共查询到18条相似文献,搜索用时 62 毫秒
1.
酶技术发展与酶定向进化 总被引:1,自引:0,他引:1
在分子水平改良酶的结构和功能是对工业微生物菌种传统诱变育种的发展和扬弃。采用DNA改组,酶定向进化,分子孵化技术改良产酶编码基因可大大提高产酶基因在宿主中的表达,从而提高酶的活力,增加酶的稳定性并产生其它附加功能。本文除了分析酶学研究和应用的一些最新观点和实施技术,还对当前酶制品的国际市场,传统酶与特殊酶的市场份额等作了介绍。 相似文献
2.
酶的分子定向进化及其应用 总被引:1,自引:0,他引:1
酶的分子定向进化是20世纪90年代初兴起的一种蛋白质工程的新策略,是一种在生物体外模拟自然进化过程的、具有一定目的性的快速改造蛋A质的方法.该方法引起了生物催化技术领域的又一次革命.目前分子定向进化技术已被广泛应用于工业、农业及制药业等的相关领域.本文详细综述了酶的分子定向进化的概念、过程、基本策略及其核心技术,并着重介绍了酶的分子定向进化技术在提高酶的活力、稳定性、底物特异性和对映体选择性等几方面的应用及取得的相关成果. 相似文献
3.
4.
5.
筛选是制约酶定向进化改造的瓶颈。为解决这一难题,近年来一系列基于组合活性中心饱和突变(Combinatorial active-site saturation test,CAST)及迭代饱和突变(Iterative saturation mutagenesis,ISM)的半理性设计新方法被开发出来,包括单密码子饱和突变(Single code saturation mutagenesis,SCSM)、双密码子饱和突变(Double code saturation mutagenesis,DCSM)和三密码子饱和突变(Triple code saturation mutagenesis,TCSM)。通过构建"小而精"的高质量突变体文库,对特定靶点进行组合突变,并成功应用于多种生物催化剂的立体/区域选择性及催化活力等多参数的改造。文中综述了近年来定向进化技术的最新进展及其在生物催化剂定向改造中的应用。 相似文献
6.
7.
8.
合成生物学家应用标准化、通用化的生物元件和操作创建可编程、功能导向的生物装置和生物系统,最终希望通过改善或创造生物体帮助人类解决若干重大挑战,如合成廉价新药品和精细化工产品、生产新型生物燃料、清理有毒废物、治疗癌症等重大疾病。然而要实现合成生物学所展现的美好愿景,还面临许多技术难点, 相似文献
9.
酶分子体外定向进化的研究进展 总被引:1,自引:0,他引:1
分子体外定向进化是改造酶分子的新策略,它主要通过体外模拟自然进化机制,利用基因随机突变、重组和定向筛选技术,使进化过程朝着人们需要的方向发展。简要介绍了酶分子体外定向进化的发展历史,详细介绍了突变文库构建和筛选方法的最新研究进展及应用情况。 相似文献
10.
11.
Sayaka Sugiura Shogo Nakano Masazumi Niwa Fumihito Hasebe Daisuke Matsui Sohei Ito 《The Journal of biological chemistry》2021,297(3)
A large number of protein sequences are registered in public databases such as PubMed. Functionally uncharacterized enzymes are included in these databases, some of which likely have potential for industrial applications. However, assignment of the enzymes remained difficult tasks for now. In this study, we assigned a total of 28 original sequences to uncharacterized enzymes in the FAD-dependent oxidase family expressed in some species of bacteria including Chryseobacterium, Flavobacterium, and Pedobactor. Progenitor sequence of the assigned 28 sequences was generated by ancestral sequence reconstruction, and the generated sequence exhibited L-lysine oxidase activity; thus, we named the enzyme AncLLysO. Crystal structures of ligand-free and ligand-bound forms of AncLLysO were determined, indicating that the enzyme recognizes L-Lys by hydrogen bond formation with R76 and E383. The binding of L-Lys to AncLLysO induced dynamic structural change at a plug loop formed by residues 251 to 254. Biochemical assays of AncLLysO variants revealed the functional importance of these substrate recognition residues and the plug loop. R76A and E383D variants were also observed to lose their activity, and the kcat/Km value of G251P and Y253A mutations were approximately 800- to 1800-fold lower than that of AncLLysO, despite the indirect interaction of the substrates with the mutated residues. Taken together, our data demonstrate that combinational approaches to sequence classification from database and ancestral sequence reconstruction may be effective not only to find new enzymes using databases of unknown sequences but also to elucidate their functions. 相似文献
12.
Filipe Garrett Vieira Jos Alfredo Samaniego Castruita M. Thomas P. Gilbert 《Ecology and evolution》2020,10(23):12700
Paleogenomics is the nascent discipline concerned with sequencing and analysis of genome‐scale information from historic, ancient, and even extinct samples. While once inconceivable due to the challenges of DNA damage, contamination, and the technical limitations of PCR‐based Sanger sequencing, following the dawn of the second‐generation sequencing revolution, it has rapidly become a reality. However, a significant challenge facing ancient DNA studies on extinct species is the lack of closely related reference genomes against which to map the sequencing reads from ancient samples. Although bioinformatic efforts to improve the assemblies have focused mainly in mapping algorithms, in this article we explore the potential of an alternative approach, namely using reconstructed ancestral genome as reference for mapping DNA sequences of ancient samples. Specifically, we present a preliminary proof of concept for a general framework and demonstrate how under certain evolutionary divergence thresholds, considerable mapping improvements can be easily obtained. 相似文献
13.
Rosario Valenti Jagoda Jaboska Dan S. Tawfik 《Protein science : a publication of the Protein Society》2022,31(10)
Superoxide dismutases (SODs) are critical metalloenzymes mitigating the damages of the modern oxygenated world. However, the emergence of one family of SODs, the Fe/Mn SOD, has been recurrently proposed to predate the great oxygenation event (GOE). This ancient family lacks metal binding selectivity, but displays strong catalytic selectivity. Therefore, some homologues would only be active when bound to Fe or Mn, although others, dubbed cambialistic, would function when loaded with either ion. This posed the longstanding question about the identity of the cognate metal ion of the first SODs to emerge. In this work, we utilize ancestral sequence reconstruction techniques to infer the earliest SODs. We show that the “ancestors” are active in vivo and in vitro. Further, we test their metal specificity and demonstrate that they are cambialistic in nature. Our findings shed light on how the predicted Last Common Universal Ancestor was capable of dealing with decomposition of the superoxide anion, and the early relationship between life, oxygen, and metal ion availability. 相似文献
14.
Cosimo Kropp Kristina Straub Mona Linde Patrick Babinger 《Protein science : a publication of the Protein Society》2021,30(3):583
A large number of archaea live in hyperthermophilic environments. In consequence, their proteins need to adopt to these harsh conditions, including the enzymes that catalyze the synthesis of their membrane ether lipids. The enzyme that catalyzes the formation of the first ether bond in these lipids, geranylgeranylglyceryl phosphate synthase (GGGPS), exists as a hexamer in many hyperthermophilic archaea, and a recent study suggested that hexamerization serves for a fine‐tuning of the flexibility – stability trade‐off under hyperthermophilic conditions. We have recently reconstructed the sequences of ancestral group II GGGPS enzymes and now present a detailed biochemical characterization of nine of these predecessors, which allowed us to trace back the evolution of hexameric GGGPS and to draw conclusions about the properties of extant GGGPS branches that were not accessible to experiments up to now. Almost all ancestral GGGPS proteins formed hexamers, which demonstrates that hexamerization is even more widespread among the GGGPS family than previously assumed. Furthermore, all experimentally studied ancestral proteins showed high thermostability. Our results indicate that the hexameric oligomerization state and thermostability were present very early during the evolution of group II GGGPS, while the fine tuning of the flexibility – stability trade‐off developed very late, independent of the emergence of hexamerization. 相似文献
15.
Shigeru Saito Claire T. Saito Masafumi Nozawa Makoto Tominaga 《Molecular ecology》2019,28(15):3561-3571
Ambient temperature fluctuations are detected via the thermosensory system which allows animals to seek preferable thermal conditions or escape from harmful temperatures. Evolutionary changes in thermal perception have thus potentially played crucial roles in niche selection. The genus Xenopus (clawed frog) is suitable for investigating the relationship between thermal perception and niche selection due to their diverse latitudinal and altitudinal distributions. Here we performed comparative analyses of the neuronal heat sensors TRPV1 and TRPA1 among closely related Xenopus species (X. borealis, X. muelleri, X. laevis, and X. tropicalis) to elucidate their functional evolution and to assess whether their functional differences correlate with thermal niche selection among the species. Comparison of TRPV1 among four extant Xenopus species and reconstruction of the ancestral TRPV1 revealed that TRPV1 responses to repeated heat stimulation were specifically altered in the lineage leading to X. tropicalis which inhabits warmer niches. Moreover, the thermal sensitivity of TRPA1 was lower in X. tropicalis than the other species, although the thermal sensitivity of TRPV1 and TRPA1 was not always lower in species that inhabit warmer niches than the species inhabit cooler niches. However, a clear correlation was found in species differences in TRPA1 activity. Heat‐evoked activity of TRPA1 in X. borealis and X. laevis, which are adapted to cooler niches, was significantly higher than in X. tropicalis and X. muelleri which are adapted to warmer niches. These findings suggest that the functional properties of heat sensors changed during Xenopus evolution, potentially altering the preferred temperature ranges among species. 相似文献
16.
Gloria Yang Charlotte M. Miton Nobuhiko Tokuriki 《Protein science : a publication of the Protein Society》2020,29(8):1724-1747
New enzyme functions often evolve through the recruitment and optimization of latent promiscuous activities. How do mutations alter the molecular architecture of enzymes to enhance their activities? Can we infer general mechanisms that are common to most enzymes, or does each enzyme require a unique optimization process? The ability to predict the location and type of mutations necessary to enhance an enzyme's activity is critical to protein engineering and rational design. In this review, via the detailed examination of recent studies that have shed new light on the molecular changes underlying the optimization of enzyme function, we provide a mechanistic perspective of enzyme evolution. We first present a global survey of the prevalence of activity‐enhancing mutations and their distribution within protein structures. We then delve into the molecular solutions that mediate functional optimization, specifically highlighting several common mechanisms that have been observed across multiple examples. As distinct protein sequences encounter different evolutionary bottlenecks, different mechanisms are likely to emerge along evolutionary trajectories toward improved function. Identifying the specific mechanism(s) that need to be improved upon, and tailoring our engineering efforts to each sequence, may considerably improve our chances to succeed in generating highly efficient catalysts in the future. 相似文献
17.
The antibiotic alaremycin has a structure that resembles that of 5-aminolevulinic acid (ALA), a universal precursor of porphyrins, and inhibits porphyrin biosynthesis. Genome sequencing of the alaremycin-producing bacterial strain and enzymatic analysis revealed that the first step of alaremcyin biosynthesis is catalysed by the enzyme, AlmA, which exhibits a high degree of similarity to 5-aminolevulinate synthase (ALAS) expressed by animals, protozoa, fungi, and α-proteobacteria. Site-directed mutagenesis of AlmA revealed that the substitution of two amino acids residues around the substrate binding pocket transformed its substrate specificity from that of alaremycin precursor synthesis to ALA synthesis. To estimate the evolutionary trajectory of AlmA and ALAS, we performed an ancestral sequence reconstitution analysis based on a phylogenetic tree of AlmA and ALAS. The reconstructed common ancestral enzyme of AlmA and ALAS exhibited alaremycin precursor synthetic activity, rather than ALA synthetic activity. These results suggest that ALAS evolved from an AlmA-like enzyme. We propose a new evolutionary hypothesis in which a non-essential secondary metabolic enzyme acts as an ‘evolutionary seed’ to generate an essential primary metabolic enzyme. 相似文献
18.
Tuck Seng Wong Tuck Seng Wong Danilo Roccatano 《Biocatalysis and Biotransformation》2013,31(2-4):229-241
Directed protein evolution is the most versatile method for studying protein structure–function relationships, and for tailoring a protein's properties to the needs of industrial applications. In this review, we performed a statistical analysis on the genetic code to study the extent and consequence of the organization of the genetic code on amino acid substitution patterns generated in directed evolution experiments. In detail, we analyzed amino acid substitution patterns caused by (a) a single nucleotide (nt) exchange at each position of all 64 codons, and (b) two subsequent nt exchanges (first and second nt, first and third nt, second and third nt). Additionally, transitions and transversions mutations were compared at the level of amino acid substitution patterns. The latter analysis showed that single nucleotide substitution in a codon generates only 39.5% of the natural diversity on the protein level with 5.2–7 amino acid substitutions per codon. Transversions generate more complex amino acid substitution patterns (increased number and chemically more diverse amino acid substitutions) than transitions. Simultaneous nt exchanges at both first and second nt of a codon generates very diverse amino acid substitution patterns, achieving 83.2% of the natural diversity. The statistical analysis described in this review sets the objectives for novel random mutagenesis methods that address the consequences of the organization of the genetic code. Random mutagenesis methods that favor transversions or introduce consecutive nt exchanges can contribute in this regard. 相似文献