共查询到20条相似文献,搜索用时 15 毫秒
1.
Colleen Podmore Ian D. Hogg Gabrielle M. Drayton Barbara I. P. Barratt Ian A. W. Scott Robert G. Foottit 《New Zealand journal of zoology.》2019,46(2):107-123
Focussed searches were made across New Zealand between 2013 and 2016, for endemic aphids from the Schizaphis (Rhopalosiphina) genus, which is currently represented by two putative, undescribed species from the endemic host plants Aciphylla and Dracophyllum. Cytochrome c oxidase I (COI) gene sequences (48 in total) from the Schizaphis were analysed together with those from a broader collection of New Zealand endemic aphids that has been assembled since the year 2000. The bulk of the Schizaphis belonged to two clusters corresponding to the host plant genera. Two aphids from central North Island Dracophyllum represented a much diverged lineage without clear affiliations to other New Zealand Schizaphis. Inter-population variation in the New Zealand Schizaphis was high compared with that seen in international studies of Aphidinae and among populations of other endemic New Zealand Aphidina. Within Schizaphis from Dracophyllum, geography played an apparent role in genetic structuring, with populations from Taranaki (North Island) and especially Mt Lyford (South Island) being divergent from those on the South Island main divide. Two distinct lineages of Schizaphis, which co-occurred at some sites, were found on Aciphylla. Our sequence comparisons, including GMYC analyses, indicated up to five New Zealand Schizaphis lineages, and two newly discovered endemic Aphis species from the host plants Clematis and Hebe. 相似文献
2.
Thomas Knebelsberger Monica Landi Hermann Neumann Matthias Kloppmann Anne F. Sell Patrick D. Campbell Silke Laakmann Michael J. Raupach Gary R. Carvalho Filipe O. Costa 《Molecular ecology resources》2014,14(5):1060-1071
Valid fish species identification is an essential step both for fundamental science and fisheries management. The traditional identification is mainly based on external morphological diagnostic characters, leading to inconsistent results in many cases. Here, we provide a sequence reference library based on mitochondrial cytochrome c oxidase subunit I (COI) for a valid identification of 93 North Atlantic fish species originating from the North Sea and adjacent waters, including many commercially exploited species. Neighbour‐joining analysis based on K2P genetic distances formed nonoverlapping clusters for all species with a ≥99% bootstrap support each. Identification was successful for 100% of the species as the minimum genetic distance to the nearest neighbour always exceeded the maximum intraspecific distance. A barcoding gap was apparent for the whole data set. Within‐species distances ranged from 0 to 2.35%, while interspecific distances varied between 3.15 and 28.09%. Distances between congeners were on average 51‐fold higher than those within species. The validation of the sequence library by applying BOLDs barcode index number (BIN) analysis tool and a ranking system demonstrated high taxonomic reliability of the DNA barcodes for 85% of the investigated fish species. Thus, the sequence library presented here can be confidently used as a benchmark for identification of at least two‐thirds of the typical fish species recorded for the North Sea. 相似文献
3.
Spatial subsidies in spider diets vary with shoreline structure: Complementary evidence from molecular diet analysis and stable isotopes 下载免费PDF全文
Peter A. Hambäck Elisabeth Weingartner Love Dalén Helena Wirta Tomas Roslin 《Ecology and evolution》2016,6(23):8431-8439
Inflow of matter and organisms may strongly affect the local density and diversity of organisms. This effect is particularly evident on shores where organisms with aquatic larval stages enter the terrestrial food web. The identities of such trophic links are not easily estimated as spiders, a dominant group of shoreline predator, have external digestion. We compared trophic links and the prey diversity of spiders on different shore types along the Baltic Sea: on open shores and on shores with a reed belt bordering the water. A priori, we hypothesized that the physical structure of the shoreline reduces the flow between ecosystem and the subsidies across the sea–land interface. To circumvent the lack of morphologically detectable remains of spider prey, we used a combination of stable isotope and molecular gut content analyses. The two tools used for diet analysis revealed complementary information on spider diets. The stable isotope analysis indicated that spiders on open shores had a marine signal of carbon isotopes, while spiders on reedy shores had a terrestrial signal. The molecular analysis revealed a diverse array of dipteran and lepidopteran prey, where spiders on open and reedy shores shared a similar diet with a comparable proportion of chironomids, the larvae of which live in the marine system. Comparing the methods suggests that differences in isotope composition of the two spider groups occurred because of differences in the chironomid diets: as larvae, chironomids of reedy shores likely fed on terrestrial detritus and acquired a terrestrial isotope signature, while chironomids of open shores utilized an algal diet and acquired a marine isotope signature. Our results illustrate how different methods of diet reconstruction may shed light on complementary aspects of nutrient transfer. Overall, they reveal that reed belts can reduce connectivity between habitats, but also function as a source of food for predators. 相似文献
4.
Morphological diversity and phylogeny of the diatom genus Entomoneis (Bacillariophyta) in marine plankton: six new species from the Adriatic Sea 下载免费PDF全文
Maja Mejdandžić Sunčica Bosak Teofil Nakov Elizabeth Ruck Sandi Orlić Marija Gligora Udovič Petra Peharec Štefanić Igor Špoljarić Gordan Mršić Zrinka Ljubešić 《Journal of phycology》2018,54(2):275-298
5.
Ulva Linnaeus (Ulvophyceae, Ulvales) is a genus of green algae widespread in different aquatic environments. Members of this genus show a very simple morphology and a certain degree of phenotypic plasticity, heavily influenced by environmental conditions, making difficult the delineation of species by morphological features alone. Most studies dealing with Ulva biodiversity in Mediterranean waters have been based only on morphological characters and a modern taxonomic revision of this genus in the Mediterranean is not available. We report here the results of an investigation on the diversity of Ulva in the North Adriatic Sea based on molecular analyses. Collections from three areas, two of which subject to intense shipping traffic, were examined, as well as historical collections of Ulva stored in the Herbarium Patavinum of the University of Padova, Italy. Molecular analyses based on partial sequences of the rbcL and tufA genes revealed the presence of six different species, often with overlapping morphologies: U. californica Wille, U. flexuosa Wulfen, U. rigida C. Agardh, U. compressa Linnaeus, U. pertusa Kjellman, and one probable new taxon. U. californica is a new record for the Mediterranean and U. pertusa is a new record for the Adriatic. Partial sequences obtained from historical collections show that most of the old specimens are referable to U. rigida. No specimens referable to the two alien species were found among the old herbarium specimens. The results indicate that the number of introduced seaweed species and their impact on Mediterranean communities have been underestimated, due to the difficulties in species identification of morphologically simple taxa as Ulva. 相似文献
6.
Jrme Morinire Michael Balke Dieter Doczkal Matthias F. Geiger Laura A. Hardulak Gerhard Haszprunar Axel Hausmann Lars Hendrich Ledis Regalado Bjrn Rulik Stefan Schmidt Johann‐Wolfgang Wgele Paul D. N. Hebert 《Molecular ecology resources》2019,19(4):900-928
This study summarizes results of a DNA barcoding campaign on German Diptera, involving analysis of 45,040 specimens. The resultant DNA barcode library includes records for 2,453 named species comprising a total of 5,200 barcode index numbers (BINs), including 2,700 COI haplotype clusters without species‐level assignment, so called “dark taxa.” Overall, 88 out of 117 families (75%) recorded from Germany were covered, representing more than 50% of the 9,544 known species of German Diptera. Until now, most of these families, especially the most diverse, have been taxonomically inaccessible. By contrast, within a few years this study provided an intermediate taxonomic system for half of the German Dipteran fauna, which will provide a useful foundation for subsequent detailed, integrative taxonomic studies. Using DNA extracts derived from bulk collections made by Malaise traps, we further demonstrate that species delineation using BINs and operational taxonomic units (OTUs) constitutes an effective method for biodiversity studies using DNA metabarcoding. As the reference libraries continue to grow, and gaps in the species catalogue are filled, BIN lists assembled by metabarcoding will provide greater taxonomic resolution. The present study has three main goals: (a) to provide a DNA barcode library for 5,200 BINs of Diptera; (b) to demonstrate, based on the example of bulk extractions from a Malaise trap experiment, that DNA barcode clusters, labelled with globally unique identifiers (such as OTUs and/or BINs), provide a pragmatic, accurate solution to the “taxonomic impediment”; and (c) to demonstrate that interim names based on BINs and OTUs obtained through metabarcoding provide an effective method for studies on species‐rich groups that are usually neglected in biodiversity research projects because of their unresolved taxonomy. 相似文献
7.
Species diversity can be overestimated by a fixed empirical threshold: insights from DNA barcoding of the genus Cletus (Hemiptera: Coreidae) and the meta‐analysis of COI data from previous phylogeographical studies 下载免费PDF全文
Hai‐Guang Zhang Min‐Hua Lv Wen‐Bo Yi Wei‐Bing Zhu Wen‐Jun Bu 《Molecular ecology resources》2017,17(2):314-323
The use of genetic distances to identify species within the framework of DNA barcoding has to some extent improved the development of biodiversity studies. However, using a fixed empirical threshold to delimit species may lead to overestimating species diversity. In this study, we use a new data set of COI sequences for 366 specimens within the genus of Cletus as well as conduct an analysis on the same genetic data for collected morphologically defined species from previous phylogeographical studies, to test whether high intraspecific genetic divergences are common with the premises of comprehensive sampling. The results indicate C. graminis Hsiao & Cheng 1964 , is the same species with C. punctiger (Dallas, 1852) and should be synonymized and that the distributional record of C. pugnator (Fabricius, 1787) in China is correct. High intraspecific genetic differentiations (0%–4.35%) were found in C. punctiger. Furthermore, as to the mined data, the maximum intraspecific K2P distances of 186 species (48.44% of 384) exceed 3%, and 101 species (26.30%) can be divided into two or more clusters with a threshold of 3% in cluster analysis. If genetic distance is used to delimit species boundaries, the minimum interspecific K2P distance of the congeneric species should be considered rather than only using the fixed empirical value; otherwise, the species richness may be overestimated in some cases. 相似文献
8.
El Mahdi Bendif Ian Probert Margaux Carmichael Sarah Romac Kyoko Hagino Colomban de Vargas 《Journal of phycology》2014,50(1):140-148
Emiliania huxleyi and Gephyrocapsa oceanica are abundant coccolithophore morpho‐species that play key roles in ocean carbon cycling due to their importance as both primary producers and cal‐cifiers. Global change processes such as ocean acidification impact these key calcifying species. The physiology of E. huxleyi, a developing model species, has been widely studied, but its genetic delineation from G. oceanica remains unclear due to a lack of resolution in classical genetic markers. Using nuclear (18S rDNA and 28S rDNA), mitochondrial (cox1, cox2, cox3, rpl16, and dam), and plastidial (16S rDNA, rbcL, tufA, and petA) DNA markers from 99 E. huxleyi and 44 G. oceanica strains, we conducted a multigene/multistrain survey to compare the suitability of different markers for resolving phylogenetic patterns within and between these two morpho‐species. The nuclear genes tested did not provide sufficient resolution to discriminate between the two morpho‐species that diverged only 291Kya. Typical patterns of incomplete lineage sorting were generated in phylogenetic analyses using plastidial genes. In contrast, full morpho‐species delineation was achieved with mitochondrial markers and common intra‐morpho‐species phylogenetic patterns were observed despite differing rates of DNA substitution. Mitochondrial genes are thus promising barcodes for distinguishing these coccolithophore morpho‐species, in particular in the context of environmental monitoring. 相似文献
9.
Darren W. Pietersen Andrew E. McKechnie Raymond Jansen Ian T. Little Armanda D.S. Bastos 《Ibis》2019,161(4):781-792
The globally distributed avian family Motacillidae consists of five to seven genera (Anthus, Dendronanthus, Tmetothylacus, Macronyx and Motacilla, and depending on the taxonomy followed, Amaurocichla and Madanga) and 66–68 recognized species, of which 32 species in four genera occur in sub‐Saharan Africa. The taxonomy of the Motacillidae has been contentious, with variable numbers of genera, species and subspecies proposed and some studies suggesting greater taxonomic diversity than currently recognized (five genera and 67 species). Using one nuclear (Mb) and two mitochondrial (cyt b and CO1) gene regions amplified from DNA extracted from contemporary and museum specimens, we investigated the taxonomic status of 56 of the currently recognized motacillid species and present the most taxonomically complete and expanded phylogeny of this family to date. Our results suggest that the family comprises six clades broadly reflecting continental distributions: sub‐Saharan Africa (two clades), the New World (one clade), Palaearctic (one clade), a widespread large‐bodied Anthus clade, and a sixth widespread genus, Motacilla. Within the Afrotropical region, our phylogeny further supports recognition of Wood Pipit Anthus nyassae as a valid species, and the treatment of Long‐tailed Pipit Anthus longicaudatus and Kimberley Pipit Anthus pseudosimilis as junior subjective synonyms of Buffy Pipit Anthus vaalensis and African Pipit Anthus cinnamomeus, respectively. As the disjunct populations of Long‐billed Pipit Anthus similis in southern and East Africa are genetically distinct and geographically separated, we propose a specific status for the southern African population under the earliest available name, Nicholson's Pipit Anthus nicholsoni. Further, as our analyses indicate that Yellow‐breasted Pipit Anthus chloris and Golden Pipit Tmetothylacus tenellus are both nested within the Macronyx longclaws, we propose transferring these species to the latter genus. 相似文献
10.
Awad A. Algarni 《Saudi Journal of Biological Sciences》2022,29(2):1125-1133
The Kingdom of Saudi Arabia thrives with great plant diversity, including rare plants of the family Asphodelaceae that have multiple benefits and are still being studied. Aloe shadensis is one of these plants that must be preserved and documented in its natural environment. The most appropriate molecular approach currently approved for documentation is the sequencing of some genomic markers. The current study is the first to use genomic markers to record this rare plant. In this study, the plastid genes matK (Maturase K), rbcL (Ribulose-bisphosphate carboxylase/oxygenase large subunit), and the nuclear region ITS (Internal transcribed spacer) were used to reveal their efficiency in identifying the plant under study. This study is the first to deal with this plant and document it using these genetic markers. The study showed a promising result concerning identifying the sequence of the matK gene and ITS region, while the rbcL gene did not give a good indicator through the used primers. The obtained sequences of the matK gene and the ITS region were determined through two different sets of primers in each case then deposited in GenBank. The evolutionary relatedness of Aloe shadensis was established with the different species of Aloe. The study showed that the closest species is Aloe vera with a similarity of more than 99 %. The study concludes with the possibility of using these genes to correctly identify, distinguish and document the species of Aloe shadensis. 相似文献
11.
Antoine Fort Marcus McHale Kevin Cascella Philippe Potin Bjrn Usadel Michael D. Guiry Ronan Sulpice 《Journal of phycology》2021,57(1):219-233
Foliose Ulva spp. have become increasingly important worldwide for their environmental and financial impacts. A large number of such Ulva species have rapid reproduction and proliferation habits, which explains why they are responsible for Ulva blooms, known as “green tides”, having dramatic negative effects on coastal ecosystems, but also making them attractive for aquaculture applications. Despite the increasing interest in the genus Ulva, particularly on the larger foliose species for aquaculture, their inter‐ and intra‐specific genetic diversity is still poorly described. We compared the cytoplasmic genome (chloroplast and mitochondrion) of 110 strains of large distromatic foliose Ulva from Ireland, Brittany (France), the Netherlands and Portugal. We found six different species, with high levels of inter‐specific genetic diversity, despite highly similar or overlapping morphologies. Genetic variation was as high as 82 SNPs/kb between Ulva pseudorotundata and U. laetevirens, indicating considerable genetic diversity. On the other hand, intra‐specific genetic diversity was relatively low, with only 36 variant sites (0.03 SNPs/kb) in the mitochondrial genome of the 29 Ulva rigida individuals found in this study, despite different geographical origins. The use of next‐generation sequencing allowed for the detection of a single inter‐species hybrid between two genetically closely related species, U. laetevirens, and U. rigida, among the 110 strains analyzed in this study. Altogether, this study represents an important advance in our understanding of Ulva biology and provides genetic information for genomic selection of large foliose strains in aquaculture. 相似文献
12.
Zhi‐peng Zhang Xiao‐yue Wang Zhao Zhang Hui Yao Xiao‐mei Zhang Yang Zhang Ben‐gang Zhang 《Ecology and evolution》2019,9(18):10723-10733
DNA barcoding is widely used in species identification, but there is considerable controversy regarding the extent of sampling in research methods. Some scholars have proposed that this small sample size underestimates the intraspecific genetic diversity, which would impact on the accuracy of DNA barcoding to identify species. In study, we selected all Phellodendron species (including P. amurense Rupr., P. chinense Schneid., and P. chinense var. glabriusculum Schneid.) as the materials, collected 59 P. amurense samples from 35 populations greatly to represent the genetic diversity, and analyzed the haplotype, genetic distance, barcoding gap, and Neighbor‐Joining (NJ) trees based on psbA‐trnH and internal transcribed spacer gene sequences. Additionally, a sampling simulation was conducted to assess the correlation between genetic diversity and the number of populations. Finally, analysis of critical geographical populations was performed. Based on analysis of haplotype, genetic distance, barcoding gap, and NJ trees, we found that eight P. amurense samples impacted on the effectiveness of DNA barcoding, which genetic information were very important to identify Phellodendron species. Moreover, the result of the NJ tree analysis performed the small‐scale P. amurense sample size did not completely match the objective phylogenetic relationship in Phellodendron. In simulation sampling analysis, the data showed the genetic diversity indexes at the same population level gradually decreased and stabilized as the number of simulation sampling populations increased. We found that 1–2 samples from over 24 populations based on uniform geographical distribution could represent 80% of the genetic diversity of P. amurense and ensure authenticity and reliability of DNA barcoding. Thus, we proposed it is particularly important adequately samples to cover infraspecific genetic diversity in order to ensure identification accuracy of DNA barcoding. 相似文献
13.
Vanesa L. De Pietri Gerald Mayr 《Journal of Zoological Systematics and Evolutionary Research》2014,52(4):312-322
In Europe, Miocene rails (Aves, Rallidae) are quite abundant, but their phylogenetic placement in the context of recent forms has remained elusive. Rails from the early Miocene of the Saint‐Gérand‐le‐Puy area in central France were first described in the 19th century, and currently, only two species are recognized, namely Palaeoaramides christyi and Paraortygometra porzanoides. Our examination of the material however suggests the presence of four, likely coeval, species of rail from these deposits. Palaeoaramides eximius, previously synonymized with Palaeoaramides christyi, is here shown to probably be a distinct species, and a previously unrecognized rail, Baselrallus intermedius gen. et sp. nov., is described. To find out how these fossil rails are related to modern Rallidae, we compared them with an extensive sample of extant rails and identified plesiomorphic and derived features for crown group Rallidae. Our assessment does not support a particularly close relationship of either Palaeoaramides to Aramides or Paraortygometra to Crex (Ortygometra), and overall, these fossil rails are more primitive than previously assumed. Based on our observations of the morphology of the previously undescribed humerus of Palaeoaramides, we show this taxon to be outside crown group Rallidae, and perhaps closely related to the early Oligocene taxon Belgirallus. On the other hand, Paraortygometra porzanoides bears a resemblance to recent flufftails (Sarothrura spp.) in some elements, but whether it can be included in a clade together with flufftails is uncertain. 相似文献
14.
Mikko Tiusanen Tea Huotari Paul D. N. Hebert Tommi Andersson Ashley Asmus Joël Bêty Emma Davis Jennifer Gale Bess Hardwick David Hik Christian Krner Richard B. Lanctot Maarten J. J. E. Loonen Rauni Partanen Karissa Reischke Sarah T. Saalfeld Fanny Senez‐Gagnon Paul A. Smith Jn ulavík Ilkka Syvnper Christine Urbanowicz Sian Williams Paul Woodard Yulia Zaika Tomas Roslin 《Molecular ecology》2019,28(2):318-335
15.
Vera L. Nunes Raquel Mendes Eduardo Marabuto Bruno M. Novais Thomas Hertach José A. Quartau Sofia G. Seabra Octávio S. Paulo Paula C. Simões 《Molecular ecology resources》2014,14(1):27-38
DNA barcodes have great potential to assist in species identification, especially when high taxonomical expertise is required. We investigated the utility of the 5′ mitochondrial cytochrome c oxidase I (COI) region to discriminate between 13 European cicada species. These included all nine species currently recognized under the genus Tettigettalna, from which seven are endemic to the southern Iberian Peninsula. These cicadas have species‐specific male calling songs but are morphologically very similar. Mean COI divergence between congeners ranged from 0.4% to 10.6%, but this gene was proven insufficient to determine species limits within genus Tettigettalna because a barcoding gap was absent for several of its species, that is, the highest intraspecific distance exceeded the lowest interspecific distance. The genetic data conflicted with current taxonomic classification for T. argentata and T. mariae. Neighbour‐joining and Bayesian analyses revealed that T. argentata is geographically structured (clades North and South) and might constitute a species complex together with T. aneabi and T. mariae. The latter diverges very little from the southern clade of T. argentata and shares with it its most common haplotype. T. mariae is often in sympatry with T. argentata but it remains unclear whether introgression or incomplete lineage sorting may be responsible for the sharing of haplotypes. T. helianthemi and T. defauti also show high intraspecific variation that might signal hidden cryptic diversity. These taxonomic conflicts must be re‐evaluated with further studies using additional genes and extensive morphological and acoustic analyses. 相似文献
16.
Morphological and genetic diversity of Beaufort Sea diatoms with high contributions from the Chaetoceros neogracilis species complex 下载免费PDF全文
Sergio Balzano Isabella Percopo Raffaele Siano Priscillia Gourvil Mélanie Chanoine Dominique Marie Daniel Vaulot Diana Sarno 《Journal of phycology》2017,53(1):161-187
Seventy‐five diatom strains isolated from the Beaufort Sea (Canadian Arctic) in the summer of 2009 were characterized by light and electron microscopy (SEM and TEM), as well as 18S and 28S rRNA gene sequencing. These strains group into 20 genotypes and 17 morphotypes and are affiliated with the genera Arcocellulus, Attheya, Chaetoceros, Cylindrotheca, Eucampia, Nitzschia, Porosira, Pseudo‐nitzschia, Shionodiscus, Thalassiosira, and Synedropsis. Most of the species have a distribution confined to the northern/polar area. Chaetoceros neogracilis and Chaetoceros gelidus were the most represented taxa. Strains of C. neogracilis were morphologically similar and shared identical 18S rRNA gene sequences, but belonged to four distinct genetic clades based on 28S rRNA, ITS‐1 and ITS‐2 phylogenies. Secondary structure prediction revealed that these four clades differ in hemi‐compensatory base changes (HCBCs) in paired positions of the ITS‐2, suggesting their inability to interbreed. Reproductively isolated C. neogracilis genotypes can thus co‐occur in summer phytoplankton communities in the Beaufort Sea. C. neogracilis generally occurred as single cells but also formed short colonies. It is phylogenetically distinct from an Antarctic species, erroneously identified in some previous studies as C. neogracilis, but named here as Chaetoceros sp. This work provides taxonomically validated sequences for 20 Arctic diatom taxa, which will facilitate future metabarcoding studies on phytoplankton in this region. 相似文献
17.
Prasiola (Prasiolales,Trebouxiophyceae) in Japan: a survey of freshwater populations and new records of marine taxa 下载免费PDF全文
Judy E. Sutherland Masahiko Miyata Motoyasu Ishikawa Wendy A. Nelson 《Phycological Research》2016,64(2):110-117
Recent collections from marine and freshwater locations have enabled the investigation of diversity of Prasiola in Japan. Sequence data from the rbc L and tuf A markers revealed the presence of three marine species and one freshwater species. Prasiola delicata was confirmed to occur on Daikokujima, Prasiola calophylla was found for the first time in Japan from Hokkaido, and a species within the P. meridionalis/linearis/stipitata complex was found on both Hokkaido and Daikokujima. Collections from a range of populations of freshwater Prasiola, identified here as P. japonica, were found to be conspecific and identical in rbc L and tuf A sequences to freshwater collections from Nepal, Korea, and China. 相似文献
18.
S. Shi H. Jin Y. Zhong X. He Y. Huang F. Tan D. E. Boufford 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2000,101(5-6):925-930
The coding region of the matK gene was sequenced to infer the phylogeny of the family Magnoliaceae. Phylogenetic analyses of 21 matK sequences representing ten genera of Magnoliaceae and three outgroups suggest relationships among both subfamilies and genera.
Monophyly of the subfamily Liriodendroideae (the genus Liriodendron) and the subfamily Magnolioideae is strongly supported, respectively. Within the subfamily Magnolioideae, three clades are
formed: (1) the genus Magnlietia, (2) the subgenus Magnolia, and (3) the subgenus Yulania, with the genera Michelia, Paramichelia, Tsoongiodendron, Alcimandra, Kmeria, Parakmeria and Manglietiastrum. However, the genus Magnolia is shown to be a polyphyletic group, and the genus Michelia a paraphyletic group. Relatively low sequence divergences are detected among genera of the the subfamily Magnolioideae, ranging
from 0.14% to 1.70%, especially in the tribe Micheliinae (0.14–0.98%). Molecular evidence from matK sequence data suggests that the phylogenetic positions and the delimitation of the eight genera Magnolia, Michelia, Tsoongiodendron, Paramichelia, Alcimandra, Kmeria, Parakmeria and Manglietiastrum need to be reconsidered.
Received: 2 January 2000 / Accepted: 12 February 2000 相似文献
19.