首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
AIMS: To detect a wide range of Cryptosporidium species from human faeces by analysis of the Cryptosporidium oocyst wall protein gene by PCR. METHODS AND RESULTS: The nested-assay comprised an initial amplification using a conventional thermocycler followed by real time PCR using a LightCycler with SYBR Green I for the characterization of the amplicons. The technique uses four sets of primers composed of five to six oligonucleotides with one to six base differences corresponding to the inter-species sequence differences of the gene fragment. Restriction fragment length polymorphism analysis identified Cryptosporidium hominis and C. parvum. The assay was evaluated using DNA extracted from purified material and faecal specimens containing a range of potential pathogens (including Cryptosporidium). The assay was specific, sensitive, reproducible and rapid. CONCLUSIONS: This unique technique enables the rapid detection of a range of polymorphic COWP gene sequences directly from faeces using real time PCR. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrates a novel approach to identification of Cryptosporidium species and the identification of C. hominis and C. parvum. The technique may be especially useful for the analysis of environmental samples which are likely to contain heterogeneous mixtures of Cryptosporidium species.  相似文献   

2.
To assess the genetic diversity in Cryptosporidium parvum, we have sequenced the small subunit (SSU) rRNA gene of seven Cryptosporidium spp., various isolates of C. parvum from eight hosts, and a Cryptosporidium isolate from a desert monitor. Phylogenetic analysis of the SSU rRNA sequences confirmed the multispecies nature of the genus Cryptosporidium, with at least four distinct species (C. parvum, C. baileyi, C. muris, and C. serpentis). Other species previously defined by biologic characteristics, including C. wrairi, C. meleagridis, and C. felis, and the desert monitor isolate, clustered together or within C. parvum. Extensive genetic diversities were present among C. parvum isolates from humans, calves, pigs, dogs, mice, ferrets, marsupials, and a monkey. In general, specific genotypes were associated with specific host species. A PCR-restriction fragment length polymorphism technique previously developed by us could differentiate most Cryptosporidium spp. and C. parvum genotypes, but sequence analysis of the PCR product was needed to differentiate C. wrairi and C. meleagridis from some of the C. parvum genotypes. These results indicate a need for revision in the taxonomy and assessment of the zoonotic potential of some animal C. parvum isolates.  相似文献   

3.
An unusual genotype of Cryptosporidium was identified in the faeces of six human patients by PCR/RFLP analysis of the Cryptosporidium oocyst wall protein (COWP) gene. Conventional microscopy showed oocysts indistinguishable in size from those of Cryptosporidium parvum, which reacted with two different commercially available anti-oocyst monoclonal antibodies. The isolates were further characterised by PCR/RFLP analysis of the thrombospondin-related adhesive protein of Cryptosporidium-1 (TRAP-C1) genes as well as by DNA sequencing of the COWP and the TRAP-C1 gene fragments and of two regions of the 18S rRNA gene. Sequence analysis of the COWP, TRAP-C1, and 18S rRNA gene fragments confirmed that this genotype is genetically distinct from C. parvum. 18S rRNA gene sequences were found to be identical to those published for Cryptosporidium meleagridis.  相似文献   

4.
Detection of viable Cryptosporidium parvum oocysts by PCR.   总被引:4,自引:3,他引:1       下载免费PDF全文
PCR was used to detect and specifically identify a gene fragment from Cryptosporidium parvum. An 873-bp region of a 2,359-bp DNA fragment encoding a repetitive oocyst protein of C. parvum was shown to be specifically amplified in C. parvum. An excystation protocol before DNA extraction allowed the differentiation between live and dead Cryptosporidium parvum oocysts.  相似文献   

5.
Cryptosporidium is an important protozoan that cause diarrheal illness in humans and animals. Different species of Cryptosporidium have been reported and it is believed that species characteristics are an important factor to be considered in strategic planning for control. We therefore analyzed oocysts from human and animal isolates of Cryptosporidium by PCR-RFLP to determine strain variation in Isfahan. In total, 642 human fecal samples from children under five years of age, immunocompromised patients, and high risk persons and 480 randomly selected rectal specimens of cows and calves in Isfahan were examined. Microscopic examination showed that 4.7% (30/642) of human samples and 6.2% (30/480) of animal samples were infected with Cryptosporidium. After identification of the samples infected with the parasite, oocysts were purified and their DNA was extracted. We used PCR-RFLP analysis of a 1750-bp region of 18S rRNA gene to identify Cryptosporidium species. The human samples were infected with Cryptosporidium parvum II, C. muris, C. wrairi, and a new genotype of Cryptosporidium (GenBank accession numbers: DQ520951). The cattle samples were identified as C. parvum II, C. muris, C. wrairi, C. serpentis, C. baileyi, and a new genotype of Cryptosporidium (GenBank accession numbers: DQ520952). Also we found a new genotype infecting both human and cattle samples (GenBank accession numbers: DQ520950). In addition to demonstrating the widespread occurrence of most species of Cryptosporidium, C. parvum, we also observed extensive polymorphism within species. Furthermore, the occurrence of the same species of parasite in both animal and human samples shows the importance of the animal-human cycle.  相似文献   

6.
Nucleotide sequences of the Cryptosporidium oocyst wall protein (COWP) gene were obtained from various Cryptosporidium spp. (C. wrairi, C. felis, C. meleagridis, C. baileyi, C. andersoni, C. muris, and C. serpentis) and C. parvum genotypes (human, bovine, monkey, marsupial, ferret, mouse, pig, and dog). Significant diversity was observed among species and genotypes in the primer and target regions of a popular diagnostic PCR. These results provide useful information for COWP-based molecular differentiation of Cryptosporidium spp. and genotypes.  相似文献   

7.
Genomic DNAs from human Cryptosporidium isolates previously typed by analysis of the 18S ribosomal DNA locus (Cryptosporidium parvum bovine genotype, C. parvum human genotype, Cryptosporidium meleagridis, and Cryptosporidium felis) were used to amplify the diagnostic fragment described by Laxer et al. (M. A. Laxer, B. K. Timblin, and R. J. Patel, Am. J. Trop. Med. Hyg., 45:688-694, 1991). The obtained 452-bp amplified fragments were sequenced and aligned with the homologous Cryptosporidium wrairi sequence. Polymorphism was exploited to develop a restriction fragment length polymorphism method able to discriminate Cryptosporidium species and C. parvum genotypes.  相似文献   

8.
Oocysts of a Cryptosporidium isolate from guinea pigs were not infectious for adult mice, but were infectious for two of three newborn calves and for suckling mice. However, oocysts isolated from calves or mice infected with guinea pig Cryptosporidium were not infectious for guinea pigs. Four isolates of C. parvum from calves were incapable of infecting weanling guinea pigs. Microscopic examination of tissue from the colon and cecum of suckling guinea pigs inoculated with C. parvum revealed sparse infection of some pups. These host range studies and previously described differences in 125I-labeled oocyst surface protein profiles between Cryptosporidium sp. from guinea pigs and C. parvum suggest they are distinct species. We propose the name Cryptosporidium wrairi be retained. Studies with monoclonal antibodies indicate that C. wrairi and C. parvum are antigenically related.  相似文献   

9.
Real-time PCR for the detection of Cryptosporidium parvum.   总被引:9,自引:0,他引:9  
Real time, TaqMan PCR assays were developed for the Cp11 and 18S rRNA genes of the protozoan parasite Cryptosporidium parvum. The TaqMan probes were specific for the genus Cryptosporidium, but could not hybridize exclusively with human-infectious C. parvum species and genotypes. In conjunction with development of the TaqMan assays, two commercial kits, the Mo Bio UltraClean Soil DNA kit, and the Qiagen QIAamp DNA Stool kit, were evaluated for DNA extraction from calf diarrhea and manure, and potassium dichromate and formalin preserved human feces. Real-time quantitation was achieved with the diarrhea samples, but nested PCR was necessary to detect C. parvum DNA in manure and human feces. Ileal tissues were obtained from calves at 3, 7, and 14 days post-infection, and DNA extracted and assayed. Nested PCR detected C. parvum DNA in the 7-day post-infection sample, but neither of the other time point samples were positive. These results indicate that real-time quantitation of C. parvum DNA, extracted using the commercial kits, is feasible on diarrheic feces, with large numbers of oocysts and small concentrations of PCR inhibitor(s). For samples with few oocysts and high concentrations of PCR inhibitor(s), such as manure, nested PCR is necessary for detection.  相似文献   

10.
We have characterized the nucleotide sequences of the 70-kDa heat shock protein (HSP70) genes of Cryptosporidium baileyi, C. felis, C. meleagridis, C. muris, C. serpentis, C. wrairi, and C. parvum from various animals. Results of the phylogenetic analysis revealed the presence of several genetically distinct species in the genus Cryptosporidium and eight distinct genotypes within the species C. parvum. Some of the latter may represent cryptic species. The phylogenetic tree constructed from these sequences is in agreement with our previous results based on the small-subunit rRNA genes of Cryptosporidium parasites. The Cryptosporidium species formed two major clades: isolates of C. muris and C. serpentis formed the first major group, while isolates of C. felis, C. meleagridis, C. wrairi, and eight genotypes of C. parvum formed the second major group. Sequence variations were also observed between C. muris isolates from ruminants and rodents. The HSP70 gene provides another useful locus for phylogenetic analysis of the genus Cryptosporidium.  相似文献   

11.
ABSTRACT. Oocysts of a Cryptosporidium isolate from guinea pigs were not infectious for adult mice, but were infectious for two of three newborn calves and for suckling mice. However, oocysts isolated from calves or mice infected with guinea pig Cryptosporidium were not infectious for guinea pigs. Four isolates of C. parvum from calves were incapable of infecting weanling guinea pigs. Microscopic examination of tissue from the colon and cecum of suckling guinea pigs inoculated with C. parvum revealed sparse infection of some pups. These host range studies and previously described differences in 125I-labeled oocyst surface protein profiles between Cryptosporidium sp. from guinea pigs and C. parvum suggest they are distinct species. We propose the name Cryptosporidium wrairi be retained. Studies with monoclonal antibodies indicate that C. wrairi and C. parvum are antigenically related.  相似文献   

12.
The protozoan pathogens Giardia lamblia and Cryptosporidium parvum are major causes of waterborne enteric disease throughout the world. Improved detection methods that are very sensitive and rapid are urgently needed. This is especially the case for analysis of environmental water samples in which the densities of Giardia and Cryptosporidium are very low. Primers and TaqMan probes based on the beta-giardin gene of G. lamblia and the COWP gene of C. parvum were developed and used to detect DNA concentrations over a range of 7 orders of magnitude. It was possible to detect DNA to the equivalent of a single cyst of G. lamblia and one oocyst of C. parvum. A multiplex real-time PCR (qPCR) assay for simultaneous detection of G. lamblia and C. parvum resulted in comparable levels of detection. Comparison of DNA extraction methodologies to maximize DNA yield from cysts and oocysts determined that a combination of freeze-thaw, sonication, and purification using the DNeasy kit (Qiagen) provided a highly efficient method. Sampling of four environmental water bodies revealed variation in qPCR inhibitors in 2-liter concentrates. A methodology for dealing with qPCR inhibitors that involved the use of Chelex 100 and PVP 360 was developed. It was possible to detect and quantify G. lamblia in sewage using qPCR when applying the procedure for extraction of DNA from 1-liter sewage samples. Numbers obtained from the qPCR assay were comparable to those obtained with immunofluorescence microscopy. The qPCR analysis revealed both assemblage A and assemblage B genotypes of G. lamblia in the sewage. No Cryptosporidium was detected in these samples by either method.  相似文献   

13.
14.
A PCR method for the quantitation of Cryptosporidium parvum oocysts in municipal drinking water samples was investigated. Quantitative PCR uses an internal standard (IS) template with unknown target numbers to compare to standards of known concentrations in a standard curve. The IS template was amplified using the same primers used to amplify a portion of a 358 bp gene fragment that encodes a repetitive oocyst wall protein in C. parvum. Municipal water samples spiked with known numbers of C. parvum oocysts were tested by quantitative PCR using the IS and the Digene SHARP Signal System Assay for PCR product detection. The absorbance readings for target DNA and IS templates versus the number of molecules of the target DNA were plotted to generate standard curves for estimating oocyst numbers. The method allowed the quantitation of oocysts from log 3 to log 5 spiked into municipal water samples.  相似文献   

15.
A rapid detection method that is both quantitative and specific for the water-borne human parasite Cryptosporidium parvum is reported. Real-time polymerase chain reaction (PCR) combined with fluorescent TaqMan technology was used to develop this sensitive and accurate assay. The selected primer-probe set identified a 138-bp section specific to a C. parvum genomic DNA sequence. The method was optimized on a cloned section of the target DNA sequence, then evaluated on C. parvum oocyst dilutions. Quantification was accomplished by comparing the fluorescence signals obtained from test samples of C. parvum oocysts with those obtained from standard dilutions of C. parvum oocysts. This real-time PCR assay allowed reliable quantification of C. parvum oocysts over six orders of magnitude with a baseline sensitivity of six oocysts in 2 h.  相似文献   

16.
A study was undertaken to compare the performance of five different molecular methods (available in four different laboratories) for the identification of Cryptosporidium parvum and Cryptosporidium hominis and the detection of genetic variation within each of these species. The same panel of oocyst DNA samples derived from faeces (n=54; coded blindly) was sent for analysis by: (i) DNA sequence analysis of a fragment of the HSP70 gene; (ii) DNA sequence analysis and the ssrRNA gene in laboratory 1; (iii) single-strand conformation polymorphism analysis of part of the ssrRNA; (iv) SSCP analysis of the second internal transcribed spacer (ITS-2) of nuclear ribosomal DNA region in laboratory 2; (v) 60 kDa glycoprotein (gp60) gene sequencing with prior species determination using PCR with restriction fragment length polymorphism analysis of the ssrRNA gene in laboratory 3; and (vi) multilocus genotyping at three microsatellite markers in laboratory 4. For detecting variation within C. parvum and C. hominis, SSCP analysis of ITS-2 was considered to have superior utility and determined 'subgenotypes' in samples containing DNA from both species. SSCP was also most cost effective in terms of time, cost and consumables. Sequence analysis of gp60 and microsatellite markers ML1, ML2 and 'gp15' provided good comparators for the SSCP of ITS-2. However, applicability of these methods to other Cryptosporidium species or genotypes and to environmental samples needs to be evaluated. This trial provided, for the first time, a direct comparison of multiple methods for the genetic characterisation of C. parvum and C. hominis samples. A protocol has been established for the international distribution of samples for the characterisation of Cryptosporidium. This can be applied in further evaluation of molecular methods by investigation of a larger number of unrelated samples to establish sensitivity, typability, reproducibility and discriminatory power based on internationally accepted methods for evaluation of microbial typing schemes.  相似文献   

17.
Biological data support the hypothesis that there are multiple species in the genus Cryptosporidium, but a recent analysis of the available genetic data suggested that there is insufficient evidence for species differentiation. In order to resolve the controversy in the taxonomy of this parasite genus, we characterized the small-subunit rRNA genes of Cryptosporidium parvum, Cryptosporidium baileyi, Cryptosporidium muris, and Cryptosporidium serpentis and performed a phylogenetic analysis of the genus Cryptosporidium. Our study revealed that the genus Cryptosporidium contains the phylogenetically distinct species C. parvum, C. muris, C. baileyi, and C. serpentis, which is consistent with the biological characteristics and host specificity data. The Cryptosporidium species formed two clades, with C. parvum and C. baileyi belonging to one clade and C. muris and C. serpentis belonging to the other clade. Within C. parvum, human genotype isolates and guinea pig isolates (known as Cryptosporidium wrairi) each differed from bovine genotype isolates by the nucleotide sequence in four regions. A C. muris isolate from cattle was also different from parasites isolated from a rock hyrax and a Bactrian camel. Minor differences were also detected between C. serpentis isolates from snakes and lizards. Based on the genetic information, a species- and strain-specific PCR-restriction fragment length polymorphism diagnostic tool was developed.  相似文献   

18.
To further validate previous observations in the taxonomy of Cryptosporidium parasites, the phylogenetic relationship was analyzed among various Cryptosporidium parasites at the actin locus. Nucleotide sequences of the actin gene were obtained from 9 putative Cryptosporidium species (C. parvum, C. andersoni, C. baileyi, C. felis, C. meleagridis, C. muris, C. saurophilum, C. serpentis, and C. wrairi) and various C. parvum genotypes. After multiple alignment of the obtained actin sequences, genetic distances were measured, and phylogenetic trees were constructed. Results of the analysis confirmed the presence of genetically distinct species within Cryptosporidium and various distinct genotypes within C. parvum. The phylogenetic tree constructed on the basis of the actin sequences was largely in agreement with previous results based on small subunit rRNA, 70-kDa heat shock protein, and Cryptosporidium oocyst wall protein genes. The Cryptosporidium species formed 2 major clades; isolates of C. andersoni, C. muris, and C. serpentis formed the first major group, whereas isolates of all other species, as well as various C. parvum genotypes, formed the second major group. Intragenotype variations were low or absent at this locus.  相似文献   

19.
The protozoan parasite Cryptosporidium parvum is known to occur widely in both raw and drinking water and is the cause of waterborne outbreaks of gastroenteritis throughout the world. The routinely used method for the detection of Cryptosporidium oocysts in water is based on an immunofluorescence assay (IFA). It is both time-consuming and nonspecific for the human pathogenic species C. parvum. We have developed a TaqMan polymerase chain reaction (PCR) test that accurately quantifies C. parvum oocysts in treated and untreated water samples. The protocol consisted of the following successive steps: Envirochek capsule filtration, immunomagnetic separation (IMS), thermal lysis followed by DNA purification using Nanosep centrifugal devices and, finally, real-time PCR using fluorescent TaqMan technology. Quantification was accomplished by comparing the fluorescence signals obtained from test samples with those from standard dilutions of C. parvum oocysts. This IMS-real-time PCR assay permits rapid and reliable quantification over six orders of magnitude, with a detection limit of five oocysts for purified oocyst solutions and eight oocysts for spiked water samples. Replicate samples of spiked tap water and Seine River water samples (with approximately 78 and 775 oocysts) were tested. C. parvum oocyst recoveries, which ranged from 47.4% to 99% and from 39.1% to 68.3%, respectively, were significantly higher and less variable than those reported using the traditional US Environmental Protection Agency (USEPA) method 1622. This new molecular method offers a rapid, sensitive and specific alternative for C. parvum oocyst quantification in water.  相似文献   

20.
Cryptosporidium spp. are potential contaminants of food. Suspected cases of food-borne cryptosporidiosis are rarely confirmed because of the limited numbers of oocysts in the samples and the lack of sensitive detection methods adaptable to food. PCR was investigated as a means of overcoming this problem. A PCR assay was designed for the specific amplification of a previously sequenced portion of an oocyst protein gene fragment of Cryptosporidium parvum (N. C. Lally, G. D. Baird, S. J. McQuay, F. Wright, and J. J. Oliver, Mol. Biochem. Parasitol. 56:69-78, 1992) and compared with the primer set of Laxer et al. (M. A. Laxer, B. K. Timblin, and R. J. Patel, Am. J. Trop. Med. Hyg. 45:688-694, 1991). The PCR products were hybridized with digoxigenin-labeled internal probes and detected by chemiluminescence to enhance sensitivity. The two sets of primers were compared with regard to their sensitivity and specificity by using a variety of human and animal isolates of C. parvum and related parasites. Both assays enabled the detection of 1 to 10 oocysts in 20 ml of artificially contaminated raw milk. The assay based on the PCR set and probe of Laxer et al. detected DNAs from Eimeria acervulina and Giardia intestinalis. The new assay has good specificity for C. parvum bovine isolates and hence has a better potential for monitoring the prevalence of C. parvum in raw milk and other environmental samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号