首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Performing music on the basis of reading a score requires reading ahead of what is being played in order to anticipate the necessary actions to produce the notes. Score reading thus not only involves the decoding of a visual score and the comparison to the auditory feedback, but also short-term storage of the musical information due to the delay of the auditory feedback during reading ahead. This study investigates the mechanisms of encoding of musical information in short-term memory during such a complicated procedure. There were three parts in this study. First, professional musicians participated in an electroencephalographic (EEG) experiment to study the slow wave potentials during a time interval of short-term memory storage in a situation that requires cross-modal translation and short-term storage of visual material to be compared with delayed auditory material, as it is the case in music score reading. This delayed visual-to-auditory matching task was compared with delayed visual-visual and auditory-auditory matching tasks in terms of EEG topography and voltage amplitudes. Second, an additional behavioural experiment was performed to determine which type of distractor would be the most interfering with the score reading-like task. Third, the self-reported strategies of the participants were also analyzed. All three parts of this study point towards the same conclusion according to which during music score reading, the musician most likely first translates the visual score into an auditory cue, probably starting around 700 or 1300 ms, ready for storage and delayed comparison with the auditory feedback.  相似文献   

2.
Three mental arithmetic tests of graded difficulty were presented to eight young male volunteers on consecutive days. The effort compensation patterns were investigated using urinary catecholamines and salivary cortisol. A significant increase in adrenaline excretion was found in response to all three tests. Urinary adrenaline was partially graded according to the level of difficulty of the tests. The response patterns to mental workload also included a significantly lower noradrenaline/adrenaline ratio and a higher adrenaline/dopamine ratio after the tests. No significant increase was found after the tests for noradrenaline and dopamine. Changes in salivary cortisol concentration during the tests were graded with respect to test difficulty between the easiest and both of the more difficult tests. Salivary cortisol concentration changes are proposed as the basis for field observations involving mental workload. It is concluded that mental workload causes distinguishable effort compensation patterns and that under certain conditions urinary adrenaline and salivary cortisol allow one to distinguish different mental workload levels.  相似文献   

3.
Three groups of subjects (n=10) attempted to move a lever 50 cm along a track in 1.50 sec under one of three auditory feedback conditions: Fully augmented increasing auditory feedback (FAF) in which a constant level of velocity-related auditory feedback was provided for all 25 learning trials, reducing auditory feedback (FAF) in which the level of feedback was progressively reduced over the learning trials, and no auditory feedback (NAF). All subjects performed 10 trials with no auditory feedback after a 10-min rest interval. The hypothesis that acquisition of the criterion task would be facilitated under RAF compared to FAF derived partial support. It was concluded that there is sufficient evidence to justify further investigation of reducing auditory feedback as a technique of motor skill acquisition.  相似文献   

4.
An important goal of research on the cognitive neuroscience of decision-making is to produce a comprehensive model of behavior that flows from perception to action with all of the intermediate steps defined. To understand the mechanisms of perceptual decision-making for an auditory discrimination experiment, we connected a large-scale, neurobiologically realistic auditory pattern recognition model to a three-layer decision-making model and simulated an auditory delayed match-to-sample (DMS) task. In each trial of our simulated DMS task, pairs of stimuli were compared each stimulus being a sequence of three frequency-modulated tonal-contour segments, and a "match" or "nonmatch" button was pressed. The model's simulated response times and the different patterns of neural responses (transient, sustained, increasing) are consistent with experimental data and the simulated neurophysiological activity provides insights into the neural interactions from perception to action in the auditory DMS task.  相似文献   

5.
Hearing one’s own voice is critical for fluent speech production as it allows for the detection and correction of vocalization errors in real time. This behavior known as the auditory feedback control of speech is impaired in various neurological disorders ranging from stuttering to aphasia; however, the underlying neural mechanisms are still poorly understood. Computational models of speech motor control suggest that, during speech production, the brain uses an efference copy of the motor command to generate an internal estimate of the speech output. When actual feedback differs from this internal estimate, an error signal is generated to correct the internal estimate and update necessary motor commands to produce intended speech. We were able to localize the auditory error signal using electrocorticographic recordings from neurosurgical participants during a delayed auditory feedback (DAF) paradigm. In this task, participants hear their voice with a time delay as they produced words and sentences (similar to an echo on a conference call), which is well known to disrupt fluency by causing slow and stutter-like speech in humans. We observed a significant response enhancement in auditory cortex that scaled with the duration of feedback delay, indicating an auditory speech error signal. Immediately following auditory cortex, dorsal precentral gyrus (dPreCG), a region that has not been implicated in auditory feedback processing before, exhibited a markedly similar response enhancement, suggesting a tight coupling between the 2 regions. Critically, response enhancement in dPreCG occurred only during articulation of long utterances due to a continuous mismatch between produced speech and reafferent feedback. These results suggest that dPreCG plays an essential role in processing auditory error signals during speech production to maintain fluency.

Hearing one’s own voice is critical for fluent speech production, allowing detection and correction of vocalization errors in real-time. This study shows that the dorsal precentral gyrus is a critical component of a cortical network that monitors auditory feedback to produce fluent speech; this region is engaged specifically when speech production is effortful during articulation of long utterances.  相似文献   

6.
This study was designed to examine underlying hemodynamic changes that accompany observed reductions in heart rate (HR) response to mental stress following HR feedback training. Twenty-five college males, assigned to either a HR feedback training group (FB+) or a control group (FB–), were presented with a videogame and mental arithmetic challenge, as HR, blood pressure, and impedance cardiography-derived measures of hemodynamic functioning were recorded. During training, the FB+ group received HR feedback and the FB– group was not provided with HR feedback while playing a videogame. At posttraining, results revealed that the FB+ group exhibited significantly lower HR, systolic blood pressure, stroke volume, and total peripheral resistance responses to the videogame compared to that at pretraining. There was no evidence that the acquired skills generalized to a mental arithmetic task. These results suggest that HR feedback training is an effective method for reducing cardiovascular and hemodynamic responses to a mental stressor; however, the generalizability of this effect remains questionable.  相似文献   

7.
Previous studies have shown that bimanual coordination learning is more resistant to the removal of augmented feedback when acquired with auditory than with visual channel. However, it is unclear whether this differential “guidance effect” between feedback modalities is due to enhanced sensorimotor integration via the non-dominant auditory channel or strengthened linkage to kinesthetic information under rhythmic input. The current study aimed to examine how modalities (visual vs. auditory) and information types (continuous visuospatial vs. discrete rhythmic) of concurrent augmented feedback influence bimanual coordination learning. Participants either learned a 90°-out-of-phase pattern for three consecutive days with Lissajous feedback indicating the integrated position of both arms, or with visual or auditory rhythmic feedback reflecting the relative timing of the movement. The results showed diverse performance change after practice when the feedback was removed between Lissajous and the other two rhythmic groups, indicating that the guidance effect may be modulated by the type of information provided during practice. Moreover, significant performance improvement in the dual-task condition where the irregular rhythm counting task was applied as a secondary task also suggested that lower involvement of conscious control may result in better performance in bimanual coordination.  相似文献   

8.
The temporal contingency of feedback is an essential requirement of successful human-computer interactions. The timing of feedback not only affects the behavior of a user but is also accompanied by changes in psychophysiology and neural activity. In three fMRI experiments we systematically studied the impact of delayed feedback on brain activity while subjects performed an auditory categorization task. In the first fMRI experiment, we analyzed the effects of rare and thus unexpected delays of different delay duration on brain activity. In the second experiment, we investigated if users can adapt to frequent delays. Therefore, delays were presented as often as immediate feedback. In a third experiment, the influence of interaction outage was analyzed by measuring the effect of infrequent omissions of feedback on brain activity. The results show that unexpected delays in feedback presentation compared to immediate feedback stronger activate inter alia bilateral the anterior insular cortex, the posterior medial frontal cortex, the left inferior parietal lobule and the right inferior frontal junction. The strength of this activation increases with the duration of the delay. Thus, delays interrupt the course of an interaction and trigger an orienting response that in turn activates brain regions of action control. If delays occur frequently, users can adapt, delays become expectable, and the brain activity in the observed network diminishes over the course of the interaction. However, introducing rare omissions of expected feedback reduces the system’s trustworthiness which leads to an increase in brain activity not only in response to such omissions but also following frequently occurring and thus expected delays.  相似文献   

9.
Mochida T  Gomi H  Kashino M 《PloS one》2010,5(11):e13866

Background

There has been plentiful evidence of kinesthetically induced rapid compensation for unanticipated perturbation in speech articulatory movements. However, the role of auditory information in stabilizing articulation has been little studied except for the control of voice fundamental frequency, voice amplitude and vowel formant frequencies. Although the influence of auditory information on the articulatory control process is evident in unintended speech errors caused by delayed auditory feedback, the direct and immediate effect of auditory alteration on the movements of articulators has not been clarified.

Methodology/Principal Findings

This work examined whether temporal changes in the auditory feedback of bilabial plosives immediately affects the subsequent lip movement. We conducted experiments with an auditory feedback alteration system that enabled us to replace or block speech sounds in real time. Participants were asked to produce the syllable /pa/ repeatedly at a constant rate. During the repetition, normal auditory feedback was interrupted, and one of three pre-recorded syllables /pa/, /Φa/, or /pi/, spoken by the same participant, was presented once at a different timing from the anticipated production onset, while no feedback was presented for subsequent repetitions. Comparisons of the labial distance trajectories under altered and normal feedback conditions indicated that the movement quickened during the short period immediately after the alteration onset, when /pa/ was presented 50 ms before the expected timing. Such change was not significant under other feedback conditions we tested.

Conclusions/Significance

The earlier articulation rapidly induced by the progressive auditory input suggests that a compensatory mechanism helps to maintain a constant speech rate by detecting errors between the internally predicted and actually provided auditory information associated with self movement. The timing- and context-dependent effects of feedback alteration suggest that the sensory error detection works in a temporally asymmetric window where acoustic features of the syllable to be produced may be coded.  相似文献   

10.
Sex-specific prevalence rates in mental and physical disorders may be partly explained by sex differences in physiological stress responses. Neural networks that might be involved are those underlying feedback processing. Aim of the present EEG study was to investigate whether acute stress alters feedback processing, and whether stress effects differ between men and women. Male and female participants performed a gambling task, in a control and a stress condition. Stress was induced by exposing participants to a noise stressor. Brain activity was analyzed using both event-related potential and time-frequency analyses, measuring the feedback-related negativity (FRN) and feedback-related changes in theta and beta oscillatory power, respectively. While the FRN and feedback-related theta power were similarly affected by stress induction in both sexes, feedback-related beta power depended on the combination of stress induction condition and sex. FRN amplitude and theta power increases were smaller in the stress relative to the control condition in both sexes, demonstrating that acute noise stress impairs performance monitoring irrespective of sex. However, in the stress but not in the control condition, early lower beta-band power increases were larger for men than women, indicating that stress effects on feedback processing are partly sex-dependent. Our findings suggest that sex-specific effects on feedback processing may comprise a factor underlying sex-specific stress responses.  相似文献   

11.
The purpose of this study was to compare the cardiovascular responses to different types of mental stress. Ten healthy males performed a mental arithmetic task (MA) on one day and were exposed to white noise (WN, 80dB) on another day. Both the MA and the WN were composed of four 5-min consecutive periods with a 3-min rest between them. On each day, the systolic and diastolic blood pressure (SBP and DBP), mean arterial pressure (MAP), cardiac output (CO), and total peripheral resistance (TPR) were measured continually during the entire experimental period. The changes from the baseline (Delta) in all periods were calculated for both mental stresses. As for the results, the DeltaMAP, DeltaCO, DeltaHR, and DeltaTPR in the MA did not significantly change during the task periods. However, in the WN, the DeltaMAP and DeltaTPR showed significant increases over the time of the consecutive periods. In addition, we discuss the response patterns for the two mental stresses. We examine three hemodynamic reactivity patterns: a cardiac pattern characterized by increased CO and decreased TPR, a mixed pattern characterized by a moderate increase in both CO and TPR, and a vascular pattern characterized by increased TPR and decreased CO. The results show that throughout all task/exposure periods, the response pattern remained the same for six subjects in each stress. Furthermore, of these six subjects, half showed the same response pattern in both the MA and the WN. In conclusion, compared to the MA task, consecutive WN exposure showed an accumulation of stress responses. A change in TPR contributed to a gradual increase in MAP in the WN. It is also possible that among the subjects there were different types of response to the MA and WN.  相似文献   

12.
Mice exposed to a chronic auditory Stressor and treated with fluoxetine (5 mg/kg) showed a reduction in stress-induced suppression of thymus and spleen cellularity, and in peripheral T lymphocyte population. The blastogenic response of spleen lymphoid cells and the delayed type hypersensitivity response (DTH) to sheep red blood cells (SRBC) were also assessed and fluoxetine was found to partially reverse the inhibitory effect of stress on both parameters.  相似文献   

13.
Duration estimation is known to be far from veridical and to differ for sensory estimates and motor reproduction. To investigate how these differential estimates are integrated for estimating or reproducing a duration and to examine sensorimotor biases in duration comparison and reproduction tasks, we compared estimation biases and variances among three different duration estimation tasks: perceptual comparison, motor reproduction, and auditory reproduction (i.e. a combined perceptual-motor task). We found consistent overestimation in both motor and perceptual-motor auditory reproduction tasks, and the least overestimation in the comparison task. More interestingly, compared to pure motor reproduction, the overestimation bias was reduced in the auditory reproduction task, due to the additional reproduced auditory signal. We further manipulated the signal-to-noise ratio (SNR) in the feedback/comparison tones to examine the changes in estimation biases and variances. Considering perceptual and motor biases as two independent components, we applied the reliability-based model, which successfully predicted the biases in auditory reproduction. Our findings thus provide behavioral evidence of how the brain combines motor and perceptual information together to reduce duration estimation biases and improve estimation reliability.  相似文献   

14.
The objective of the paper was to study the developmental continuity of working memory function from infancy to preschool age. At the age of 10 to 11 months 44 participants completed delayed response task (A-not-B) that measures working memory function. Between 5 and 7 years of age the same participants performed three tasks assessing working memory for temporal order in auditory and visual modalities and a control task measuring short-term visuospatial memory. The dependence of temporal-order memory at preschool age on individual level of infant working memory was found for all methods of measurement despite the differences in way of presentation and reproducing of the stimuli order. Results indicate direct continuity in the development of working memory function from infancy to preschool age.  相似文献   

15.

Objective

Hypobaric hypoxia, physical and psychosocial stress may influence key cardiovascular parameters including blood pressure (BP) and pulse pressure (PP). We investigated the effects of mild hypobaric hypoxia exposure on BP and PP reactivity to mental and physical stress and to passive elevation by cable car.

Methods

36 healthy volunteers participated in a defined test procedure consisting of a period of rest 1, mental stress task (KLT-R), period of rest 2, combined mental (KLT-R) and physical task (bicycle ergometry) and a last period of rest both at Graz, Austria (353 m asl) and at the top station Dachstein (2700 m asl). Beat-to-beat heart rate and BP were analysed both during the test procedures at Graz and at Dachstein and during passive 1000 m elevation by cable car (from 1702 m to 2700 m).

Results

A significant interaction of kind of stress (mental vs. combined mental and physical) and study location (Graz vs. Dachstein) was found in the systolic BP (p = .007) and PP (p = .002) changes indicating that during the combined mental and physical stress task sBP was significantly higher under hypoxic conditions whereas sBP and PP were similar during mental stress both under normobaric normoxia (Graz) and under hypobaric hypoxia (Dachstein). During the passive ascent in cable car less trivialization (psychological coping strategy) was associated with an increase in PP (p = .004).

Conclusion

Our data show that combined mental and physical stress causes a significant higher raise in sBP and PP under hypoxic conditions whereas isolated mental stress did not affect sBP and PP under hypoxic conditions. PP-reaction to ascent in healthy subjects is not uniform. BP reactions to ascent that represents an accumulation of physical (mild hypobaric hypoxia) and psychological stressors depend on predetermined psychological traits (stress coping strategies). Thus divergent cardiovascular reactions can be explained by applying the multidimensional aspects of the biopsychosocial concept.  相似文献   

16.
We have previously shown that fetal uninephrectomy (uni-x) at 100 days of gestation (term = 150 days) in male sheep results in a 30% nephron deficit, reduction in glomerular filtration rate (GFR) and renal blood flow, and elevation in arterial pressure at 6 mo of age. Furthermore, in response to an acute 0.9% saline load, sodium excretion was significantly delayed in uni-x animals leading us to speculate that tubuloglomerular feedback (TGF) activity was reset in uni-x animals. In the present study, we induced TGF blockade by furosemide administration (1.5 mg/kg iv over 90 min) and determined GFR, effective renal plasma flow, and urine and sodium excretion responses in 6-mo-old male sheep. In response to furosemide, a significant diuresis and natriuresis was observed in the sham group; however, the response was significantly delayed and reduced in uni-x animals (both, P(treatment×time) < 0.001). Cummulative urinary and sodium output was significantly less in the uni-x compared with the sham sheep (both, P(treatment×time) < 0.001). GFR was increased in the sham but not the uni-x sheep (P(treatment×time) < 0.0001). In conclusion, the excretory response to furosemide was attenuated in the uni-x sheep, and this suggests a rightward resetting of the TGF operating point. The TGF mechanism is important in the fine tuning of sodium homeostasis and is likely a contributing factor for the dysfunction in sodium regulation we have previously observed in the uni-x animals.  相似文献   

17.
For many species, the presence of a significant social partner can lessen the behavioral and physiological responses to stressful stimuli. This study examined whether a single, individually specific, signature vocalization (phee call) could attenuate the physiological stress response that is induced in marmosets by housing them in short-term social isolation. Utilizing a repeated-measures design, adult marmosets (n=10) were temporarily isolated from their long-term pair mate and exposed to three conditions: signature vocalizations from the pair mate, phee calls from an unfamiliar opposite sex individual, or no auditory stimuli. Levels of urinary cortisol were monitored as a physiological indicator of the stress response. Urinary cortisol levels were also monitored, while subjects remained undisturbed in their home cages to provide baseline levels. Temporarily isolated marmosets showed significantly higher levels of urinary cortisol than undisturbed marmosets. However, the nature of the acoustic stimulus experienced during isolation led to differences in the excretion of urinary cortisol. Isolated marmosets exposed to a familiar pair mate's vocalization showed significantly lower levels of urinary cortisol than when exposed to unfamiliar marmoset vocalizations (P <0.04) or to no auditory stimuli (P <0.03). Neither the duration of pairing nor the quality of relationship in the pair (indexed by spatial proximity scores) predicted the magnitude of reduction in cortisol in the familiar vocalization condition. The results presented here provide the first evidence that a single, individually specific communication signal can decrease the magnitude of a physiological stress response in a manner analogous to the physical presence of a social partner, a process we term "vocal buffering."  相似文献   

18.
The neural mechanisms underlying processing of auditory feedback during self-vocalization are poorly understood. One technique used to study the role of auditory feedback involves shifting the pitch of the feedback that a speaker receives, known as pitch-shifted feedback. We utilized a pitch shift self-vocalization and playback paradigm to investigate the underlying neural mechanisms of audio-vocal interaction. High-resolution electrocorticography (ECoG) signals were recorded directly from auditory cortex of 10 human subjects while they vocalized and received brief downward (−100 cents) pitch perturbations in their voice auditory feedback (speaking task). ECoG was also recorded when subjects passively listened to playback of their own pitch-shifted vocalizations. Feedback pitch perturbations elicited average evoked potential (AEP) and event-related band power (ERBP) responses, primarily in the high gamma (70–150 Hz) range, in focal areas of non-primary auditory cortex on superior temporal gyrus (STG). The AEPs and high gamma responses were both modulated by speaking compared with playback in a subset of STG contacts. From these contacts, a majority showed significant enhancement of high gamma power and AEP responses during speaking while the remaining contacts showed attenuated response amplitudes. The speaking-induced enhancement effect suggests that engaging the vocal motor system can modulate auditory cortical processing of self-produced sounds in such a way as to increase neural sensitivity for feedback pitch error detection. It is likely that mechanisms such as efference copies may be involved in this process, and modulation of AEP and high gamma responses imply that such modulatory effects may affect different cortical generators within distinctive functional networks that drive voice production and control.  相似文献   

19.
Free and conjugated dopamine and N-acetyldopamine concentrations were measured in human urine and kidneys by reversed phase high performance liquid chromatography with single-electrode electrochemical detection. Conjugated N-acetyldopamine was found to occur in urine from six normal humans and in four out of six human kidneys. Unconjugated N-acetyldopamine was detected in only one urine sample and in three of seven kidneys. Urinary excretion of total N-acetyldopamine averaged 0.485 micromoles/day. This compares to a total dopamine excretion of 4.69 micromoles/day in the same subjects. In the kidneys, total N-acetyldopamine concentration averaged 1.46 nanomoles/gram. Total dopamine in the same tissues averaged 5.48 nanomoles/gram. N-acetyldopamine was not detected in human caudate nucleus, mouse whole brain, or liver from Rhesus monkey. When daily urinary excretion rates of N-acetyldopamine were determined in six individuals by both single-and dual-electrode electrochemical detection, the results were highly correlated for both free and total N-acetyldopamine (r>0.97,p<0.001). Using dual-electrode electrochemical detection, conjugated N-acetyldopamine accounted for 96.4% of the total N-acetyldopamine excretion. This value was 95.8% in the same individuals using single-electrode detection.  相似文献   

20.
To examine whether transfer of heart rate (HR) feedback training to tasks not used during training could be improved by using multiple tasks during training, a modified multiple baseline across tasks, single subject design study was conducted using six high HR-reactive young adults. Participants received HR feedback training during the presentation of a videogame, and transfer of training was assessed to a mental arithmetic challenge and handgrip task. Transfer of training was next assessed following training with the mental arithmetic challenge and handgrip task. HR responses to each training task with no HR feedback were assessed during a pre-treatment session, an immediate post-training period following training on each task, a short delay (1–2 days) post-training session, and a long delay (1–2 weeks) post-training session. HR response to a novel speech task was assessed at pre-treatment and during short delay and long delay post-training sessions. Results revealed that participants reduced HR during training and generally maintained this reduction in HR during the immediate post-training assessment when HR feedback was not present. Participants were not able to reduce HR responses to tasks during short delay and long delay post-training sessions, and they were unable to transfer HR reduction skills to the speech task. Transfer of HR feedback training to new tasks was limited in nature and efforts to train across multiple stressors did not appear to improve transfer of training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号