneumoniae and Chlamydia trachomatis by THP-1 cells, a human monocyte/macrophage cell line. We also show that SP-A is able to aggregate both C. trachomatis and C. pneumoniae but that SP-D only aggregates C. pneumoniae. In addition, we found that after phagocytosis in the presence of SP-A, the number of viable C. trachomatis pathogens in the THP-1 cells 48 h later was increased approximately 3.5-fold. These findings suggest that SP-A and SP-D interact with chlamydial pathogens and enhance their phagocytosis into macrophages. In addition, the chlamydial pathogens internalized in the presence of collectins are able to grow and replicate in the THP-1 cells after phagocytosis.  相似文献   

14.
The human THP-1 cell line is widely used as an in vitro model system for studying macrophage differentiation and function. Conventional culture conditions for these cells consist of ambient oxygen pressure (∼20% v/v) and medium supplemented with the thiol 2-mercaptoethanol (2-ME) and serum. In consideration of the redox activities of O2 and 2-ME, and the extensive experimental evidence supporting a role for reactive oxygen species (ROS) in the differentiation and function of macrophages, we addressed the question of whether culturing THP-1 cells under a more physiologically relevant oxygen tension (5% O2) in the absence of 2-ME and serum would alter THP-1 cell physiology. Comparisons of cultures maintained in 18% O2 versus 5% O2 indicated that reducing oxygen tension had no effect on the proliferation of undifferentiated THP-1 cells. However, decreasing the oxygen tension to 5% O2 significantly increased the rate of phorbol ester-induced differentiation of THP-1 cells into macrophage-like cells as well as the metabolic activity of both undifferentiated and PMA-differentiated THP-1 cells. Removal of both 2-ME and serum from the medium decreased the proliferation of undifferentiated THP-1 cells but increased metabolic activity and the rate of differentiation under either oxygen tension. In differentiated THP-1 cells, lowering the oxygen tension to 5% O2 decreased phagocytic activity, the constitutive release of β-hexosaminidase and LPS-induced NF-κB activation but enhanced LPS-stimulated release of cytokines. Collectively, these data demonstrate that oxygen tension influences THP-1 cell differentiation and primary macrophage functions, and suggest that culturing these cells under tightly regulated oxygen tension in the absence of exogenous reducing agent and serum is likely to provide a physiologically relevant baseline from which to study the role of the local redox environment in regulating THP-1 cell physiology.  相似文献   

15.
In order to analyze the function of DcR3 for the regulation of cell adhesion and apoptosis in macrophages, we investigated the expression of decoy receptor 3 (DcR3) in THP-1 monocytes/macrophages.DcR3 was expressed in THP-1 and increased by phorbol 12-myristate 13-acetate (PMA). The formation of macrophage aggregates was observed when THP-1 cells were differentiated by PMA or stimulated with DcR3-Fc. Undifferentiated THP-1 cells were also induced to form aggregates by DcR3-Fc. The expression of integrin α4 was significantly increased by DcR3-Fc. CHX-induced apoptosis in THP-1 was inhibited by DcR3-Fc, of which inhibition against CHX-induced apoptosis and aggregate formation were ameliorated by anti-VLA4 antibody.DcR3 may play a significant role in macrophages not only by a decoy receptor but also by increasing α4 integrin.  相似文献   

16.
R Hamanaka  T Seguchi  Y Sato  M Ono  K Kohno  M Kuwano 《FEBS letters》1991,294(3):261-263
We examined whether human monocyte-derived macrophages had low density lipoprotein (LDL) receptors with a short life span. The human monocytic leukemia cell line, THP-1, was highly differentiated when treated with phorbol ester. LDL receptors degraded rapidly with half-lives of 3-4 h in THP-1 cells before phorbol ester treatment. During the transition into monocytic cells, expression of the LDL receptor gene was not affected. However, relative degradation rates of LDL receptors normalized by those of cellular total proteins were about twice as fast in phorbol ester-treated THP-1 cells compared to untreated cells.  相似文献   

17.
Inhaled diesel exhaust particles (DEP) exert proinflammatory effects in the respiratory tract. This effect is related to the particle content of redox cycling chemicals and is involved in the adjuvant effects of DEP in atopic sensitization. We demonstrate that organic chemicals extracted from DEP induce oxidative stress in normal and transformed bronchial epithelial cells, leading to the expression of heme oxygenase 1, activation of the c-Jun N-terminal kinase cascade, IL-8 production, as well as induction of cytotoxicity. Among these effects, heme oxygenase 1 expression is the most sensitive marker for oxidative stress, while c-Jun N-terminal kinase activation and induction of apoptosis-necrosis require incremental amounts of the organic chemicals and increased levels of oxidative stress. While a macrophage cell line (THP-1) responded in similar fashion, epithelial cells produced more superoxide radicals and were more susceptible to cytotoxic effects than macrophages. Cytotoxicity is the result of mitochondrial damage, which manifests as ultramicroscopic changes in organelle morphology, a decrease in the mitochondrial membrane potential, superoxide production, and ATP depletion. Epithelial cells also differ from macrophages in not being protected by a thiol antioxidant, N-acetylcysteine, which effectively protects macrophages against cytotoxic DEP chemicals. These findings show that epithelial cells exhibit a hierarchical oxidative stress response that differs from that of macrophages by more rapid transition from cytoprotective to cytotoxic responses. Moreover, epithelial cells are not able to convert N-acetylcysteine to cytoprotective glutathione.  相似文献   

18.
19.
The roles of protein kinase C (PKC) isoenzymes in the differentiation process of THP-1 cells are investigated. Inhibition of PKC by RO 31-8220 reduces the phagocytosis of latex particles and the release of superoxide, prostaglandin E(2) (PGE(2)), and tumour necrosis factor (TNF)-alpha. The proliferation of THP-1 cells is slightly enhanced by RO 31-8220. Stable transfection of THP-1 cells with asPKC-alpha, and incubation of THP-1 cells with antisense (as) PKC-alpha oligodeoxynucleotides reduces PKC-alpha levels and PKC activity. asPKC-alpha-transfected THP-1 cells show a decreased phagocytosis and a decreased release of superoxide, PGE(2) and TNF-alpha. The proliferation of asPKC-alpha-transfected THP-1 cells is enhanced. Stable transfection of THP-1 cells with asPKC-beta, and incubation of THP-1 cells with asPKC-beta oligodeoxynucleotides, reduces PKC-beta levels and PKC activity. asPKC-beta-transfected THP-1 cells show a decreased phagocytosis, a decreased TNF-alpha release, and a decreased proliferation. However, no difference is measured in the release of superoxide and PGE(2). These results suggest that: (1) PKC-alpha but not PKC-beta is involved in the release of superoxide and PGE(2); (2) TNF-alpha release and the phagocytosis of latex particles are mediated by PKC-alpha, PKC-beta, and other PKC isoenzymes; and (3) PKC-alpha and PKC-beta play antagonistic roles in the differentiation process of THP-1 cells. PKC-alpha promotes the differentiation process of THP-1 cells, PKC-beta retards the differentiation of THP-1 cells into macrophage-like cells.  相似文献   

20.
Oxidized low-density lipoproteins (oxLDL) play a crucial role in atherogenesis mainly via their capacity to bind and to activate macrophages. However, the role of the protein LDL moiety in this process is not yet established. In this study, human LDL were exposed to hypochlorous acid (HOCl), a selective protein oxidant, or copper sulfate (CuSO(4)), a major lipid oxidant, and tested for their capacity to activate the NADPH-oxidase of human THP-1- and U937-derived macrophages as measured by lucigenin chemiluminescence (CL). Compared to native LDL which had no effect, HOCl-oxLDL triggered potent CL responses in both U937 and THP-1 cells but only when these were fully differentiated into macrophages by phorbol myristate acetate. In contrast, Cu-oxLDL only triggered a moderate CL response of U937 cells and had little effect on THP-1 cells. While delipidation did not affect HOCl-oxLDL-induced CL response it abolished that induced by Cu-oxLDL. Interestingly, U937 cells showed higher CL responses to both types of oxLDL than THP-1 cells, a finding which could be related to their higher expression of the scavenger receptor CD36. Taken together these results strongly support the role of the protein moiety in oxLDL-induced macrophage activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号