首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summer diet, summer temperature, length of the growth season and animal density appeared to best explain annual and regional differences in calf and yearling body mass in moose from southeastern Norway. In general animals inhabiting steep, alpine landscapes had less body mass than animals using flat, low-altitude habitats. Autumn body mass of calves and yearlings decreased with increasing snow depth during the preceding winter and spring. However, calf body mass was more influenced by the summer range and less by the winter range than was body mass of yearlings. There was no indication that the effect of snow depth on autumn body mass was greater in moose living on poor than on good summer ranges. Body mass decreased with increasing competition for summer forage, while the winter range mainly had an density-independent effect. Habitat quality, expressed as regression lines between calf and yearling body mass and animal density (hunting yield), differed between regions. On ranges of medium and high altitude where birch (Betula spp.) rowan (Sorbus aucuparia) and bilberry (Vaccinium myrtillus) dominated moose summer diet, body mass decreased at a rapid rate with increasing animal density. Body mass decreased at a slower rate at low-altitude ranges and at high-altitude ranges where willow (Salix spp.) and forbs dominated the diet. Body mass of lactating cows decreased with increasing animal density, but animal density did not affect body mass of non-lactating cows. There was no indication that the decrease in autumn body mass with increasing moose density over the last 25 years has caused a decrease in animal condition (ability to survive the winter). The results are discussed in relation to the effect of summer and winter range on population regulation in moose. It is concluded that a density-dependent effect is apparent on the summer range even at low and intermediate population densities. On the winter range, on the other hand, density-dependence is likely to occur only at high levels of population density. Received: 4 February 1997 / Accepted: 1 February 1999  相似文献   

2.
Mammalian herbivores commonly alter the concentrations of secondary compounds in plants and, by this mechanism, have indirect effects on litter decomposition and soil carbon and nutrient cycling. In northernmost Fennoscandia, the subarctic mountain birch (Betula pubescens ssp. czerepanovii) forests are important pasture for the semidomestic reindeer (Rangifer tarandus). In the summer ranges, mountain birches are intensively browsed, whereas in the winter ranges, reindeer feed on ground lichens, and the mountain birches remain intact. We analyzed the effect of summer browsing on the concentrations of secondary substances, litter decomposition, and soil nutrient pools in areas that had been separated as summer or winter ranges for at least 20 years, and we predicted that summer browsing may reduce levels of secondary compounds in the mountain birch and, by this mechanism, have an indirect effect on the decomposition of mountain birch leaf litter and soil nutrient cycling. The effect of browsing on the concentration of secondary substances in the mountain birch leaves varied between different years and management districts, but in some cases, the concentration of condensed tannins was lower in the summer than in the winter ranges. In a reciprocal litter decomposition trial, both litter origin and emplacement significantly affected the litter decomposition rate. Decomposition rates were faster for the litter originating from and placed into the summer range. Soil inorganic nitrogen (N) concentrations were higher in the summer than in the winter ranges, which indicates that reindeer summer browsing may enhance the soil nutrient cycling. There was a tight inverse relationship between soil N and foliar tannin concentrations in the winter range but not in the summer range. This suggests that in these strongly nutrient-limited ecosystems, soil N availability regulates the patterns of resource allocation to condensed tannins in the absence but not in the presence of browsing.  相似文献   

3.
Atle Mysterud 《Oecologia》2000,124(1):130-137
Information on overlap in resource use is central to understanding of interspecific exploitation competition and resource partitioning. Despite this, measures of diet overlap among northern ruminants in Fennoscandia is limited to one earlier study (reindeer and sheep). Diet overlap between sympatric moose and roe deer calculated with Schoener’s index was 20.7% and 33.6% during summer (data from one area) and winter (data from two areas), respectively, whereas average diet overlap between moose and red deer was 32.0% during winter (data from four areas). Diet overlap between a coastal island population of red deer and sheep was 59.3% during summer and 63.9% during winter. Summer diet overlap between a sheep and a goat population and a sheep and a reindeer population calculated with data on main types of forage plants was 77.0% and 55.1%, respectively. However, overlap calculated with main plant groups was sometimes considerably higher than when calculated for individual forage species. Neither difference in feeding type nor body mass successfully predicted diet overlap between species pairs (n=9), although there tended to be negative correlation (r p =–0.586, P=0.098) between diet overlap of main plant groups (calculated across studies) and difference in feeding type. Received: 19 October 1999 / Accepted: 31 January 2000  相似文献   

4.
Shrubs have expanded in Arctic ecosystems over the past century, resulting in significant changes to albedo, ecosystem function, and plant community composition. Willow and rock ptarmigan (Lagopus lagopus, L. muta) and moose (Alces alces) extensively browse Arctic shrubs, and may influence their architecture, growth, and reproduction. Furthermore, these herbivores may alter forage plants in such a way as to increase the quantity and accessibility of their own food source. We estimated the effect of winter browsing by ptarmigan and moose on an abundant, early-successional willow (Salix alaxensis) in northern Alaska by comparing browsed to unbrowsed branches. Ptarmigan browsed 82–89% of willows and removed 30–39% of buds, depending on study area and year. Moose browsed 17–44% of willows and browsed 39–55% of shoots. Browsing inhibited apical dominance and activated axillary and adventitious buds to produce new vegetative shoots. Ptarmigan- and moose-browsed willow branches produced twice the volume of shoot growth but significantly fewer catkins the following summer compared with unbrowsed willow branches. Shoots on browsed willows were larger and produced 40–60% more buds compared to unbrowsed shoots. This process of shoot production at basal parts of the branch is the mechanism by which willows develop a highly complex “broomed” architecture after several years of browsing. Broomed willows were shorter and more likely to be re-browsed by ptarmigan, but not moose. Ptarmigan likely benefit from the greater quantity and accessibility of buds on previously browsed willows and may increase the carrying capacity of their own habitat. Despite the observed tolerance of willows to browsing, their vertical growth and reproduction were strongly inhibited by moose and ptarmigan. Browsing by these herbivores therefore needs to be considered in future models of shrub expansion in the Arctic.  相似文献   

5.
Resource partitioning by mammalian herbivores in the high Arctic   总被引:4,自引:0,他引:4  
D. R. Klein  C. Bay 《Oecologia》1994,97(4):439-450
Willow (Salix arctica) and sedges (Carex stans and Eriophorum triste) were the dominant plants available as forage for herbivores in the high Arctic of Greenland. Willow leaves were of high quality as forage in early stages, of phenology, but crude protein and digestibility declined markedly by late stages whereas sedges, remained high in forage quality throughout the growing season. Densities of fecal pellets indicated that muskoxen (Ovibos moschatus) made heaviest use of sedge-dominated vegetation types in both winter and summer, although increased use of willow communities was observed in early summer. Hares (Lepus arcticus) favored willow-dominated communities in both winter and summer. Evidence of collared lemming (Dicrostonyx groenlandicus) winter use was mainly in willow-dominated communities where snow had accumulated, whereas in summer they were present in drier habitas dominated by willows, but with greater plant diversity. Analyses of plant tissues in feces indicated that graminoids composed over 60% of the diet of muskoxen in winter and over 40% in summer. Willows were of nearly equal importance in the muskox diet in summer, and forbs, Dryas integrifolia, and moss collectively composed over 20% of the diet in both summer and winter. Grass accounted for nearly 50% of the diet of hares in both summer and winter, with willows, forbs, and moss accounting for most of the remainder. Willows and graminoids dominated the diet of lemmings, with willows being somewhat more important in summer and graminoids in winter. Moss was a noteworthy dietary component of lemmings. Differences in body and digestive-tract morphology among the three mammalian herbivores account for differences in locomotive efficiency, predator avoidance, and foraging efficiency which interact with vegetation quality, density, and patchiness. The resulting patterns of use of the landscape result in minimal overlap in use of forage resources and help to explain the distribution and co-existence of high Arctic herbivores.  相似文献   

6.
Patch use theory predicts that herbivores perceive food as patches and spend more time in high quality patches, i.e. feeding sites providing a high net rate of intake of energy and/or limiting nutrients. The herbivores should accordingly not discriminate among food items in such high quality patches, and food items should thus be eaten in proportion to availability. In contrast, classical diet theory assumes food selection to take place at the level of individual plants, and predicts that the forager should concentrate on the most profitable item until availability drops below some critical threshold.
Here we address how the spatial distribution of European aspen Populus tremula , a highly preferred browse species, affects the selectivity by moose Alces alces at the patch and the tree level. The study was performed in a managed boreal forest landscape in coastal northern Sweden, where aspen occurs highly aggregated almost exclusively in discrete patches. We compared moose' selectivity for aspen and browsing intensity on aspen ramets and other browse species in aspen patches versus at randomly located sites.
Random sites and aspen stands were utilised equally by moose in terms of overall use of forage. There was no difference in total coverage of forage species and relative moose density. Selectivity for aspen was stronger at random sites than at aspen sites, and the browsing intensity on aspen was similar. We conclude that moose did not perceive aspen stands as discrete patches, and used aspen ramets more in accordance with diet theory. These findings agree with the idea that large generalist herbivores strive to maintain a mixed and balanced diet, causing rare species to be over-utilised (negative frequency-dependent food selection). By such selective feeding, moose may reinforce the aggregated distribution of aspen in the managed boreal forest landscape.  相似文献   

7.
Re-introduced Przewalski horses in Hustai National Park, Mongolia could suffer from food competition with other herbivore species through food resource depletion. Diet composition of the Przewalski horse (Equus ferus przewalskii), red deer (Cervus elaphus) and four livestock species (sheep, goat, cattle and horse) were studied, using micro histological analysis of faecal samples in the summer of 2005 and winter of 2006 – 2007. We expected that herbivores become less selective in food choice in winter regarding to summer, resulting in a larger diet breadth, a larger similarity in diet and a larger dietary overlap in winter, potentially triggering exploitative competition by depletion of shared resources. Vegetation biomass decreased during winter, and the different herbivores species in HNP changed their diet from summer to winter. As expected diet breadth, diet similarity and dietary overlap were significantly larger in winter in comparison to summer. The existence of competition by resource depletion between the different species cannot be ruled out. Vegetation biomass was probably not a limiting factor according to the correlation between annual rainfall and herbivore species biomass, however the forage quality may be limiting, triggering competition.  相似文献   

8.
The two tree-like birch species Betula pendula and B. pubescens are of medium preference to moose during winter in northern Sweden. Because these birches are abundant in many biotopes, they form a major part of the moose diet. The two birches are very similar in appearance and often occur in mixed stands. Twenty-one birch stands where B. pendula formed from 2 to 97% of the birches were investigated to determine how the relative composition of the stands affected browsing of the two species by moose. In stands composed of 60% or less of B. pendula , there was a preference for this species when regarding 1.5–3.0 m high birches, which carry the largest amount of available browse per tree. At higher proportions B. pendula was still preferred, but use was closer to availability. However, in all stands there were significantly more moose bites per tree of B. pendula than of B. pubescens . In four birch stands browsing on 1.0–1.5 m high birches was also investigated. For this height class there was still a preference for B. pendula , but the difference between the two species was less pronounced than for the 1.5–3.0 m height class.  相似文献   

9.
Large herbivores may modify the ecosystem in a way that affects habitat quality and resource availability for other fauna. The increase in wild ungulate abundance in many areas may therefore lead to ecosystem changes, affecting distribution and reproduction of other species. Moose (Alces alces) in Scandinavia is a good example of a herbivore that has recently increased in abundance and has the potential to affect the ecosystem. In this study, we investigated how different levels of moose winter activity around supplementary feeding stations for moose affect reproduction in two insectivorous passerines: great tits (Parus major) and pied flycatchers (Ficedula hypoleuca). The two bird species showed contrasting responses to high moose activity at feeding stations. Great tits avoided habitats with high moose activity, where fledging success and feeding frequency was lower than at low moose activity habitats. Flycatchers nested more often at high moose activity habitats where fledging weight and feeding frequency were higher than at low moose activity habitats. Filming of nest boxes with great tits showed an increase in adult Lepidoptera in the diet at supplementary feeding stations for moose, and a smaller size of caterpillar prey at intermediate moose activity. The results support the hypothesis that herbivores may affect insectivorous passerines through changed arthropod food availability.  相似文献   

10.
We and others have previously shown that browsing by large mammalian herbivores can alter the fractal dimension and other architectural properties of plant crowns. Using data from an experiment in northern Sweden which manipulated moose population densities from 0 to 50 moose per 1000 ha and measured architectural responses of birch, Betula pendula and B. pubescens, and Scots pine, Pinus sylvestris, we constructed a simulation model to examine how these changes in plant crown architecture affect moose population dynamics. Architectural changes in birch tree crowns caused forage availability to increase from low to moderate moose population densities, then decline at higher densities. In contrast, forage availability of pine decreased monotonically with increasing moose population density. The model, which incorporated equations fitted to these experimental results, predicted realistic moose population densities for northern Sweden. More importantly, the model also predicted that the quadratic responses of birch crowns to moose browsing results in moose population oscillations on high productivity sites because the moose population density overshoots the maximum birch forage availability then declines. Changes in the geometry of plant canopies caused by mammalian browsers and soil fertility may feed back on the population dynamics of the browsers themselves and even result in complex dynamics such as population oscillations.  相似文献   

11.
Since 2010, several moose (Alces alces) populations have declined across North America. These declines are believed to be broadly related to climate and landscape change. At the western reaches of moose continental range, in the interior of British Columbia, Canada, wildlife managers have reported widespread declines of moose populations. Disturbances to forests from a mountain pine beetle (Dendroctonum ponderosae) outbreak and associated salvage logging infrastructure in British Columbia are suspected as a mechanism manifested in moose behavior and habitat selection. We examined seasonal differences in moose habitat selection in response to landscape change from mountain pine beetle salvage logging infrastructure: dense road networks and large intensive forest harvest cutblocks. We used 157,447 global positioning system locations from 83 adult female moose from 2012 to 2016 on the Bonaparte Plateau at the southern edge of the Interior Plateau of central British Columbia to test whether increased forage availability, landscape features associated with increased mortality risk, or the cumulative effects of salvage logging best explain female moose distribution using resource selection functions in an information-theoretic framework. We tested these hypotheses across biological seasons, defined using a cluster analysis framework. The cumulative effects of forage availability and risk best predicted resource selection of female moose in all seasons; however, the covariates included in the cumulative models varied between seasons. The top forage availability model better explained moose habitat use than the top risk model in all seasons, except for the calving and fall seasons where the top risk model (distance to road) better predicted moose space use. Selection of habitat that provides forage in winter, spring, and summer suggests that moose seasonally trade predation risk for the benefits of foraging in early seral vegetation communities in highly disturbed landscapes. Our results identified the need for intensive landscape-scale management to stem moose population declines. Additional research is needed on predator densities, space use, and calf survival in relation to salvage logging infrastructure. © 2020 The Wildlife Society.  相似文献   

12.
Question: What is the effect of a gradient in moose density on reproduction, growth and functional composition of the field layer vegetation in a boreal forest, and how is this effect modified by habitat productivity? Location: Northwest of Umeå, Västerbotten, northern Sweden. Methods: Field layer vegetation was surveyed in an experimental setup with simulation of three different moose densities and a control in eight study sites along a gradient of habitat productivity. Results: We found that increased moose density led to decreased cover and reproductive effort of a browsed dwarf shrub (bilberry, Vaccinium myrtillus L.) and increased cover and reproductive effort of a non‐browsed graminoid (wavy hair‐grass, Avenella flexuosa (L.) Drejer). Increased moose density led to increased light availability and probably reduced competition from V. myrtillus. Total reproductive effort in the field layer vegetation increased, height decreased and cover of light‐demanding species and graminoids increased with increasing moose density. The effects of moose density were modified by the productivity gradient, leading to a higher relative increase in light availability and reproductive effort in highly productive areas than in low productive areas. Conclusions: Increased light availability was an important indirect effect of moose density, leading to less competition for light and a shift towards early successional species. The effect of moose density on light availability was modified by habitat productivity, leading to stronger relative effects in highly productive areas than in low productive areas.  相似文献   

13.
We observed forage and habitat selection in radio-collared moose at feeding sites in southeast Norway. Use of older forest increased from spring to autumn. Birch Betula spp. and bilberry Vaccinium myrtillus accounted for c. 75% of the diet. Occurrence of important forage plants, height of browse, and difference in phenology between plant species all appeared to play a role in moose selection of feeding sites. Shading influences moose forage by delaying plant phenology and possibly through its effect on leaf content of water and secondary compounds. On single birch trees, feeding was concentrated to the top branches at midsummer; during spring and autumn more leaves from side branches were eaten. Greater discrimination as vegetation matured was also evident from the wider variety of forage species used at midsummer. Selection of feeding sites was not related to density of important browse species. We propose that variations in light/shade conditions may play a role in moose choice of feeding sites and that moose on summer range will benefit from a heterogeneous mixture of plantations and older forest stands.  相似文献   

14.
The plant stress hypothesis states that plant stress factors other than herbivory improve herbivore performance due to changes in the content of nutritive or defensive compounds in the plants. In Norway, the bilberry (Vaccinium myrtillus) is important forage for the bank vole (Myodes glareolus) in winter and for the moose (Alces alces) in summer and autumn. The observed peaks in bank vole numbers after years with high production of bilberries are suggested to be caused by increased winter survival of bank voles due to improved forage quality. High production of bilberries should also lead to higher recruitment rates in moose in the following year. We predict, however, that there is an increasing tendency for a 1-year delay of moose indices relative to vole indices with decreasing summer temperatures, because low temperatures prolong the period needed by plants to recover in the vole peak year, and thus positively affect moose reproduction also in the succeeding year. In eight out of nine counties in south-eastern Norway, there was a positive relationship between the number of calves observed per female moose during hunting and a bilberry seed production index or an autumn bank vole population index. When dividing the study area into regions, there was a negative relationship between a moose-vole time-lag index and the mean summer temperature of the region. These patterns suggest that annual fluctuations in the production of bilberries affect forage quality, but that the effect on moose reproduction also depends on summer temperatures.  相似文献   

15.
Summary

Seasonal grazing treatments were begun in 1990 on two sites of bilberry moorland that lay 60–200 m from a strip of riverside woodland in Northern England. Treatments were summer grazing, winter grazing, year-round and no grazing, fences being moved in mid April and mid October each year to open or close plots. The main plant species, Calluna vulgaris, Empetrum nigrum and Vaccinium myrtillus, showed negligible response in cover or height to season of grazing, but colonisation by deciduous trees was much affected. On plots given summer protection (total area 2000 m2) 249 Sorbus aucuparia saplings were counted in 2000, together with one Quercus robur sapling, but no saplings were found in summer-grazed and year-round-grazed plots. Each winter the rowan saplings in the summer-protected plots were severely browsed by sheep, but they recovered in the next growing season. Their increasing trunk diameter and shoot increment up to 2000 suggested that some would soon escape herbivore control. But the fence moves did not take place in 2001,and in April 2002 these saplings were found to have been very heavily browsed. Nearly all survived but regrowth was much poorer in summer 2002 than summer 2000, so several more years of recovery are needed before it can be decided if summer protection from grazing allows succession to woodland at these sites.  相似文献   

16.
Penned moose Alces alces (L.) offered birch and rowan trees in various proportions in experimental tests showed a clear preference for birch both in terms of selection and use of trees. Both tree selection and tree use was frequency-independent, i.e. the preference for birches did not vary with either the number of birches, or total birch biomass available. The preference for birch was not absolute, i.e. rowans were also present in the diet. Birch were more profitable than rowans in terms of biomass intake rate, whereas rowans were more "nutritious" than birches. The results are consistent with both the optimal diet theory and the "nutrient mixture" hypothesis, although neither of the hypotheses are unambiguous regarding frequency-dependent food selection. It is argued, however, that tree selection and use by moose rather should be considered as a patch use problem and that trees should not be regarded as particulate food items as in most foraging models.  相似文献   

17.
Effects of cervid browsing on timber production, especially during winter, lead to economic losses in forest management. The aim of this study was to present an efficient DNA-based method which allows qualitative assessment of the winter diet from stools of moose (Alces alces), roe deer (Capreolus capreolus), and red deer (Cervus elaphus). The preliminary results of the diet composition of the three cervids from Poland were also presented with a special emphasis on moose. The electropherograms of the chloroplast intron trnL (UAA) P6 loop amplification products using g (fluorescence-labeled) and h primers revealed differences in the length of PCR products among various plant species eaten by these herbivores. In addition, the usage of species-specific primers allowed unambiguous identification of different gymnosperms and angiosperms. The preliminary moose diet analysis, based on winter fecal samples from the entire range of moose occurrence in Poland, revealed the presence of 15 to 24 tree, shrub, and herbaceous species. This fast, cost-efficient, and simple method proved also to be reliable for the diet analysis of red deer and roe deer. It may be a valuable tool in forest and conservation management, as well as a way of enhancing ecological studies focusing on the impact of herbivores on the ecosystems and their possible food niche overlap.  相似文献   

18.
The indirect effect of moose Alces alces browsing on ground beetle's abundance and diversity was investigated by pitfall trapping in a mixed coniferous forest in Vestfold County (59°19′ N, 9°50′ E, Norway), during the summer of 2002. Three areas with different browsing pressures, ranging from non- to medium- and heavily browsed were chosen and dry weight of bilberry Vaccinium myrtillus and humidity at ground level were measured in the three locations. As predicted, the gradient analyses showed that browsing by moose influenced the composition of carabid fauna, and that browsing intensity and humidity covaried with the most important gradient in carabid species composition found across the three locations. Species that live in light stands with rather dry soil, were more often captured in the browsed areas, whereas shade tolerant and hygrophilous species were more abundant in the non-browsed area. The carabid abundance increased significantly with increasing browsing pressure. According to our predictions, the diversity at trap level (α-diversity) was higher in the highly browsed area. Conversely, species turnover (β-diversity) decreased with browsing intensity. On the other hand, the rarefaction analysis showed that the regional species richness (γ-diversity) was considerably higher in the medium browsed area than in the heavily browsed one, which is consistent with the intermediate disturbance hypothesis. This study indicates that moose, by reducing the bilberry that constitutes the field layer in summer, affect carabid species composition and might be capable to reshape the whole ecosystem in our study area by a cascade effect.  相似文献   

19.
Large herbivores often have key functions in their ecosystems, and may affect ecosystem processes with cascading effects on other animals. The mechanisms often involve relocations of resources of various kinds, including reduction in resource availability following foraging and increase in resources from animal excreta. As large herbivore populations in Europe generally are intensely managed, management activities may interact with the activities of the herbivores themselves in the effect on other ecosystem components. We investigated the effects of moose (Alces alces) winter browsing, together with the effect of net nutrient input via supplementary winter feeding of moose on functional composition and species richness of birds in a boreal forest. Supplementary feeding stations for moose had a net zero effect on bird species richness and abundance, because negative effects of moose browsing were balanced by positive effects of nutrient input. Sites with a similar browsing intensity as at feeding stations but without nutrient input had lower abundance and species richness than feeding stations. Functional groups of bird species showed differing responses: birds nesting at or below browsing height were negatively affected by moose browsing, whereas species nesting above the browsing zone were positively affected by moose browsing. Insect-eating species responded negatively to moose browsing on birch but positively to nutrient input at feeding stations, whereas seed-eating species responded positively to birch browsing and negatively to feeding stations. This study showed that both high levels of cervid activity and human management interventions influence bird communities.  相似文献   

20.
Johan Månsson 《Ecography》2009,32(4):601-612
Understanding temporal variation in habitat selection and browsing intensity by large herbivores is fundamental because of their large impact on the ecosystems. I studied the annual variation in winter browsing pressure on young trees and habitat selection by moose Alces alces over a ten year period. Specifically, the relationships between browsing pressure on Scots pine Pinus sylvestris and two birch species ( Betula ssp.) and three explanatory variables – 1) availability of forage, 2) moose density (estimated by pellet group counts) and 3) snow cover was studied. At a larger spatial scale (forest stand level) the relationship between moose habitat selection between three different habitat types (forest <30 yr, forest>30 yr and mire) and two explanatory variables, 1) snow condition and 2) moose density, were studied. Browsing pressure on Scots pine, the dominating food plant, was related to forage availability, moose density and snow condition. No significant relationships between any of the three explanatory variables and browsing pressure on the two birch species were found. Moose selection for certain habitats varied between years and was affected by number of days with >0.10 m of snow.
Habitat selection was not significantly related to moose density and the relationship between overall moose density and habitat specific moose densities was proportional within the studied density range. These findings have implications for understanding varying browsing patterns – and will affect both the ability to predict herbivores' effect on the forest ecosystem. A snow dependent browsing pattern also indicates that one can expect a long term decrease in browsing pressure on the tree and shrub layer as a consequence of the ongoing large-scale climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号