首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Some of the most successful gene therapy results have been obtained using recombinant viral vectors to treat animal models of inherited and acquired ocular diseases. Clinical trials using adenovirus vector systems have been initiated for two ocular diseases. Adeno-associated viruses (AAVs) represent an attractive alternative to adenoviral vector systems as they enable stable and long-term expression and can target a variety of different ocular cell types depending on the capsid serotype; recently clinical trails for congenital blindness was initiated with a vector-based AAV serotype 2. High levels of retinal gene transfer have been achieved using vectors based on AAV serotypes 1, 2, 4 and 5. This report compares the gene transfer efficacy and stability of expression of vector systems based on three novel AAV serotypes: AAV7, 8, 9, with the established vectors AAV1, 2, 5. We show here that AAV7 and 8 enable superior long-term transduction of retinal and also anterior chamber structures.  相似文献   

3.
4.
5.
BACKGROUND: Canavan disease is a rare leukodystrophy with no current treatment. rAAV-ASPA has been developed for gene delivery to the central nervous system (CNS) for Canavan disease. This study represents the first use of a viral vector in an attempt to ameliorate a neurodegenerative disorder. METHODS: Subjects received intracranial infusions via six cranial burr holes. Adeno-associated virus, serotype 2 (AAV2), mediated intraparenchymal delivery of the human aspartoacylase cDNA at a maximum dose of 1 x 10(12) vector genomes per subject. The immune response and safety profiles were monitored in the follow-up of ten subjects. RESULTS: Following rAAV2 administration, we found no evidence of AAV2 neutralizing antibody titers in serum for the majority of subjects tested (7/10). In a subset (3/10) of subjects, low to moderately high levels of AAV2 neutralizing antibody with respect to baseline were detected. In all subjects, there were minimal systemic signs of inflammation or immune stimulation. In subjects with catheter access to the brain lateral ventricle, cerebrospinal fluid was examined and there was a complete absence of neutralizing antibody titers with no overt signs of brain inflammation. CONCLUSIONS: rAAV2 vector administration to the human CNS appears well tolerated. The low levels of immune response to AAV2 detected in 3/10 subjects in this study suggest at this dose and with intraparenchymal administration this approach is relatively safe. Long-term monitoring of subjects and expansion to phase II/III will be necessary in order to make definitive statements on safety and efficacy.  相似文献   

6.
7.
8.
9.
10.

Background

Interferon‐α2 (IFNα2) is routinely used for anti‐hepatitis B virus (HBV) treatment. However, the therapeutic efficiency is unsatisfactory, particularly in East Asia. Such inefficiency might be a result of the short half‐life, relatively low local concentration and strong side‐effects of interferons. Frequent and repeated injection is also a big burden for patients. In the present study, a single dose of vector‐delivered IFNα1 was tested for its anti‐HBV effects.

Methods

Adeno‐associated viral vector (AAV‐IFNα1) was generated to deliver the IFNα1 gene into hepatocytes. IFNα1, hepatitis B surface (HBsAg) and e (HBeAg) antigens were measured by enzyme‐linked immunosorbent assay and/or western blotting. The level of viral DNA was measured by quantitative real‐time polymerase chain reaction.

Results

AAV‐IFNα1 effectively transduced HBV‐producing cells (HepAD38) and mouse hepatocytes, where IFNα1 was expressed in a stable manner. Both intracellular and extracellular HBsAg and HBeAg were significantly reduced in vitro. In the HBV‐producing mice, the concentration of IFNα1 in the liver was eight‐fold higher than that in plasma. Compared with control groups, HBeAg/HBsAg antigen levels were reduced by more than ten‐fold from day 1–5, and dropped to an undetectable level on day 9 in the AAV‐IFNα1 group. Concurrently, the level of viral DNA decreased over 30‐fold for several weeks.

Conclusions

A single dose administration of AAV‐IFNα1 viral vector displayed prolonged transgene expression and superior antiviral effects both in vitro and in vivo. Therefore, the use of AAV‐IFNα1 might be a potential alternative strategy for anti‐HBV therapy. Copyright © 2008 John Wiley & Sons, Ltd.
  相似文献   

11.
12.
13.

Background

Prenatal somatic gene therapy has been considered for genetic disorders presenting with morbidity at birth. Haemophilia is associated with an increased risk of catastrophic perinatal bleeding complications such as intracranial haemorrhage, which could be prevented by gene transfer in utero. Prenatal gene therapy may be more promising than postnatal treatment, as the fetus may be more amenable to uptake and integration of therapeutic DNA and the immaturity of its immune system may permit life‐long immune tolerance of the transgenic protein, thus avoiding the dominant problem in haemophilia treatment, the formation of inhibitory antibodies.

Methods

Adenovirus serotype 5‐derived or AAV serotype 2‐derived vectors carrying human clotting factor IX (hfIX) cDNA or a reporter gene were administered intramuscularly, intraperitoneally or intravascularly to late‐gestation mouse fetuses. Both vector types were evaluated with respect to the kinetics of hfIX delivery to the systemic circulation and possible immune responses against the vector or the transgene product.

Results

Mice treated in utero by intramuscular injection of an adenoviral vector carrying hfIX cDNA exhibited high‐level gene expression at birth and therapeutic – albeit continuously decreasing – plasma concentrations of hfIX over the entire 6 months of the study. Adenoviral vector spread to multiple organs was detected by polymerase chain reaction (PCR). Intramuscular, intraperitoneal or intravascular application of AAV vectors carrying hfIX cDNA led to much lower plasma concentrations of hfIX shortly after birth, which appeared to decline during the first month of life but stabilized in some of the mice at detectable levels. No signs of immune responses were found, either against the different viral vectors or against hfIX.

Conclusion

This study demonstrates for the first time that sustained systemic delivery of a therapeutic protein can be achieved by prenatal gene transfer. It thus shows the feasibility of gene therapy in utero and provides a basis for considering this concept as a preventive therapeutic strategy for haemophilia and perhaps also for other plasma protein deficiencies. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

14.
15.
BACKGROUND: Adeno-associated virus type 2 (AAV-2) vectors are highly promising tools for gene therapy of neurological disorders. After accommodating a cellular promoter, AAV-2 vectors are able to drive sustained expression of transgene in the brain. This study aimed to develop AAV-2 vectors that also facilitate a high level of neuronal expression by enhancing the strength of a neuron-specific promoter, the human platelet-derived growth factor beta-chain (PDGF) promoter. METHODS AND RESULTS: A hybrid promoter approach was adopted to fuse the enhancer of human cytomegalovirus immediately early (CMV) promoter to the PDGF promoter. In cultured cortex neurons, AAV-2 vectors containing the hybrid promoter augmented transgene expression up to 20-fold over that mediated by titer-matched AAV-2 vectors with the PDGF promoter alone and 4-fold over the CMV enhancer/promoter. Injection of AAV-2 vectors with the hybrid promoter into the rat striatum resulted in neuron-specific transgene expression, the level of which was about 10-fold higher than those provided by the two control AAV-2 expression cassettes at 4 weeks post-injection and maintained for at least 12 weeks. Gene expression in the substantia nigra through possible retrograde transport of the AAV-2 vectors injected into the striatum was not obvious. After direct injection of AAV-2 vectors into the substantia nigra, transgene expression driven by the hybrid promoter was observed specifically in dopaminergic neurons and its level was about 3 and 17 times higher than that provided by the PDGF promoter alone and the CMV enhancer/promoter, respectively. CONCLUSIONS: Enhanced transgene capacity plus neuron-specificity of the AAV-2 vectors developed in this study might prove valuable for gene therapy of Parkinson's disease.  相似文献   

16.
Vectors derived from adeno-associated virus type 2 (AAV2) are promising gene delivery vehicles, but it is still challenging to get the large number of recombinant adeno-associated virus (rAAV) particles required for large animal and clinical studies. Current transfection technology requires adherent cultures of HEK 293 cells that can only be expanded by preparing multiple culture plates. A single large-scale suspension culture could replace these multiple culture preparations, but there is currently no effective co-transfection scheme for generating rAAV from cells in suspension culture. Here, we weaned HEK 293 cells to suspension culture using hydrogel-coated six-well culture plates and established an efficient transfection strategy suitable for these cells. Then the cultures were gradually scaled up. We used linear polyethylenimine (PEI) to mediate transfection and obtained high transfection efficiencies ranging from 54% to 99%, thereby allowing efficient generation of rAAV vectors. Up to 10(13) rAAV particles and, more importantly, up to 10(11) infectious particles were generated from a 2-L bioreactor culture. The suspension-transfection strategy of this study facilitates the homogeneous preparation of rAAV at a large scale, and holds further potential as the basis for establishing a manufacturing process in a larger bioreactor.  相似文献   

17.
18.
19.
20.
BACKGROUND: Recombinant adeno-associated viruses (rAAV) are commonly used in pre-clinical and clinical gene transfer studies. However, the relatively slow kinetics of rAAV transgene expression complicates in vitro and in vivo experiments. METHODS: 293 and COS-1 cells were transduced with rAAV2-EGFP, rAAV1-EGFP, or rAAV5-EGFP. The rAAV-EGFP expression was analyzed in the presence of Hoechst 33 258 or 33 342 as a function of time and concentration by flow cytometry and fluorescent microscope. Effects of Hoechst on cell cycle populations were determined by flow cytometry. Enhanced green fluorescent protein (EGFP) expression plasmids with or without AAV inverted terminal repeats (ITR) were constructed and gene expression by transient transfection was compared in the presence of Hoechst. RESULTS: We found that Hoechst 33 258 and 33 342 increase both the level and the population of EGFP gene expressing cells, transduced by several different serotypes of rAAV-EGFP. The augmentation of rAAV-EGFP expression occurs in different cell types in a concentration-dependent manner. In addition, the Hoechst 33 258 or 33 342 mediated enhancement of rAAV gene expression correlated with an increase of cells in S phase and G2/M phases of the cell cycle. Finally, gene expression from transfected ITR-containing plasmid DNA was also enhanced by Hoechst dyes. CONCLUSIONS: Our results revealed that two different, although related, DNA-binding drugs, Hoechst 33 258 and 33 342, accelerate the kinetics of rAAV transgene expression. These findings may provide the basis for more sensitive assessment of rAAV biological activity and also extend the applications of rAAV for in vivo gene transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号