首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1-Aminocyclopropane-1-carboxylate (ACC) synthase, which catalyzes the conversion of S-adenosyl-L-methionine (AdoMet) to ACC, is irreversibly inactivated by its substrate AdoMet. AdoMet has two diastereomers with respect to its sulfonium center, (-)-AdoMet and (+)-AdoMet. We prepared (+)- and (-)-AdoMet from a commercial source, and compared their activities as a substrate and as an inactivator of ACC synthase isolated from tomato (Lycopersicon esculentum Mill). fruits. Only (-)-AdoMet produced ACC, whereas both (-)- and (+)-AdoMet inactivated ACC synthase; (+)-AdoMet inactivated the enzyme three times faster than (-)-AdoMet. We have previously shown that ACC synthase was specifically radiolabeled when the enzyme was incubated with S-adenosyl-L-[3,4-14C]methionine. The present results further indicate that S-adenosyl-L-[carboxyl-14C]methionine, but not S-adenosyl-L-[methyl-14C]methionine, radiolabeled the enzyme. These data suggest that the 2-aminobutyric acid portion of AdoMet is linked to ACC synthase during the autoinactivation process. A possible mechanism for ACC synthase inactivation by AdoMet is discussed.  相似文献   

2.
1-Aminocyclopropane-l-carboxylate (ACC) synthase from applefruits was purified over 5,000-fold by conventional column chromatography.By immunizing mice with this partially purified enzyme preparation,8 hybridoma lines producing monoclonal antibodies against appleACC synthase were isolated. While all 8 clones immunoprecipitatednative ACC synthase, only two clones recognized the putative(48 kDa) ACC synthase on Western blots. When a partially purifiedACC synthase preparation was incubated with S-adenosyl-L-[carboxyl-14C]methionine(AdoMet), only one radioactive protein of 48 kDa was detectedon sodium dodecyl sulfate-poly-acrylamide gel electrophoresis.This radioactive protein was specifically immunoprecipitatedby the monoclonal antibodies, indicating that apple ACC synthaseis specifically radiolabeled by its substrate AdoMet, as istomato ACC synthase. Thus, the monoclonal antibodies recognizedboth native and AdoMet-inactivated forms of ACC synthase. Whilethese antibodies failed to im-munoprecipitate ACC synthase isolatedfrom ripe tomato fruits, ripe avocado fruits or auxin-treatedmungbean hypocotyls, they were effective in immunoprecipitatingthe enzyme isolated from ripe pear fruits. (Received August 11, 1990; Accepted October 17, 1990)  相似文献   

3.
The crystal structure of 1-aminocyclopropane-1-carboxylate (ACC) synthase in complex with the substrate analogue [2-(amino-oxy)ethyl](5'-deoxyadenosin-5'-yl)(methyl)sulfonium (AMA) was determined at 2.01-A resolution. The crystallographic results show that a covalent adduct (oxime) is formed between AMA (an amino-oxy analogue of the natural substrate S-adenosyl-L-methionine (SAM)) and the pyridoxal 5'-phosphate (PLP) cofactor of ACC synthase. The oxime formation is supported by spectroscopic data. The ACC synthase-AMA structure provides reliable and detailed information on the binding mode of the natural substrate of ACC synthase and complements previous structural and functional work on this enzyme.  相似文献   

4.
Threonine synthase (TS) is a fold-type II pyridoxal phosphate (PLP)-dependent enzyme that catalyzes the ultimate step of threonine synthesis in plants and microorganisms. Unlike the enzyme from microorganisms, plant TS is activated by S-adenosylmethionine (AdoMet). The mechanism of activation has remained unknown up to now. We report here the crystallographic structures of Arabidopsis thaliana TS in complex with PLP (aTS) and with PLP and AdoMet (aTS-AdoMet), which show with atomic detail how AdoMet activates TS. The aTS structure reveals a PLP orientation never previously observed for a type II PLP-dependent enzyme and explains the low activity of plant TS in the absence of its allosteric activator. The aTS-AdoMet structure shows that activation of the enzyme upon AdoMet binding triggers a large reorganization of active site loops in one monomer of the structural dimer and allows the displacement of PLP to its active conformation. Comparison with other TS structures shows that activation of the second monomer may be triggered by substrate binding. This structure also discloses a novel fold for two AdoMet binding sites located at the dimer interface, each site containing two AdoMet effectors bound in tandem. Moreover, aTS-AdoMet is the first structure of an enzyme that uses AdoMet as an allosteric effector.  相似文献   

5.
1-Aminocyclopropane-1-carboxylate (ACC) synthase, EC 4.4.1.14, was purified to homogeneity from etiolated mung bean hypocotyl segments. This was made possible by the ability to elevate the enzyme level markedly through hormone treatments and by stabilization of the enzyme with high phosphate concentrations. The four-step procedure resulted in 1050-fold purification with 25% yield, and consisted of stepwise elution from hydroxylapatite, chromatography on phenyl-Sepharose CL-4B, gradient elution from hydroxylapatite, and fast protein liquid chromatography (FPLC) on a MonoQ anion-exchange column. FPLC-purified ACC synthase migrated as a single band of Mr 65,000 on denaturing polyacrylamide gel electrophoresis. The molecular weight of native enzyme by Bio-Gel A-0.5 M chromatography was 125,000, indicating that the enzyme probably exists as a dimer of identical 65,000 Mr subunits. The mung bean ACC synthase exhibited a pH optimum of 8.0 for activity and a Km for S-adenosylmethionine (AdoMet) of 55 microM at 30 degrees C. It exhibited an Arrhenius activation energy of 12 kcal mol-1 degree-1 and was inactivated at temperatures in excess of 40 degrees C. The specific activity for pure ACC synthase was 21 mumol of ACC formed/mg protein/h when determined under optimal conditions with 400 microM AdoMet.  相似文献   

6.
1-Aminocyclopropane-1-carboxylic acid oxidase (ACCO) is a nonheme Fe(II)-containing enzyme that is related to the 2-oxoglutarate-dependent dioxygenase family. The binding of substrates/cofactors to tomato ACCO was investigated through kinetics, tryptophan fluorescence quenching, and modeling studies. α-Aminophosphonate analogs of the substrate (1-aminocyclopropane-1-carboxylic acid, ACC), 1-aminocyclopropane-1-phosphonic acid (ACP) and (1-amino-1-methyl)ethylphosphonic acid (AMEP), were found to be competitive inhibitors versus both ACC and bicarbonate (HCO(3)(-)) ions. The measured dissociation constants for Fe(II) and ACC clearly indicate that bicarbonate ions improve both Fe(II) and ACC binding, strongly suggesting a stabilization role for this cofactor. A structural model of tomato ACCO was constructed and used for docking experiments, providing a model of possible interactions of ACC, HCO(3)(-), and ascorbate at the active site. In this model, the ACC and bicarbonate binding sites are located close together in the active pocket. HCO(3)(-) is found at hydrogen-bond distance from ACC and interacts (hydrogen bonds or electrostatic interactions) with residues K158, R244, Y162, S246, and R300 of the enzyme. The position of ascorbate is also predicted away from ACC. Individually docked at the active site, the inhibitors ACP and AMEP were found coordinating the metal ion in place of ACC with the phosphonate groups interacting with K158 and R300, thus interlocking with both ACC and bicarbonate binding sites. In conclusion, HCO(3)(-) and ACC together occupy positions similar to the position of 2-oxoglutarate in related enzymes, and through a hydrogen bond HCO(3)(-) likely plays a major role in the stabilization of the substrate in the active pocket.  相似文献   

7.
A simple and rapid radioisotopic assay for 1-aminocyclopropane-1-carboxylic acid (ACC) synthase was developed, an enzyme involved in the biosynthesis of the plant hormone ethylene. The assay utilizes an AG50W-X4(NH+4) column which separates S-adenosyl-L-[carboxyl-14C]methionine (AdoMet) from the product [14C]ACC, since the latter is not bound to the resin while [14C]AdoMet is. As opposed to other assays, this procedure measures ACC directly and does not require further conversion to ethylene. When an enzyme preparation from ripe tomato fruits (Lycopersicon esculentum Mill). was assayed, an I50 of 2.5 +/- 0.8 microM for sinefungin and a Km of 27 +/- 2 microM for AdoMet were obtained; these values were in good agreement with previous determinations made with a gas chromatographic assay. When other nucleosides were tested as inhibitors, the following order of decreasing activity was found: sinefungin greater than S-adenosylhomocysteine (AdoHcy) greater than AdoHcy sulfoxide greater than S-n-butyladenosine greater than 3-deaza-adenosylhomocysteine greater than S-isobutyladenosine greater than S-isobutyl-1-deazaadenosine. In contrast, S-isobutyl-3-deazaadenosine, S-isobutyl-7-deazaadenosine, 3-deazaadenosine, and adenosine were not inhibitory.  相似文献   

8.
Satoh S  Yang SF 《Plant physiology》1989,91(3):1036-1039
The pyridoxal phosphate-dependent 1-aminocyclopropane-1-carboxylate (ACC) synthase catalyzes the conversion of S-adenosyl-l-methionine (AdoMet) to ACC, and is inactivated by AdoMet during the reaction. l-Vinylglycine was found to be a competitive inhibitor of the enzyme, and to cause a time-dependent inactivation of the enzyme. The inactivation required the presence of pyridoxal phosphate and followed pseudo-first-order kinetics at various concentrations of l-vinylglycine. The Michaelis constant for l-vinylglycine in the inactivation reaction (Kinact) was 3.3 millimolar and the maximum rate constant (kmax) was 0.1 per minute. These findings, coupled with the previous observations that the suicidal action of AdoMet involved a covalent linkage of the aminobutyrate portion of AdoMet to the enzyme, support the view that the mechanism-based inactivation of ACC synthase by the substrate AdoMet proceeds through the formation of a vinylglycine-ACC synthase complex as an intermediate.  相似文献   

9.
1-Aminocyclopropane-1-carboxylate synthase was purified 5000-fold from LiCl-induced tomato fruit slices by conventional and high-performance liquid chromatography. The final preparation was estimated to be between 25% and 50% pure. Two-dimensional gel electrophoresis indicates that 1-aminocyclopropane-1-carboxylate synthase activity is associated with a 45-kDa polypeptide, with a pI of 5.8 +/- 0.2. The enzyme is inactivated both by its substrate, S-adenosyl-L-methionine (AdoMet) and by one of its products, 1-aminocyclopropane-1-carboxylate. Due to the extremely low abundance of the protein it was necessary to scale up the extraction in order to obtain reasonable amounts for sequence analysis. Therefore, 200 kg tomatoes were extracted on semi-industrial scale and 1-aminocyclopropane-1-carboxylate synthase purified. This yielded approximately 150 micrograms enzyme.  相似文献   

10.
Eliot AC  Sandmark J  Schneider G  Kirsch JF 《Biochemistry》2002,41(42):12582-12589
7,8-diaminopelargonic acid (DAPA) synthase (EC 2.6.1.62) is a pyridoxal phosphate (PLP)-dependent transaminase that catalyzes the transfer of the alpha-amino group from S-adenosyl-L-methionine (SAM) to 7-keto-8-aminopelargonic acid (KAPA) to form DAPA in the antepenultimate step in the biosynthesis of biotin. The wild-type enzyme has a steady-state kcat value of 0.013 s(-1), and the K(m) values for SAM and KAPA are 150 and <2 microM, respectively. The k(max) and apparent K(m) values for the half-reaction of the PLP form of the enzyme with SAM are 0.016 s(-1) and 300 microM, respectively, while those for the reaction with DAPA are 0.79 s(-1) and 1 microM. The R391A mutant enzyme exhibits near wild-type kinetic parameters in the reaction with SAM, while the apparent K(m) for DAPA is increased 180-fold. The 2.1 A crystal structure of the R391A mutant enzyme shows that the mutation does not significantly alter the structure. These results indicate that the conserved arginine residue is not required for binding the alpha-amino acid SAM, but it is important for recognition of DAPA.  相似文献   

11.
S Taoka  L Widjaja  R Banerjee 《Biochemistry》1999,38(40):13155-13161
Cystathionine beta-synthase is a unique heme protein that catalyzes a pyridoxal phosphate (or PLP)-dependent beta-replacement reaction. The reaction involves the condensation of serine and homocysteine and constitutes one of the two major avenues for detoxification of homocysteine in mammals. The enzyme is allosterically regulated by S-adenosylmethionine (AdoMet). In this study, we have characterized the kinetic, spectroscopic, and ligand binding properties of a truncated catalytic core of cystathionine beta-synthase extending from residues 1 through 408 in which the C-terminal 143 residues have been deleted. This is similar to a natural variant of the protein that has been described in a homocystinuric patient in which the predicted peptide is 419 amino acids in length. Truncation leads to the formation of a dimeric enzyme in contrast to the tetrameric organization of the native enzyme. Some of the kinetic properties of the truncated enzyme are different from the full-length form, most notably, significantly higher K(m)s for the two substrates, and loss of activation by AdoMet. This is paralleled by the absence of AdoMet binding to the truncated form, whereas four AdoMet molecules bind cooperatively to the full-length tetrameric enzyme with a K(d) of 7. 4 microM. Steady-state kinetic analysis indicates that the order of substrate addition is important. Thus, preincubation of the enzyme with homocysteine leads to a 2-fold increase in V(max) relative to preincubation of the enzyme with serine. Since the intracellular concentration of serine is significantly greater than that of homocysteine, the physiological significance of this phenomenon needs to be considered. Based on ligand binding studies and homology searches with protein sequences in the database, we assign residues 68-209 as being important for PLP binding, residues 241-341 for heme binding, and residues 421-469 for AdoMet binding.  相似文献   

12.
Yip WK  Dong JG  Yang SF 《Plant physiology》1991,95(1):251-257
1-Aminocyclopropane-1-carboxylate (ACC) synthase, a key enzyme in ethylene biosynthesis, was isolated and partially purified from apple (Malus sylvestris Mill.) fruits. Unlike ACC synthase isolated from other sources, apple ACC synthase is associated with the pellet fraction and can be solubilized in active form with Triton X-100. Following five purification steps, the solubilized enzyme was purified over 5000-fold to a specific activity of 100 micromoles per milligram protein per hour, and its purity was estimated to be 20 to 30%. Using this preparation, specific monoclonal antibodies were raised. Monoclonal antibodies against ACC synthase immunoglobulin were coupled to protein-A agarose to make an immunoaffinity column, which effectively purified the enzyme from a relatively crude enzyme preparation (100 units per milligram protein). As with the tomato enzyme, apple ACC synthase was inactivated and radiolabeled by its substrate S-adenosyl-l-methionine. Apple ACC synthase was identified to be a 48-kilodalton protein based on the observation that it was specifically bound to immunoaffinity column and it was specifically radiolabeled by its substrate S-adenosyl-l-methionine.  相似文献   

13.
1-Aminocyclopropane-1-carboxylic acid (ACC) synthase, a pyridoxal phosphate-utilizing enzyme, catalyzes the conversion of S-adenosylmethionine to ACC, the rate-limiting step in the biosynthesis of the plant hormone ethylene. We report the partial purification (400-fold) of ACC synthase from wounded pink tomato pericarp. Further purification results in a decrease in specific activity apparently due to the instability of the enzyme. Radiolabeling of a pyridoxal phosphate-utilizing protein in the ACC synthase-enriched fraction was achieved by reduction using tritiated sodium borohydride. Evidence that this radiolabeled protein is ACC synthase is presented.  相似文献   

14.
Immunochemical cross-reactivity of wound- and auxin-induced1-aminocyclopropane-1-carboxylate (ACC) synthase was examinedwith the antibody against wound-induced ACC synthase purifiedfrom mesocarp of winter squash (Cucurbita maxima Duch.). Theantibody recognized ACC synthase from wounded hypocotyls ofwinter squash and from wounded pericarp of tomato fruits, butnot the enzyme from IAA-treated hypocotyls of winter squash,tomato and mung bean. These results indicate that the primarystructure of the wound-induced enzyme is different from thatof the auxin-induced enzyme in the same species, and impliesthat there are two different genes for ACC synthase, one forwound induction and the other for auxin induction. (Received June 14, 1988; Accepted July 20, 1988)  相似文献   

15.
We studied the regulation of 1-aminocyclopropane-1-carboxylate (ACC) synthase activity in tomato (Lycopersicon esculentum Mill.) fruit tissue and attempted the purification of this enzyme. The increase of ACC synthase activity in wounded tomato pericarp was inhibited by cordycepin and cycloheximide. Density labeling studies showed a 0.75% increase in the buoyant density of ACC synthase isolated from tomato pericarp tissue that had been incubated on 2H2O as compared to ACC synthase from H2O-treated tissue. These data are consistent with the hypothesis that ACC synthase is synthesized de novo following wounding of tomato pericarp tissue. SDS-gel electrophoresis and fluorography showed that the pattern of incorporation of l-[35S]methionine into protein changed with time after wounding of the tissue. Radioactive protein bands that were not detected 1 hour after wounding, became apparent 2 to 3 hours after wounding.  相似文献   

16.
Eliot AC  Kirsch JF 《Biochemistry》2002,41(11):3836-3842
The active sites of the homologous pyridoxal phosphate- (PLP-) dependent enzymes 1-aminocyclopropane-1-carboxylate (ACC) synthase and aspartate aminotransferase (AATase) are almost entirely conserved, yet the pK(a)'s of the two internal aldimines are 9.3 and 7.0, respectively, to complement the substrate pK(a)'s (S-adenosylmethionine pK(a) = 7.8 and aspartate pK(a) = 9.9). This complementation is required for maximum enzymatic activity in the physiological pH range. The most prominent structural difference in the active site is that Ile232 of ACC synthase is replaced by alanine in AATase. The I232A mutation was introduced into ACC synthase with a resulting 1.1 unit decrease (from 9.3 to 8.2) in the aldimine pK(a), thus identifying Ile232 as a major determinant of the high pK(a) of ACC synthase. The mutation also resulted in reduced k(cat) (0.5 vs 11 s(-1)) and k(cat)/K(m) values (5.0 x 10(4) vs 1.2 x 10(6) M(-1) s(-1)). The effect of the mutation is interpreted as the result of shortening of the Tyr233-PLP hydrogen bond. Addition of the Y233F mutation to the I232A ACC synthase to generate the double mutant I232A/Y233F raised the pK(a) from 8.2 to 8.8, because the Y233F mutation eliminates the hydrogen bond between that residue and PLP. The introduction of the retro mutation A224I into AATase raised the aldimine pK(a) of that enzyme from 6.96 to 7.16 and resulted in a decrease in single-turnover k(max) (108 vs 900 s(-1) for aspartate) and k(max)/K(m)(app) (7.5 x 10(4) vs 3.8 x 10(5) M(-1) s(-1)) values. The distance from the pyridine nitrogen of the cofactor to a conserved aspartate residue is 2.6 A in AATase and 3.8 A in ACC synthase. The D230E mutation introduced into ACC synthase to close this distance increases the aldimine pK(a) from 9.3 to 10.0, as would be predicted from a shortened hydrogen bond.  相似文献   

17.
Ornithine decarboxylase (ODC) is a pyridoxal-5'-phosphate-dependent (PLP) enzyme that catalyzes the biosynthesis of the polyamine putrescine. Similar to other PLP-dependent enzymes, an active site Lys residue forms a Schiff base with PLP in the absence of substrate. The mechanistic role of this residue (Lys-69) in catalysis by Trypanosoma brucei ODC has been studied by analysis of the mutant enzymes, in which Lys-69 has been replaced by Arg (K69R ODC) and Ala (K69A ODC). Analysis of K69A ODC demonstrated that the enzyme copurified with amines (e.g. putrescine) that were tightly bound to the active site through a Schiff base with PLP. In contrast, on the basis of an absorption spectrum of K69R ODC, PLP is likely to be bound to this mutant enzyme in the aldehyde form. Pre-steady-state kinetic analysis of the reaction of K69R ODC with L-Orn and putrescine demonstrated that the rates of both the product release (k(off.Put) = 0.0041 s(-)(1)) and the decarboxylation (k(decarb) = 0.016 s(-)(1)) steps were decreased by10(4)-fold in comparison to wild-type ODC. Further, the rates of Schiff base formation between K69R ODC and either substrate or product have decreased by at least 10(3)-fold. Product release remains as the dominant rate-limiting step in the reaction (the steady-state parameters for K69R ODC are k(cat) = 0.0031 s(-)(1) and K(m) = 0.18 mM). The effect of mutating Lys-69 on the decarboxylation step suggests that Lys-69 may play a role in the proper positioning of the alpha-carboxylate for efficient decarboxylation. K69R ODC binds diamines and amino acids with higher affinity than the wild-type enzyme; however, Lys-69 does not mediate substrate specificity. Wild-type and K69R ODC have similar ligand specificity preferring to bind putrescine over longer and shorter diamines. Kinetic analysis of the binding of a series of diamines and amino acids to K69R ODC suggests that noncovalent interactions in the active site of K69R ODC promote selective ligand binding during Schiff base formation.  相似文献   

18.
Biotin synthase (BS) is an AdoMet-dependent radical enzyme that catalyzes the insertion of sulfur into saturated C6 and C9 atoms in the substrate dethiobiotin. To facilitate sulfur insertion, BS catalyzes the reductive cleavage of AdoMet to methionine and 5'-deoxyadenosyl radicals, which then abstract hydrogen atoms from the C6 and C9 positions of dethiobiotin. The enzyme from Escherichia coli is purified as a dimer that contains one [2Fe-2S]2+ cluster per monomer and can be reconstituted in vitro to contain an additional [4Fe-4S]2+ cluster per monomer. Since each monomer contains each type of cluster, the dimeric enzyme could contain one active site per monomer, or could contain a single active site at the dimer interface. To address these possibilities, and to better understand the manner in which biotin synthase controls radical generation and reactivity, we have examined the binding of AdoMet and DTB to reconstituted biotin synthase. We find that both the [2Fe-2S]2+ cluster and the [4Fe-4S]2+ cluster must be present for tight substrate binding. Further, substrate binding is highly cooperative, with the affinity for AdoMet increasing >20-fold in the presence of DTB, while DTB binds only in the presence of AdoMet. The stoichiometry of binding is ca. 2:1:1 AdoMet:DTB:BS dimer, suggesting that biotin synthase has a single functional active site per dimer. AdoMet binding, either in the presence or in the absence of DTB, leads to a decrease in the magnitude of the UV-visible absorption band at approximately 400 nm that we attribute to changes in the coordination environment of the [4Fe-4S]2+ cluster. Using these spectral changes as a probe, we have examined the kinetics of AdoMet and DTB binding, and propose an ordered binding mechanism that is followed by a conformational change in the enzyme-substrate complex. This kinetic analysis suggests that biotin synthase is evolved to bind AdoMet both weakly and slowly in the absence of DTB, while both the rate of binding and the affinity for AdoMet are increased in the presence of DTB. Cooperative binding of AdoMet and DTB may be an important mechanism for limiting the production of 5'-deoxyadenosyl radicals in the absence of the correct substrate.  相似文献   

19.
Glutamate 47 is conserved in 1-aminocyclopropane-1-carboxylate (ACC) synthases and is positioned near the sulfonium pole of (S,S)-S-adenosyl-L-methionine (SAM) in the modeled pyridoxal phosphate quinonoid complex with SAM. E47Q and E47D constructs of ACC synthase were made to investigate a putative ionic interaction between Glu47 and SAM. The k(cat)/K(m) values for the conversion of (S,S)-SAM to ACC and methylthioadenosine (MTA) are depressed 630- and 25-fold for the E47Q and E47D enzymes, respectively. The decreases in the specificity constants are due to reductions in k(cat) for both mutant enzymes, and a 5-fold increase in K(m) for the E47Q enzyme. Importantly, much smaller effects were observed for the kinetic parameters of reactions with the alternate substrates L-vinylglycine (L-VG) (deamination to form alpha-ketobutyrate and ammonia) and L-alanine (transamination to form pyruvate), which have uncharged side chains. L-VG is both a substrate and a mechanism-based inactivator of the enzyme [Feng, L., and Kirsch, J. F. (2000) Biochemistry 39, 2436-2444], but the partition ratio, k(cat)/k(inact), is unaffected by the Glu47 mutations. ACC synthase primarily catalyzes the beta,gamma-elimination of MTA from the (R,S) diastereomer of SAM to produce L-VG [Satoh, S., and Yang, S. F. (1989) Arch.Biochem. Biophys. 271, 107-112], but catalyzes the formation of ACC to a lesser extent via alpha,gamma-elimination of MTA. The partition ratios for (alpha,gamma/beta,gamma)-elimination on (R,S)-SAM are 0.4, < or =0.014, and < or =0.08 for the wild-type, E47Q, and E47D enzymes, respectively. The results of these experiments strongly support a role for Glu47 as an anchor for the sulfonium pole of (S,S)-SAM, and consequently a role as an active site determinant of reaction specificity.  相似文献   

20.
Feng L  Geck MK  Eliot AC  Kirsch JF 《Biochemistry》2000,39(49):15242-15249
The mechanistic fate of pyridoxal phosphate (PLP)-dependent enzymes diverges after the quinonoid intermediate. 1-Aminocyclopropane-1-carboxylate (ACC) synthase, a member of the alpha family of PLP-dependent enzymes, is optimized to direct electrons from the quinonoid intermediate to the gamma-carbon of its substrate, S-adenosyl-L-methionine (SAM), to yield ACC and 5'-methylthioadenosine. The data presented show that this quinonoid may also accept a proton at C(4)' of the cofactor to yield alpha-keto acids and the pyridoxamine phosphate (PMP) form of the enzyme when other amino acids are presented as alternative substrates. Addition of excess pyruvate converts the PMP form of the enzyme back to the PLP form. C(alpha)-deprotonation from L-Ala is shown by NMR-monitored solvent exchange to be reversible with a rate that is less than 25-fold slower than that of deprotonation of SAM. The rate-determining step for transamination follows the formation of the quinonoid intermediate. The rate-determining step for alpha, gamma-elimination from enzyme-bound SAM is likewise shown to occur after C(alpha)-deprotonation, and the quinonoid intermediate accumulates during this reaction. BLAST searches, sequence alignments, and structural comparisons indicate that ACC synthases are evolutionarily related to the aminotransferases. In agreement with previously published reports, an absence of homology was found between the alpha and beta families of the PLP-dependent enzyme superfamily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号