首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A G Polson  B L Bass 《The EMBO journal》1994,13(23):5701-5711
Double-stranded RNA adenosine deaminase (dsRAD), previously called the double-stranded RNA (dsRNA) unwinding/modifying activity, modifies adenosines to inosines within dsRNA. We used ribonuclease U2 and a mutant of ribonuclease T1 to map the sites of modification in several RNA duplexes. We found that dsRAD had a 5' neighbor preference (A = U > C > G) but no apparent 3' neighbor preference. Further, the proximity of the strand termini affected whether an adenosine was modified. Most importantly, dsRAD exhibited selectivity, modifying a minimal number of adenosines in short dsRNAs. Our results suggest that the specific editing of glutamate receptor subunit B mRNA could be performed in vivo by dsRAD without the aid of specificity factors, and support the hypothesis that dsRAD is responsible for hypermutations in certain RNA viruses.  相似文献   

2.
During the analysis of the La (SS-B) autoantigen for catalytic activities an ATP-dependent double-stranded RNA unwinding activity was detected. Both native and recombinant La proteins from different species displayed this activity, which could be inhibited by monospecific anti-La antibodies. La protein was able to melt dsRNA substrates with either two 3'-overhangs or a single 3'- and a 5'-overhang. Double-stranded RNAs with two 5'-overhangs were not unwound, indicating that at least one 3'-overhang is required for unwinding. Sequence elements of the La protein that might be involved in dsRNA unwinding, such as an evolutionarily conserved putative ATP-binding motif and an element that is homologous to the double-stranded RNA binding protein kinase PKR, are discussed.  相似文献   

3.
The non-structural protein 13 (nsp13) of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is a helicase that separates double-stranded RNA (dsRNA) or DNA (dsDNA) with a 5' → 3' polarity, using the energy of nucleotide hydrolysis. We determined the minimal mechanism of helicase function by nsp13. We showed a clear unwinding lag with increasing length of the double-stranded region of the nucleic acid, suggesting the presence of intermediates in the unwinding process. To elucidate the nature of the intermediates we carried out transient kinetic analysis of the nsp13 helicase activity. We demonstrated that the enzyme unwinds nucleic acid in discrete steps of 9.3 base-pairs (bp) each, with a catalytic rate of 30 steps per second. Therefore the net unwinding rate is ~280 base-pairs per second. We also showed that nsp12, the SARS-CoV RNA-dependent RNA polymerase (RdRp), enhances (2-fold) the catalytic efficiency of nsp13 by increasing the step size of nucleic acid (RNA/RNA or DNA/DNA) unwinding. This effect is specific for SARS-CoV nsp12, as no change in nsp13 activity was observed when foot-and-mouth-disease virus RdRp was used in place of nsp12. Our data provide experimental evidence that nsp13 and nsp12 can function in a concerted manner to improve the efficiency of viral replication and enhance our understanding of nsp13 function during SARS-CoV RNA synthesis.  相似文献   

4.
A double-stranded RNA unwinding and modifying activity was found to be present in a wide range of tissues and cell types. The level of activity did not vary significantly with respect to the state of cell differentiation, cell cycle, or transformation. Thus, the unwinding and modifying activity, localized in the nucleus in somatic cells and capable of converting many adenosine residues to inosine, appears to be one of the housekeeping genes.  相似文献   

5.
6.
We have used directly combined high-performance liquid chromatography-mass spectrometry (LC/MS) to examine the mechanism of the reaction catalyzed by the double-stranded RNA unwinding/modifying activity [Bass & Weintraub (1988) Cell 55, 1089-1098]. A double-stranded RNA substrate in which all adenosines were uniformly labeled with 13C was synthesized. An LC/MS analysis of the nucleoside products from the modified, labeled substrate confirmed that adenosine is modified to inosine during the unwinding/modifying reaction. Most importantly, we found that no carbons are exchanged during the reaction. By including H2(18)O in the reaction, we showed that water serves efficiently as the oxygen donor in vitro. These results are consistent with a hydrolytic deamination mechanism and rule out a base replacement mechanism. Although the double-stranded RNA unwinding/modifying activity appears to utilize a catalytic mechanism similar to that of adenosine deaminase, coformycin, a transition-state analogue, will not inhibit the unwinding/modifying activity.  相似文献   

7.
Unwinding of double-stranded RNA by nuclear helicases can lead to modification of adenosine-residues, resulting in inosine. During initiation of protein synthesis the 5' untranslated region of an mRNA is unwound by eukaryotic initiation factors (eIF) -4A and -4B. In this work we investigated the possible nucleotide modification after unwinding by eIF-4A and eIF-4B of in vitro synthesized, labeled RNA. The products of unwinding were analyzed by gel-electrophoresis and, after nuclease digestion, by thin layer chromatography of the mononucleotides. Crude protein fractions unwound the duplex RNA and converted part of the AMP-residues into IMP-residues. However, unwinding by purified factors was not linked to this conversion, the deamination of AMP residues. Concluding, unwinding of RNA during initiation of protein synthesis does not lead to conversion of adenosine into inosine.  相似文献   

8.
Recent developments in the study of RNA silencing indicate that double-stranded RNA (dsRNA) can be used in eukaryotes to block expression of a corresponding cellular gene. There is also a large class of small non-coding RNAs having potential to form a distinct, stable stem-loop in numbers of eukaryotic genomes. We had reported that a large imperfect dsRNA structure with hundreds of base-pairs (bp) in the 3' untranslated region (3' UTR) of cytotoxic ribonuclease was correlated with the translation suppression. In this study, we search for such dsRNAs in a 3' UTR database. The occurrence rate of large dsRNA in 3' UTRs ranges from 0.01% in plant to 0.30% in vertebrate mRNAs. However, small imperfect dsRNAs of ~ 30 bp are much more prevalent than large ones. The small dsRNAs are statistically very significant and uniquely well-ordered. Most of them have the conserved structural features of pre-miRNAs. Our data mining of the dsRNAs in the 3' UTR database can be used to explore RNA-based regulation of gene expression.  相似文献   

9.
RNA interference (RNAi) refers to the selective degradation of mRNA induced by double-stranded RNA (dsRNA), first discovered in Caenorhabditis elegans. Homology-dependent silencing phenomena related to RNAi have been observed in many species from all eukaryotic kingdoms. RNAi and related mechanisms share several conserved components. The hallmark of these phenomena is the presence of short dsRNA molecules (21-25 bp long), termed short interfering RNA (siRNA), which are generated from dsRNA by the activity of Dicer, a specific type III RNAse. These molecules serve as a template for the recognition and cleavage of the cognate mRNA. As it is beyond the scope of a single review to cover all aspects of RNAi, this review will focus on certain steps of the pathway relevant to mammals and on the use of long dsRNA to specifically silence genes in mammalian cells permissive to this technique, such as oocytes and early embryos.  相似文献   

10.
Follicular cells of the silkmoth Bombyx mori contain an enzymatic activity that modifies RNA duplexes in vitro. The modifying activity converts adenosine residues into inosine in duplex but not single-stranded RNA and mediates the partial unwinding of the complement strands. Because of the modification, the RNA loses its ability to form perfect duplexes with its complement upon reannealing in vitro. The modifying enzyme is localized in the cytoplasm of follicular cells and its activity is modulated in a developmentally regulated manner. In contrast, follicular nuclei contain an activity that inhibits the modification and unwinding of duplex RNA. The modifying activity is also present in the cytoplasm of unfertilized oocytes and its accumulation during oogenesis parallels that of the follicular cells. Examination of an established silkmoth cell line of ovarian origin revealed that, in contrast to the situation with follicular cells, the modifying activity has an exclusive nuclear localization. The cytoplasmic fraction of these cells is not only devoid of modifying activity but, as is the case with the nuclear fraction of follicular cells, contains an activity that inhibits duplex RNA modification and unwinding. We conclude that the modification promoting and inhibiting activities are not restricted to a single cell type and that their compartmentalization is developmentally regulated.  相似文献   

11.
The La (SS-B) autoimmune antigen is an RNA-binding protein that is present in both nucleus and cytoplasm of eukaryotic cells. The spectrum of RNAs that interact with the La antigen includes species which also bind to the interferon-inducible protein kinase PKR. We have investigated whether the La antigen can regulate the activity of PKR and have observed that both the autophosphorylation of the protein kinase that accompanies its activation by dsRNA and the dsRNA-dependent phosphorylation of the alpha subunit of polypeptide chain initiation factor eIF-2 by PKR are inhibited in the presence of recombinant La antigen. This inhibition is partially relieved at higher concentrations of dsRNA. Once activated by dsRNA the protein kinase activity of PKR is insensitive to the La antigen. We have demonstrated by a filter binding assay that La is a dsRNA binding protein. Furthermore, when recombinant La is incubated with a 900 bp synthetic dsRNA or with naturally occurring reovirus dsRNA it converts these substrates to single-stranded forms. We conclude that the La antigen inhibits the dsRNA-dependent activation of PKR by binding and unwinding dsRNA and that it may therefore play a role in the regulation of this protein kinase in interferon-treated or virus-infected cells.  相似文献   

12.
RNA-dependent ATPase and helicase activities have been identified associated with the purified VP6 protein of bluetongue virus, a member of the Orbivirus genus of double-stranded RNA (dsRNA; Reoviridae family) viruses. In addition, the protein has an ATP binding activity. RNA unwinding of duplexes occurred with both 3' and 5' overhang templates, as well as with blunt-ended dsRNA, an activity not previously identified in other viral helicases. Although little sequence similarity to other helicases was detected, certain similarities to motifs commonly attributed to such proteins were identified.  相似文献   

13.
B L Bass  H Weintraub 《Cell》1988,55(6):1089-1098
An activity that unwinds double-stranded RNA has been reported to exist in several organisms. We have analyzed the RNA intermediates and final products of the unwinding reaction. Although the RNA becomes sensitive to single strand-specific ribonucleases during the reaction, the duplex is never completely unwound. Furthermore, the base pairing properties of the RNA are permanently altered; the reacted RNA cannot rehybridize to form the original duplex. We demonstrate that during the reaction many, but not all, of the adenosine residues are converted to inosine residues, and we propose that the covalent modification is responsible for the irreversible change in base pairing properties. Possible biological roles for the unwinding/modifying activity, as well as its relevance to antisense RNA experiments, are discussed.  相似文献   

14.
Substrate-specific kinetics of Dicer-catalyzed RNA processing   总被引:2,自引:0,他引:2  
The specialized ribonuclease Dicer plays a central role in eukaryotic gene expression by producing small regulatory RNAs—microRNAs (miRNAs) and short interfering RNAs (siRNAs)—from larger double-stranded RNA (dsRNA) substrates. Although Dicer will cleave both imperfectly base-paired hairpin structures (pre-miRNAs) and perfect duplexes (pre-siRNAs) in vitro, it has not been clear whether these are mechanistically equivalent substrates and how dsRNA binding proteins such as trans-activation response (TAR) RNA binding protein (TRBP) influence substrate selection and RNA processing efficiency. We show here that human Dicer is much faster at processing a pre-miRNA substrate compared to a pre-siRNA substrate under both single and multiple turnover conditions. Maximal cleavage rates (Vmax) calculated by Michaelis-Menten analysis differed by more than 100-fold under multiple turnover conditions. TRBP was found to enhance dicing of both substrates to similar extents, and this stimulation required the two N-terminal dsRNA binding domains of TRBP. These results demonstrate that multiple factors influence dicing kinetics. While TRBP stimulates dicing by enhancing the stability of Dicer-substrate complexes, Dicer itself generates product RNAs at rates determined at least in part by the structural properties of the substrate.  相似文献   

15.
16.
17.
We have developed a continuous fluorescence assay based on fluorescence resonance energy transfer (FRET) for the monitoring of RNA helicase activity in vitro. The assay is tested using the hepatitis C virus (HCV) NS3 helicase as a model. We prepared a double-stranded RNA (dsRNA) substrate with a 5′ fluorophore-labeled strand hybridized to a 3′ quencher-labeled strand. When the dsRNA is unwound by helicase, the fluorescence of the fluorophore is emitted following the separation of the strands. Unlike in conventional gel-based assays, this new assay eliminates the complex and time-consuming steps, and can be used to simply measure the real-time kinetics in a single helicase reaction. Our results demonstrate that Alexa Fluor 488 and BHQ1 are an effective fluorophore-quencher pair, and this assay is suitable for the quantitative measurement of the RNA helicase activity of HCV NS3. Moreover, we found that several extracts of marine organisms exhibited different inhibitory effects on the RNA and DNA helicase activities of HCV NS3. We propose that this assay will be useful for monitoring the detailed kinetics of RNA unwinding mechanisms and screening RNA helicase inhibitors at high throughput.  相似文献   

18.
RNA interference (RNAi) is a conserved eukaryotic mechanism by which double-stranded RNA (dsRNA) triggers the sequence-specific degradation of homologous mRNAs. Recent concerns have arisen in mammalian systems about off-target effects of RNAi, as well as an interferon response. Most mammalian cells respond to long dsRNAs by inducing an antiviral response mediated by interferon that leads to general inhibition of protein synthesis and nonspecific degradation of mRNAs. Moreover, recent reports demonstrate that under certain conditions, short interfering RNAs (siRNAs, 21-25 bp) may activate the interferon system. Mouse oocytes and preimplantation embryos apparently lack this response, as potent and specific inhibition of gene expression triggered by long dsRNA is observed in these cells. In the present study, we analyzed the global pattern of gene expression by microarray analysis in transgenic mouse oocytes expressing long dsRNA and find no evidence of off-targeting. We also report that genes involved in the interferon response pathway are not expressed in mouse oocytes, even after exposure for an extended period of time to long dsRNA.  相似文献   

19.
20.
Wang J  Boja ES  Oubrahim H  Chock PB 《Biochemistry》2004,43(42):13424-13431
RNA interference (RNAi) is a biological process in which animal and plant cells destroy double-stranded RNA (dsRNA) and consequently the mRNA that shares sequence homology to the dsRNA. Although it is known that the enzyme Dicer is responsible for the digestion of dsRNA into approximately 22 bp fragments, the mechanism through which these fragments are associated with the RNA-induced silencing complex (RISC) is mostly unknown. To find protein components in RISC that interact with the approximately 22 bp fragment, we synthesized a (32)P- and photoaffinity moiety-labeled 22 bp dsRNA fragment and used it as bait to fish out protein(s) directly interacting with the dsRNA fragment. One of the proteins that we discovered by mass spectrometric analysis was TB-RBP/translin. Further analysis of this DNA/RNA binding protein showed that it possesses both ssRNase and dsRNase activities but not DNase activity. The protein processes long dsRNA mainly into approximately 25 bp fragments by binding to the open ends of dsRNA and cutting it with almost no turnover due to its high affinity toward the products. The activity requires physiological ionic strength. However, with single-stranded RNA as substrate, the digestion appeared to be more complete. Both ssRNase and dsRNase activities are inhibited by high levels of common RNase inhibitors. Interestingly, both activities can be enhanced greatly by EDTA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号