首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fungal communities within a naturally fallen bough of Japanese beech (Fagus crenata) were investigated with reference to chemical properties of decay columns. Five logs were cut out from the fallen bough, which ranged from 10.7 to 20.5 cm in diameter. Nine fungal species and one sterile fungus were isolated from decay columns that elongated along a longitudinal axis and were delimited by black zone lines and wood discoloration. Lampteromyces japonicus and Trichoderma spp. were isolated from all five logs. Lampteromyces japonicus and Antrodiella albocinnamomea occupied the largest volume in the logs. Lignin and carbohydrate contents, lignocellulose index (LCI), nitrogen content, and water content were different among decay columns colonized by different fungal species in each log. In L. japonicus, LCI of decay column was correlated to that of wood blocks decayed under pure culture condition by the fungi isolated from the decay columns. These results suggest that the small-scale variation in chemical properties within fallen logs of Japanese beech reflects the distribution and the decay ability of colonized fungi.  相似文献   

2.
Several analytical methods were compared to evaluate characteristic wood decaying fungi for their potential to depolymerise lignin on spruce wood particles. Wood samples were treated with the white rot fungi Phlebia brevispora, Ceriporiopsis subvermispora, Merulius tremellosus, Pycnoporus sanguineus, Trametes pubescens and with the brown rot fungus Gloeophyllum trabeum. The UV absorbancies of crude ethanol extracts, total extractives content from sequential extraction, ligninolytic enzyme activities, lignin solubilisation and decrease of lignin content were compared. It was shown, that, in early decay stages, UV absorbancies of crude ethanol extracts and total extractives content correlate well with lignin degradation, increase of acid soluble lignin and increased production of ligninolytic enzymes (total peroxidase). Lignin content was determined using FT-NIR spectroscopy as well as by wet-chemical analysis, indicating a very good correlation between the two methods. According to the different analytical methods, the tested fungi can be classified into three categories based on their characteristic behaviour: brown rot, “slow” and “fast” white rot.  相似文献   

3.
Summary The ability of 45 fungal strains to degrade wheat straw and beech wood was studied. Degradation patterns were defined in terms of chemical evolution of substrates and changes in lignin and polysaccharides. Trametes versicolor produced an important degradation of lignin and increased substrate digestibility, but it caused high weight losses and gave rise to similar decay patterns on both substrates. A preferential degradation of lignin was produced during straw transformation by Pleurotus eryngii. The increase of soluble lignin and decreases of lignin content and H/C ratio defined the degradation tendency after principal component analysis. The cation exchange capacity and water and alkali solubility presented the highest loading factors for the characterization of fungal transformation of beech wood. Offprint requests to: A. T. Martínez  相似文献   

4.
The effects of exudates from uncolonized and from partly decayed beech wood on the extension rates of 16 later stage decay fungi were investigated. The partly decayed wood had been colonized by the pyrenomycete Eutypa spinosa, or the basidiomycetes Fomes fomentarius, Stereum hirsutum, and Trametes versicolor, all known as common early decay agents in European beech forests. Sterilized wood pieces were placed onto 0.5% malt agar, opposite to small agar plugs containing the test fungi. The latter showed very variable and species-specific growth responses to the various wood types. The presence of uncolonized wood stimulated extension rates in many species, whereas the four previously decayed wood types had variable stimulatory or inhibitory effects. Wood decayed by S. hirsutum resulted in reduced extension rate, delayed growth, or total inhibition in the majority of species, thus it is suggested that this species uses secondary metabolites in a defensive strategy. A single species was, however, stimulated in the presence of S. hirsutum-decayed wood. In contrast, the presence of wood decayed by F. fomentarius was stimulatory to 45% of the species. The other previously decayed wood types generally resulted in more variable responses, depending upon species. The results are discussed in an ecological context and it is suggested that the exudates from the partly decayed wood that are responsible for the reported effects may function as infochemicals, structuring microbial communities in wood.  相似文献   

5.
Decay resistance of Rubber wood (Hevea brasiliensis) esterified with three fatty acid chlorides (hexanoyl chloride (C6), decanoyl chloride (C10) and tetra-decanoyl chloride (C14)) was evaluated. Unmodified and modified wood samples were exposed to a brown rot (Polyporus meliae) and a white rot (Coriolus versicolor) fungus for 12 weeks. Unmodified rubber wood was severely decayed by P. meliae and C. versicolor, which was indicated by significant weight loss. The rate of decay by brown rot was higher than white rot. Modified wood samples exhibited very good resistant to brown and white-rot fungi. The degree of protection increased with increase in degree of modification. P. meliae, a brown rot fungus, removed structural carbohydrate component in unmodified wood selectively whereas, C. vesicolor showed preference to lignin. The FTIR spectra of modified wood exposed to fungi show no significant changes in relative peak intensities of lignin/carbohydrates indicating effectiveness of chemically modified wood in restricting chemical degradation. Chemical modification occurred more efficiently at carbohydrate portion of the wood. Therefore, it is more effective in retarding decay due to P. meliae.  相似文献   

6.
Among wood‐degrading fungi, lineages holding taxa that selectively metabolize carbohydrates without significant lignin removal (brown rot) are polyphyletic, having evolved multiple times from lignin‐removing white rot fungi. Given the qualitative nature of the ‘brown rot’ classifier, we aimed to quantify and compare the temporal sequence of carbohydrate removal among brown rot clades. Lignocellulose deconstruction was compared among fungi using distinct plant substrates (angiosperm, conifer, grass). Specifically, aspen, pine and corn stalk were harvested over a 16‐week time series from microcosms containing Gloeophyllum trabeum, Fomitopsis pinicola, Ossicaulis lignatilis, Fistulina hepatica, Serpula lacrymans, Wolfiporia cocos or Dacryopinax sp. After quantifying plant mass loss, a thorough compositional analysis was complemented by a saccharification test to determine wood cell wall accessibility. Mass loss and accessibility varied depending on fungal decomposer and substrate, and trajectories of loss for hemicellulosic components and cellulose differed among plant tissue types. At any given stage of decomposition, however, lignocellulose accessibility and the fraction remaining of carbohydrates and lignin within a plant tissue type were generally the same, regardless of fungal isolate. This suggests that the sequence of plant component removal at this typical scale of characterization is shared among these brown rot lineages, despite their diverse genomes and secretomes.  相似文献   

7.
Wood decomposition is an important component in forest ecosystems but information about the diversity of fungi causing decay is lacking. This is especially true for the temperate rain forests in Chile. These investigations show results of a biodiversity study of white-rot fungi in wood obtained from Chiloé National Park in Los Lagos region, Chile. Culturing from white-rotted wood followed by sequencing of the complete internal transcribed spacer region of the ribosomal DNA (rDNA) or partial large subunit region of the rDNA, identified 12 different species in the Basidiomycota. All of these fungi were characterized as white rot fungi and were identified with a BLAST match of 97 % or greater to sequences in the GenBank database. Fungi obtained were species of Phlebia, Mycoacia, Hyphodontia, Bjerkandera, Phanerochaete, Stereum, Trametes, and Ceriporiopsis. This report identifies for the first time in Chile the species Ceriporiopsis subvermispora, Hyphodontia radula, Phlebia radiata, Phanerochaete affinis, Peniophora cinerea, Stereum gausapatum, Phlebia setulosa and Phanerochaete sordida. Scanning electron microscopy was used to characterize the type of decay caused by the fungi that were isolated and a combination of selective lignin degraders and simultaneous white rot fungi were found. Fungi that cause a selective degradation of lignin are of interest for bioprocessing technologies that require modification or degradation of lignin without cellulose removal.  相似文献   

8.
Decaying wood plays an important role in forest biodiversity, nutrient cycling and carbon balance. Community structure of wood-inhabiting fungi changes with mass loss of wood, but the relationship between substrate quality and decomposers is poorly understood. This limits the extent to which these ecosystem services can be effectively managed. We studied the fungal community and physico-chemical quality (stage of decay, dimensions, density, moisture, C : N ratio, lignin and water or ethanol extractives) of 543 Norway spruce logs in five unmanaged boreal forest sites of southern Finland. Fungi were identified using denaturing gradient gel electrophoresis and sequencing of DNA extracted directly from wood samples. Macroscopic fruiting bodies were also recorded. Results showed a fungal community succession with decreasing wood density and C : N ratio, and increasing moisture and lignin content. Fungal diversity peaked in the most decayed substrates. Ascomycetes typically colonized recently fallen wood. Brown-rot fungi preferred the intermediate decay stages. White-rot fungi represented approximately one-fifth of sequenced species in all decay phases excluding the final phase, where ectomycorrhizal (ECM) fungi became dominant. Lignin content of logs with white-rot fungi was low, and ECM fungi were associated with substrates containing abundant nitrogen. Macroscopic fruiting bodies were observed for only a small number of species detected with molecular techniques.  相似文献   

9.
The white rot fungi used in this study caused two different forms of degradation. Phanerochaete chrysosporium, strain BKM-F-1767, and Phellinus pini caused a preferential removal of lignin from birch wood, whereas Trametes (Coriolus) versicolor caused a nonselective attack of all cell wall components. Use of polyclonal antisera to H8 lignin peroxidase and monoclonal antisera to H2 lignin peroxidase followed by immunogold labeling with protein A-gold or protein G-gold, respectively, showed lignin peroxidase extra-and intracellularly to fungal hyphae and within the delignified cell walls after 12 weeks of laboratory decay. Lignin peroxidase was localized at sites within the cell wall where electron-dense areas of the lignified cell wall layers remained. In wood decayed by Trametes versicolor, lignin peroxidase was located primarily along the surface of eroded cell walls. No lignin peroxidase was evident in brown-rotted wood, but slight labeling occurred within hyphal cells. Use of polyclonal antisera to xylanase followed by immunogold labeling showed intense labeling on fungal hyphae and surrounding slime layers and within the woody cell wall, where evidence of degradation was apparent. Colloidal-gold-labeled xylanase was prevalent in wood decayed by all fungi used in this study. Areas of the wood with early stages of cell wall decay had the greatest concentration of gold particles, while little labeling occurred in cells in advanced stages of decay by brown or white rot fungi.  相似文献   

10.
The ability of three fungal strains (Pleurotus sajor-caju, Phanerochaete chrysosporium, Trametes versicolor) to decrease the lignin content and to enhance in vitro rumen digestibility of lignified spruce sawdust was assessed. In monoculture solid substrate fermentation (SSF) studies, a considerable length of time (6 weeks) elapsed before 4 to 14% lignin was degraded. In contrast, paired or multiple cultures of these fungi caused an 8 to 16% loss of native lignin within three weeks of incubation. There were also synergistic effects on total polysaccharide/hemicellulose degraded by mixed cultures. A similar observation was made for in vitro digestibility of fungal fermented samples: Total solubles (carbohydrate products) which accumulated in cultures were significantly higher in mixed cultures than in respective monocultures. In contrast, mixtures of cell free enzyme extracts of these fungi did not cause any marked reduction in lignin or cellulose content. Supplementation of wood sawdust with carbohydrate adjuncts prior to fungal treatment also led to substantial reduction in lignin content and increased substrate digestibility.F.O. Asiegbu is with the Department of Forest Mycology & Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, S-750 07 Uppsala, Sweden; A. Paterson and J.E. Smith are with the Department of Bioscience and Biotechnology, University of Strathclyde, Glasgow, G1 1XW, UK.  相似文献   

11.
Summary The wood-decay fungi Coriolus versicolor, a white-rot fungus, and Poria placenta, a brown-rot fungus, were grown on an extractive-free lignocellulose prepared from quackgrass (Agropyron repens). Their abilities to decompose this lignocellulose were compared to their abilities to decompose softwood (Picea pungens) and hardwood (Acer rubrum) lignocelluloses. The two fungi were grown on malt-extract dampened lignocelluloses at 28°C for up to 12 weeks. Replicate cultures were periodically harvested and lignocellulose decomposition was followed by monitoring substrate weight loss, lignin loss, and carbohydrate loss. Coriolus versicolor decomposed the lignin and carbohydrate components of the grass lignocellulose as efficiently as the softwood and hardwood lignocelluloses. Poria placenta, however, was not an efficient degrader of either lignin or carbohydrate in the grass lignocellulose. Poria placenta readily decomposed carbohydrate components of the softwood lignocellulose but not the hardwood lignocellulose.Paper number 81520 of the Idaho Agricultural Experiment Station  相似文献   

12.
American beech (Fagus grandifolia) is an abundant, underutilized tree in certain areas of North America, and methods to increase its market value are of considerable interest. This research utilized pigment-producing fungi to induce color in American beech to potentially establish its use as a decorative wood. Wood samples were inoculated with Trametes versicolor, Xylaria polymorpha, Inonotus hispidus, and Arthrographis cuboidea to induce fungal pigmentation. Black pigmentation (T. versicolor, X. polymorpha, I. hispidus) was sporadic, occurred primarily on the surfaces of the heartwood, but not internally. Pink pigmentation (A. cuboidea) occurred throughout all of the tested beech samples, but was difficult to see in the heartwood due to the darker color of the wood. To increase the visibility of the pink stain, beech blocks were pretreated with T. versicolor for 4 weeks before being inoculated with A. cuboidea. This method significantly increased the saturation of the pink stain on both beech heartwood and sapwood, creating coloration similar to that found on sugar maple. This value-adding process should be particularly effective for small-scale wood pigmentation, and should help establish a market for this currently underutilized wood species.  相似文献   

13.
White zones produced on biodegraded Pinus radiata wood chips were characterized by micro-localized-FTIR (Fourier Transformed Infra Red) spectroscopy and scanning electron microscopy. Both techniques permitted assignment of the white zones to a selective lignin removal process. Although both fungi studied have degraded lignin selectively in these restricted superficial areas, chemical analysis of the wood chips indicated that Ganoderma australe removed 16% of the initial amount of glucan at the 20% weight loss level. Ceriporiopsis subvermispora did not remove glucan at weight loss values below 17%. Prolonged biodegradation resulted in reduction of white zones by G. australe, and increased white zones from C. subvermispora decayed samples. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Seventeen isolates from white rotted beech wood and six strains from a local culture collection were evaluated for their capability to delignify beech and spruce wood selectively. Six peroxidase-positive isolates were found using a colorimetric agar plate test (Poly R-478), and genetically identified by their internal transcribed spacer (ITS1) or 28S rDNA sequences. Colonised on beech and spruce wood veneers, some of the peroxidase-positive isolates caused selective white rot on both wood species. Weight loss and lignin content of the degraded veneers were estimated from FT-NIR spectra with established linear regression models and multivariate models based on partial least squares regression (PLSR). Weight loss of the samples was also determined gravimetrically. A measure for the relative selectivity of the strains for lignin degradation was formulated and the values were calculated. Two strains that were identified as Oxyporus latemarginatus and Trametes cervina exhibited high selectivity on spruce wood, but the lignin content of the decayed wood was higher than that degraded by the reference strain Ceriporiopsis subvermispora. One strain – identified as Phlebia tremellosa – led to a lower lignin content of beech wood but caused also comparably high weight loss and thus exhibited an overall lower selectivity. The NIR spectroscopic method proved to be convenient for the quick screening of selective white rot fungi. Furthermore, the results revealed that high selectivity for lignin degradation is much more pronounced in early degradation stages.  相似文献   

15.
Importance of boron compounds in wood preservation is increasing due to their low environmental impact, high efficacy and the fact that many other active ingredients have been removed from the market after the introduction of the Biocidal Products Directive. The most important drawback of boron is prominent leaching in wet environment. In order to improve their fixation, and performance against wood decay fungi, boric acid was combined with montan wax emulsion. Possible synergistic effects of boric acid and montan wax were determined according to modified EN 113 procedure. Norway spruce and beech wood specimens were exposed to three white rot (Trametes versicolor, Pleurotus ostreatus and Hypoxylon fragiforme) and brown rot wood decay fungi (Gloeophyllum trabeum, Antrodia vaillantii and Serpula lacrymans) for 12 weeks. Boron leaching from vacuum/pressure treated Norway spruce wood was determined according to the continuous (EN 84 and ENV 1250-2) and non-continuous (OECD and prCEN/TS 15119-1) procedures. Boron was determined with ICP mass spectrometry in collected leachates. The results of the fungicidal tests clearly showed that montan wax emulsion and boric acid act synergistically against tested wood decay fungi. Approximately 50% lower boric acid retentions are required in combination with montan wax emulsions to achieve sufficient protection against wood rotting fungi. However, it is even more important that all leaching tests performed proved that the addition of montan wax decreased boron leaching from impregnated specimens for 20% up to 50%.  相似文献   

16.
We incubated 196 large-diameter aspen (Populus tremuloides), birch (Betula papyrifera), and pine (Pinus taeda) logs on the FACE Wood Decomposition Experiment encompassing eight climatically-distinct forest sites in the United States. We sampled dead wood from these large-diameter logs after 2 to 6 y of decomposition and determined wood rot type as a continuous variable using the lignin loss/density loss ratio (L/D) and assessed wood-rotting fungal guilds using high-throughput amplicon sequencing (HTAS) of the ITS-2 marker. We found L/D values in line with a white rot dominance in all three tree species, with pine having lower L/D values than aspen and birch. Based on HTAS data, white rot fungi were the most abundant and diverse wood-rotting fungal guild, and soft rot fungi were more abundant and diverse than brown rot fungi in logs with low L/D values. For aspen and birch logs, decay type was related to the wood density at sampling. For the pine logs, decay type was associated with the balance between white and brown/soft rot fungi abundance and OTU richness. Our results demonstrate that decay type is governed by biotic and abiotic factors, which vary by tree species.  相似文献   

17.
The main wood degraders in aerobic terrestrial ecosystems belong to the white- and brown-rot fungi, where their biomass can be created on wood decay only. However, total sulfur (S) concentration in wood is very low and only little is known about the different sulfur compounds in wood today. Sulfur-starved brown-rot fungi Gloeophyllum trabeum and Oligoporus placenta were incubated on sterilized pine wood blocks whereas Lentinus cyathiformis and the white-rot fungi Trametes versicolor were incubated on sterilized beech wood blocks. After 19 weeks of incubation, the S oxidation status was analyzed in wood, in degraded wood, and in biomass of wood-degrading fungi by synchrotron based S K-edge XANES, and total S and sulfate were quantified. Total sulfur and sulfate content in pine wood blocks were approximately 50 and 1 ??g g−1, respectively, while in beech wood approximately 100 and 20 ??g g−1 were found, respectively. Sulfur in beech was dominated by sulfate-esters. In contrast, pine wood also contained larger amounts of reduced S. Three out of four selected fungi caused a reduction of the S oxidation state in wood from oxidized S (sulfate-ester, sulfate) to intermediate S (sulfonate, sulfoxide) or reduced S (thiols, e.g., proteins, peptides, enzyme cofactors). Only O. placenta shifted thiol to sulfonate. Growth experiments of these fungi on selective minimal media showed that in particular cysteine (thiol), sulfonates, and sulfate enhanced total mycelium growth. Consequently, wood-degrading fungi were able to utilize a large variety of different wood S sources for growth but preferentially transformed in vivo sulfate-esters and thiol into biomass structures.  相似文献   

18.
19.
Abstract The polypores (Aphyllophorales s.l., Basidiomycota) are very effective wood decayers. Different species differ in their capacity to decay wood; therefore, many functionally different species can be found decaying different substrate conditions (decay stages and log diameter). This study aimed to describe the structure of the wood‐decay polypore communities that occur on different states of wood of the Andean alder (Alnus acuminata) within Argentina and to identify groups of polypore species that share the same substrate condition, and thus might have a similar functional role in the decay processes. We found 16 polypore species, among which Trametes versicolor, Bjerkandera adusta and Trametes cubensis were dominant species, showing the highest relative frequency in alder wood. Species richness was lower on trunks of living trees and higher on dead branches. Based on preferential occurrence on different wood conditions, a cluster analysis distinguished three groups, each of them containing one of the three dominant species. This corresponds to the situation of other groups of organisms, where each functional type consists of a dominant species that accounts for most of the ‘function’ and several subordinate species with similar functions. Albeit preliminary, our results provide a formal classification of wood‐decay fungi into functional types.  相似文献   

20.
We examined whether sporocarp carbon and nitrogen isotope ratios (δ13C and δ15N values) reflected different functional strategies in 15 species of wood decay fungi. In Finnish Picea abies forests, we compared sporocarp δ13C and δ15N against log diameter, proximity to ground, and three wood decay types, specifically brown rot, nonselective white rot, and selective white rot (targeting hemicellulose and lignin preferentially). In regression analysis (adjusted r2 = 0.576), species accounted for 31% of variability in δ13C, with factors influencing wood δ13C accounting for the remainder. Brown rot fungi and three white rot fungi that selectively attacked hemicellulose (Heterobasidion parviporum, Phellopilus nigrolimitatus, and Trichaptum abietinum) were higher in δ13C than nonselective white rot fungi. This was attributed to greater assimilation of 13C-enriched pentoses from hemicellulose by these fungi. The pathogenic white rot fungus Heterobasidion parviporum had higher δ15N with proximity to ground and increasing log diameter. This suggested that 15N-enriched soil N contributed to decomposing logs and that Heterobasidion growing from a bigger resource base had increased access to soil N. These isotopic patterns accordingly reflected both functional diversity of wood decay fungi and site-specific factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号