首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary An efficient method was established for high-frequency embryogenic callus induction and plant regeneration from 3-,4-, 5- and 7-d-old coleoptile segments of Indica rice (Oryza sativa L. cv. Kasturi), Compact and friable callus developed from the cut ends and also on the entire length of the coleoptile segments cultured on Murashige and Skoog (MS) basal medium (1962) supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D, 4.50–18.0 μM), kinetin (2.32 μM) and sucrose (3%, w/v). High frequency embryogenic callus induction and somatic embryo development was achieved when embryogenic calluses were transferred to MS medium supplemented with 2.25 μM 2,4-D, 2.32 μM kinetin, 490 μM L-tryptophan and 3% (w/v) sucrose. Plant regeneration was achieved by transferring clumps of embryogenic callus onto MS medium containing 2.85 μM indole-3-acetic acid (IAA), 17.77 μM 6-benzylaminopurine (BA) and 3% (w/v) sucrose. Histological observations of embryogenic calluses revealed the presence of somatic embryos and also plant regeneration via multiple shoot bud formation. Three, 4- and 5-d-old coleoptile segments showed a significantly (P<0.05) higher frequency of plant regeneration and mean number of plantlets per explant in comparison to 7-d-old coleoptile segments. The highest frequency (73.5%) of plant regeneration and mean number of plantlets (11.9±1.0) was obtained from 4-d-old coleoptile segments. Regenerated shoots were rooted on MS basal medium containing 4.92 μM indole-3-butyric acid (IBA) and plants were successfully transferred to soil and grown to maturity.  相似文献   

2.
We have optimized conditions for efficient regeneration of the vegetatively propagated zoysia grass (Zoysia matrella L. Merr) cultivar “Konhee”. Two explants, young inflorescences, and stem nodes, were used and they displayed different responses to combinations and concentrations of plant growth regulators in callusing, embryogenic callus formation, and regeneration. The highest callus initiation rate from young inflorescences was obtained on medium supplemented with 4.5 to 9.0 μM 2,4-dicholorophenoxy acetic acid (2,4-D) and 0.44 μM 6-benzyl amino purine (BA). When the BA concentration was lowered to 0.044 μM, the highest percent embryogenic callus induction from young inflorescences was achieved. The highest callus initiation rate from stem nodes was obtained, when young inflorescences were cultured on MS medium supplemented with 4.5 to 9.0 μM 2,4-D, 0.44 μM BA, and 0.037 μM abscisic acid (ABA). But embryogenic callus formation from the stem node was highest in the presence of 4.5 to 9.0 μM 2,4-D, 0.044 μM BA, and 0.037 μM ABA. Addition of ABA significantly increased embryogenic callus formation from stem nodes, but not from young inflorescences. Regeneration percentage was variable in response to BA level, and inclusion of α-naphthalene acetic acid (NAA) and gibberellic acid (GA3) further increased the regeneration percentage. The highest regeneration percentages obtained from the young inflorescences and stem nodes were 82% and 67%, respectively. This is the first report showing that plants can be regenerated from young inflorescences and stem nodes of vegetatively propagated zoysia grass.  相似文献   

3.
The present study demonstrates the establishment of embryogenic tissue from seeds and (seedling-derived hypocotyls) shoot base explants derived from seedlings of Eremochloa ophiuroides. The highest percentage of callus induction obtained from seed and young shoot base explants was 52.0% and 66.6% on Murashige and Skoog (MS) basal media supplemented with 9.0 μM and 18.1 μM 2,4-dichlorophenoxyacetic acid (2,4-D), respectively. The type of callus obtained from both types of explants was off-white to yellow in color and non-friable and shiny in texture. Excised callus from the explants was subcultured onto fresh media of the same recipe for further proliferation. After 10–12 d of subculture, a yellow, globular, friable embryogenic callus was obtained from the initial callus. The highest percentage of embryogenic calli obtained at 40.0% was observed on media containing 2.2 μM 2,4-D. The highest regeneration rate of 46.6% was observed on MS media supplemented with 0.4 μM 2,4-D and 2.2 μM benzylaminopurine (BA). Regenerated shoots were rooted in MS basal medium. Plants with well-developed roots were transferred to pots containing a soil mix and acclimatized in greenhouse conditions. Four weeks post-transfer, acclimatized plants showed 100% survival and remained healthy and green. This is the first report of a successful method for induction of somatic embryogenesis with subsequent plant regeneration in centipede grass and demonstrates the establishment of embryogenic callus and efficient plant regeneration with potential application in the development of genetic transformation systems for centipede grass.  相似文献   

4.
A simple, high-frequency and reproducible protocol for induction of adventitious shoot buds and plant regeneration from leaf-disc cultures of Jatropha curcas L. has been developed. Adventitious shoot buds were induced from very young leaf explants of in vitro germinated seedlings as well as mature field-grown plants cultured on Murashige and Skoog’s (MS) medium supplemented with thidiazuron (TDZ) (2.27 μM), 6-benzylaminopurine (BA) (2.22 μM) and indole-3-butyric acid (IBA) (0.49 μM). The presence of TDZ in the induction medium has greater influence on the induction of adventitious shoot buds, whereas BA in the absence of TDZ promoted callus induction rather than shoot buds. Induced shoot buds were multiplied and elongated into shoots following transfer to the MS medium supplemented with BA (4.44 μM), kinetin (Kn) (2.33 μM), indole-3-acetic acid (IAA) (1.43 μM), and gibberellic acid (GA3) (0.72 μM). Well-developed shoots were rooted on MS medium supplemented with IBA (0.5 μM) after 30 days. Regenerated plants after 2 months of acclimatization were successfully transferred to the field without visible morphological variation. This protocol might find use in mass production of true-to-type plants and in production of transgenic plants through Agrobacterium/biolistic-mediated transformation.  相似文献   

5.
Use of Hypericum perforatum L. has increased in the past few years due to the antidepressant and antiviral activities found in extracts of this plant. As a result of its potential as a pharmaceutical, a new system was developed for in vitro culture of this species. Leaf explants were inoculated onto MS medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D, 0.45 or 4.5 μM) and 6-benzyladenine (BA, 0.44 or 4.4 μM) or kinetin (0.46 or 4.6 μM). Explants were cultivated under dark or light conditions to induce callus formation. Callus initiation was observed in all media evaluated and the highest cell proliferation was obtained from explants cultivated in the presence of 4.4 μM BA and 4.5 μM 2,4-D in the dark. Shoot induction was obtained from callus induced on 4.6 μM kinetin and 0.45 μM 2,4-D 6 weeks after transferring the callus to a MS medium supplemented with 4.4 μM BA. Roots were induced from shoots on full and half-strength MS media with or without indolebutyric acid (IBA, 4.9 μM) and the highest rooting frequencies were obtained on half-strength MS medium, regardless of the presence of IBA. Regenerated plants were easily acclimated in greenhouse conditions. The procedure reported here allows the micropropagation of H. perforatum in five months of culture and the proliferation of cell masses which could be used for studies on organic compounds of pharmaceutical interest. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
 Stem segments of seedlings from two Alstroemeria breeding lines, cultured on media supplemented with 4 mg/l 2,4-dichlorophenoxyacetic acid and 0.5–1.0 mg/l 6-benzylaminopurine (BA), initiated soft callus, which became compact after subculture on a medium with only 0.5 mg/l BA. Friable embryogenic calli were initiated from compact callus on a medium supplemented with 10 mg/l picloram. Proembryos developed from friable embryogenic calli via embryos into plants after subculture on medium supplemented with 0.1 mg/l BA. The proembryos formed friable embryogenic calli again after culture on medium supplemented with 10 mg/l picloram. The total time needed to regenerate a complete plantlet from friable callus was approximately 6 months. This system for the production of embryogenic material is considered to have valuable applications for genetic transformation in Alstroemeria. Received: 22 April 1999 / Revision received: 16 July 1999 · Accepted: 20 July 1999  相似文献   

7.
Summary A procedure has been outlined for plant regeneration of an important medicinal shrub, Holarrhena antidysenterica, through shoot segment-derived callus. Explants used for callus induction were shoot segments derived from 14-d-old axenic plants on Murashige and Skoog (MS) medium supplemented with 15 μM N6-benzyladenine (BA). A white friable type of callus was obtained in 4.52 μM 2,4-dichlorophenoxyacetic acid and 2.32 μM kinetin which did not have the potentiality to regenerate. High-frequency shoot differentiation was achieved on transferring the friable callus to MS medium supplemented with 17.8 μM BA and 8.0 μM naphthaleneacetic acid. The highest percentage of calluses forming shoots (65.06±2.26) was achieved in this medium. The organogenetic potential of the regenerating callus was influenced by the age of the culture. Rooting was achieved on the shoots using MS medium with 25 μM indolebutyric acid. The plantlets were acclimatized and established in soil. The regenerated plants were morphologically uniform and exhibited similar growth characteristics and vegetative morphology to the donor plants.  相似文献   

8.
Summary Procedures for callus induction and subsequent organogenesis in the aquatic plant, water chestnut (Trapa japonica Flerov), were established. Phenolics exuded from explants at the callus-induction stage adversely affect callus growth. For cotyledonary node-derived callus cultured in Murashige and Skoog (MS) medium (full, half or quarter strength) containing 2,4-dichlorophenoxyacetic acid (2,4-D) alone or in combination with benzyladenine (BA), the accumulation of phenolics was reduced and callus induction increased by the addition of 10.8 μM phloroglucinol (PG) to the medium. Ascorbic acid was also effective in reducing phenolic accumulation, but less effective for callus induction than PG. Half-strength MS medium supplemented with 2.7 μM 2,4-D, 108.0 μM casein hydrolyzate, and 10.8 μM PG supported maximum callus induction. Plant organogenesis was increased by addition of vitamins (0.27 μM biotin and 2.7 μM folic acid) to half-strength MS medium supplemented with 0.27 μM BA. Many shoots developed from the regenerated nodal shoot explants in liquid half-strength MS salts medium supplemented with 1.08 μM BA and 0.27 μM naphthaleneacetic acid. Individual shoots were excised and cultured in liquid half-strength MS medium supplemented with 5.4 μM IBA and rooted plantlets (108) were transferred and acclimatized in plastic pots. After 3 wk, the plantlets were transplanted in a water chestnut field and the survival rate was 100%.  相似文献   

9.
Summary An efficient plant regeneration protocol has been developed from root explants of Psoralea corylifolia L., an endangered medicinally important herbaceous plant species belonging to the family Fabaceae. Nodular embryogenic callus was initiated from young root segments cultured on Murashige and Skoog (MS) medium (1962) supplemented with α-naphthaleneacetic acid (NAA; 2.68–13.42 μM) or 2,4-dichlorophenoxyacetic acid (2.4-D; 2.25–11.25 μM) in combination with 6-benzylaminopurine (BA: 2.2. μM). thiamine HCl (2.9 μM), L-glutamine (342.23 μM) and sucrose (3.0% w/v). The highest frequency (95.2%) of embryogenic calluses was obtained on MS medium supplemented with the growth regulators NAA (10.74 μM) and BA (2.2 μM). Development and maturation of somatic embryos was achieved after transfer of embryogenic calluses to MS medium supplemented with 1.34 μM NAA or 1.12 μM 2,4-D and 4.4–13.2 μM BA. The maximum number (13.8±1.34) of cotyledonary stage somatic embryos was obtained on MS medium containing 1.34 μM NAA and 13.2 μM BA. Germination of somatic embryos occurred on MS medium without any growth regulators and also on MS medium enriched with BA (1.1–8.8 μM), although the maximum germination frequency (76.1%) was obtained on 4.4 μM BA plus 1.45 μM gibberellic acid (GA3). Plant regeneration without complete somatic embryo maturation was also achieved by transferring clumps of nodular embryogenic calluses onto MSO medium or MS medium supplemented with NAA (1.34 μM) and BA (2.2–8.8 μM). The highest frequency of plant regeneration (93.3%) and mean number of plantlets (15.4±0.88) were obtained on MS medium containing 1.34 μM NAA and 4.4 μM BA. Regenerated plants with well-developed root systems were transferred to pots where they grew vigorously, attained maturity and produced fertile seeds.  相似文献   

10.
A system for rapid plant regeneration through somatic embryogenesis from shoot tip explants of sorghum [Sorghum bicolor (L.) Moench] is described. Somatic embryogenesis was observed after incubation of explants in dark for 6–7 weeks through a friable embryogenic callus phase. Linsmaier and Skoog medium supplemented with 2,4-dichlorophenoxyacetic acid (2 mg l−1) and kinetin (0.1 mg l −1) was used for induction of friable embryogenic calli and somatic embryos. Germination of somatic embryos was achieved about 5 weeks after transfer onto Murashige and Skoog (MS) medium supplemented with 6-benzylaminopurine (2 mg l−1) and indole-3-acetic acid (0.5 mg l −1) under light. Seeds from in vitro-regenerated plants produced a normal crop in a field trial, and were comparable to the crop grown with the seeds of the mother plant used to initiate tissue culture. The simplicity of the protocol and possible advantages of the system for transformation over other protocols using different explants are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Adventitious bud formation in Alhagi graecorum   总被引:1,自引:0,他引:1  
Various parts of seedlings and in vitro propagated shoots of Alhagi graecorum Boiss were cultured on different media with different 6-benzyladenine (BA) and kinetin (KIN) concentrations to compare their potential to regenerate shoots. Murashige and Skoog (MS) medium with 2.5 μM BA and hypocotyl gave the best results. Callus was obtained from stem segments on MS medium supplemented with 2.5 μM BA, 5 μM 1-naphthaleneacetic acid (NAA) and 0.5 μM 2,4-dichlorophenoxyacetic acid (2,4-D). Shoot formation from callus occurred upon its transfer to MS medium supplemented with 2.5 μM BA. Mature explants which showed a relatively low potential for adventitious buds or callus formation, regenerated shoots abundantly using the tiny-mature-explant method. The regenerated shoots were rooted on half strength MS medium supplemented with 5 μM 3-indolebutyric acid (IBA). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
A simple and efficient system was developed for rapid somatic embryogenesis from leaf explants of Merwilla plumbea, a traditional but threatened medicinal plant in South Africa. Friable embryogenic callus (FEC) was obtained from leaf explants on embryogenic callus induction medium containing agar-solidified Murashige and Skoog (MS) salts and vitamins, 8.3 μM picloram, 2.3 μM thidiazuron (TDZ) and 20 μM glutamine. FEC was subsequently incubated in embryogenic callus proliferation medium containing 4.5 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 4.1 μM picloram for 7 days before it was transferred to liquid somatic embryo medium (SEML) containing MS medium supplemented with 0.4 μM picloram and 0.9 μM TDZ. In SEML supplemented with 150 mg L−1 haemoglobin, 5.4–35.6 somatic embryos per settled cell volume of 500 mg FEC were obtained. These embryos were at globular to cotyledonary developmental stages. Embryo maturation, germination and plant formation rate was 94.4% following transfer of SEs to half-strength MS medium supplemented with 1.4 μM gibberellic acid. Plantlets transferred into soil acclimatized in the misthouse and established successfully in the greenhouse (100%). This is the first report on induction of Merwilla plumbea somatic embryogenesis. The protocol developed offers controlled vegetative propagation by alleviating extinction threats, ensures germplasm conservation and provides a system for physiological, biochemical, molecular and cellular studies of embryo development.  相似文献   

13.
An efficient in vitro regeneration protocol was developed for medicinally important aromatic plant Anethum graveolens. Nodal segments were cultured onto Murashige and Skoog (MS) basal medium supplemented with different auxins and cytokinins singly as well as in combinations. The optimum callus induction (93.33 %) was obtained on medium fortified with 2.2 μM N6-benzyladenine (BA) and 0.21 μM α-naphthaleneacetic acid. The best shoot regeneration (85.7 %) with 12.86 shoots per explant was achieved in two weeks when callus was subcultured on MS medium amended with 2.2 μM BA and 1.85 μM kinetin. The average length of regenerated shoots varied from 3.15 to 4.8 cm. The rooting of regenerated shoots was nearly 100 % on ? MS augmented with 4.9 μM indolebutyric acid with a maximum root length of 5.1 cm. Plantlets were successfully acclimatized with 60 % survival rate. During organogenesis, catalase and ascorbate peroxidase activity increased while superoxid dismutase activity decreased. Clonal fidelity of in vitro raised plants has been checked by random amplified polymorphic DNA using 10 selected decamer primers. It has been found that regenerated plants are true to type plants.  相似文献   

14.
Plant regeneration through indirect somatic embryogenesis was attempted from leaf, internode, node and shoot-tip derived callus of Leptadenia reticulata. Somatic embryos at the highest frequency was induced on Murashige and Skoog (MS) medium supplemented with 8.87 μM benzyladenine (BA) and 2.46 μM indole-3-butyric acid (IBA). From different explants, only shoot-tip and node explant derived calli induced somatic embryos. Transfer of the embryogenic callus to suspension cultures of the same concentration of growth regulators facilitated the development of embryos. Suspension cultures with reduced concentration of BA (2.22 μM) either alone or in combination with 0.49 μM IBA fostered maturation of embryos. Half-strength MS solid medium with 1.44 μM GA3 and BA (0.22 or 0.44 μM) facilitated conversion of embryos into plantlets at higher rate compared to that on with BA alone. About 77 plantlets were recovered from 10 mg callus. Plantlets transferred to small cups and subsequently to field survived in 80 %. All the plantlets established in the field exhibited morphological characters similar to that of the mother plant. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
An efficient micropropagation protocol was developed for the medicinal plant Phyllanthus caroliniensis (Euphorbiaceae) using nodal segments for axillary shoot proliferation. Maximum multiplication (21–23 shoots per explant) was achieved on MS or AR media supplemented with either 5.0 μM BA, 1.25–5.0 μM kinetin or 2.5–5.0 μM 2iP. Rooting was achieved with 80–100% of the microshoots on MS medium without growth regulators, although 1.25 μM NAA and 1.25–5.0 μM IAA promoted significant increases in the number of roots per explant. Regenerated plants were successfully acclimatized and about 88% of plantlets survived under ex vitro conditions. Flowering was observed on in vitro grown plantlets and after 3–4 weeks of acclimatization. High frequency callus initiation and growth was achieved when nodal segment explants were inoculated in the vertical position on MS medium supplemented with 5.0 μM 2,4-D. Root cultures were successfully established on MS medium containing 1.1 μM NAA. The optimized micropropagation, callus and root culture protocols offer the possibility to use cell/root culture techniques for vegetative propagation and secondary metabolism studies. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
A procedure was developed for plant regeneration of Hybanthus enneaspermus, a rare ethnobotanical herb from the Deccan peninsula in India, through seed-derived callus. Seeds demonstrated a high induction frequency (69.4±2.8%) and a high yield (364.4±2.5 mg) of light-yellow friable callus on Murashige and Skoog's (MS) medium containing 2.6 μm NAA and 2.2 μm BA within 4 weeks of incubation. After 1 year of subculture, yellow friable and light-green compact calli types were established from initial light-yellow friable callus. Shoot differentiation was achieved from light-green compact callus, but not from yellow friable callus. Shoot differentiation resulted when light-green compact callus was transferred to MS medium supplemented with 8.8 μm BA and 2.6 μm NAA; the highest percentage of calli forming shoots (66.6±4.8%) and the highest number of shoots (8.9±0.3) were achieved in this medium. Differentiated shoot buds elongated to 4–5 cm within 4 weeks. The addition of casein hydrolysate (500 mg/l) and more potassium phosphate (1.86 mm) to the culture medium enhanced shoot differentiation. Rooting was achieved on the shoots using half-strength MS medium containing 4.8 μm IBA. About 70% of the plants were established in pots containing pure garden soil after 2 weeks of hardening. The regenerated plants were morphologically uniform and exhibited normal seed set. Received: 23 July 1998 / Revision received: 18 November 1998 / Accepted: 26 November 1998  相似文献   

17.
Protoplasts were isolated from friable embryogenic callus (FEC) and from suspensions derived from FEC of cassava genotype TMS60444. Suspensions yielded the highest number of protoplasts (1.5×106 protoplasts/g fresh weight). Protoplasts plated at a density of 105–106/ml in a medium supplemented with 0.5 mg/l α-naphthaleneacetic acid and 1 mg/l zeatin began dividing after 3 days, and after 30 days this resulted in an absolute plating efficiency as high as 2.5%. After 2 months of culture, 60% of the developed calli were highly friable and in appearance identical to the original FEC. The protoplast derived FEC was first purified through two rounds of selection of 3 weeks each before beeing cultured for regeneration of plants. This was done by culturing the protoplast-derived FEC for 11 weeks on maturation medium, yielding a maximum of 184 organized embryos per 10.000 initially cultured protoplasts. Most of the organized embryos were torpedo shaped and matured after they had been isolated from the calli and transferred to fresh medium. Mature embryos were multiplied by secondary somatic embryogenesis at high efficiency (>90%) on a medium supplemented with 8 mg/l 2,4-dichlorophenoxyacetic acid. About 30% of the mature secondary somatic embryos developed into shoots after transfer to a medium supplemented with 1 mg/l N6-benzylaminopurine (BAP). Shoots rooted readily on a medium without BAP. Received: 30 August 1996 / Revision received: 9 June 1997 / Accepted: 1 October 1997  相似文献   

18.
Summary A novel protocol has been developed for inducing somatic embryogenesis from leaf cultures of Decalepis hamiltonii. Callus was obtained from leaf sections in Murashige and Skoog (MS) medium supplemented with α-naphthaleneacetic acid (NAA)+N6-benzyladenine (BA) or 2,4-dichlorophenoxyacetic acid (2,4-D)+BA. Nodular embryogenic callus developed from the cut end of explants on media containing 2,4-D and BA, whereas compact callus developed on media containing NAA and BA. Upon subsequent transfer of explants with primary callus onto MS media containing zeatin and/or gibberellic acid (GA3) and BA, treatment with zeatin (13.68μM) and BA (10.65 μM) resulted in the induction of the highest number of somatic embryos directly from nodular tissue. The maturation of embryos took place along with the induction on the same medium. Embryogenic calluses with somatic embryos were subcultured onto MS basal medium supplemented with 4.56μM zeatin+10.65 μM BA. After 4wk, more extensive differentiation of somatic embryos was observed. The mature embryos developed into complete plantlets on growth regulator-free MS medium. A distinct feature of this study is the induction of somatic embryogenesis from leaf explants of Decalepis hamiltonii, which has not been reported previously. By using this protocol, complete plantlets could be regenerated through indirect somatic embryogenesis or organogenesis from leaf explants in 12–16 wk.  相似文献   

19.
Summary Embryogenic callus induced from mature caryopses of perennial ryegrass (Lolium perenne L.) were placed in liquid half-strength Murashige and Skoog (MS) basal medium and supplemented with 6.0 mg/l 2,4-dichlorophenoxy acetic acid (2,4-D), 3 g/l (w/v) casein hydrolysate (CH), and B5 vitamins, to initiate fast-growing highly embryogenic cell suspension cultures. Newly initiated suspension cultures contained a high level of large non-embryogenic cells (NE) with relatively few embryogenic (E) cells. Cell types were separated by discontinuous Percolls gradients or by filtering the newly initiated cultures through 31-μm nylon mesh. The growth conditions of the E cell were optimized by testing various media components including 2,4-D and sucrose, and subculture diluton ratio. Optimal shoot formation occurred after pretreatment of the embryogenic cells on solidified callus maintenance medium supplemented with 60 mg/l cefotaxime for 4 weeks prior to transfer to regeneration medium Regeneration media consisted of half-strength MS basal medium supplemented with B5 vitamins, 0.5 mg/l fluridone, and 0.5 mg/l BA. Most plants regenerated were albino with only a few green plants. Journal Paper number MAES 2959 of the Massachusetts Agricultural Experiment Station.  相似文献   

20.
When cotyledonary explants, excised from in vitro germinated seedlings, of pomegranate (Punica granatum L.) were incubated on solid Murashige and Skoog (1962) medium supplemented with 21 μM naptheleneacetic acid (NAA) and 9 μM 6-benzyladenine (BA), 80% of explants developed callus. A high frequency of shoot organogensis was obtained when explants were incubated on MS medium supplemented with 8 μM BA, 6 μM NAA, and 6 μM giberrellic acid (GA3). However, adding 24 μM silver nitrate (AgNO3) to this medium markedly enhanced shoot regeneration frequency (63%) and mean number of shoots per explant (11.26) and length of shoots (2.22 cm). Highest frequency of in vitro rooting, mean number of roots/shoot (4.32), and mean root length (2.71 cm) were obtained when regenerated shoots were transferred to half-strength MS medium supplemented with 0.02% activated charcoal. Well-rooted plantlets were acclimatized, and then transferred to soil medium. Moreover, when zygotic embryos of P. granatum, excised from seeds collected at 16 weeks following full bloom, were incubated on MS medium containing 30 g l−1 sucrose, 15% coconut water, 21 μM NAA, and 9 μM BA, they developed the highest frequency of embryogenic callus, clumps with globular embryos, and mean number of both globular and heart-shaped embryos per callus clump. Subjecting zygotic embryo explants to six-week dark incubation period was essential for embryogenic callus induction, and these were subsequently transferred to 16 h photoperiod for further growth and development of somatic embryos. Germination of somatic embryos was observed when these were transferred to MS medium was supplemented with 60 g l−1 sucrose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号