首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new baculovirus-based fluorescence resonance energy transfer (Bv-FRET) assay for measuring multimerization of cell surface molecules in living cells is described. It has been demonstrated that gonadotropin-releasing hormone receptor (GnRH-R) was capable of forming oligomeric complexes in the plasma membrane under normal physiological conditions. The mouse gonadotropin-releasing hormone receptor GnRH-R was used to evaluate the efficiency and potential applications of this assay. Two chimeric constructs of GnRH-R were made, one with green fluorescent protein as a donor fluorophore and the other with enhanced yellow fluorescent protein as an acceptor fluorophore. These chimeric constructs were coexpressed in an insect cell line (BTI Tn5 B1-4) using recombinant baculoviruses. Energy transfer occurred from the excited donor to the acceptor when they were in close proximity. The association of GnRH-R was demonstrated through FRET and the fluorescence observed using a Leica TSC-SPII confocal microscope. FRET was enhanced by the addition of a GnRH agonist but not by an antagonist. The Bv-FRET assay constitutes a highly efficient, reliable and convenient method for measuring protein-protein interaction as the baculovirus expression system is superior to other transfection-based methods. Additionally, the same insect cell line can be used routinely for expressing any recombinant proteins of interest, allowing various combinations of molecules to be tested in a rapid fashion for protein-protein interactions. The assay is a valuable tool not only for the screening of new molecules that interact with known bait molecules, but also for confirming interactions between other known molecules.  相似文献   

2.
Förster resonance energy transfer (FRET) is a widely used method for monitoring interactions between or within biological macromolecules conjugated with suitable donor-acceptor pairs. Donor fluorescence lifetimes in absence and presence of acceptor molecules are often measured for the observation of FRET. However, these lifetimes may originate from interacting and noninteracting molecules, which hampers quantitative interpretation of FRET data. We describe a methodology for the detection of FRET that monitors the rise time of acceptor fluorescence on donor excitation thereby detecting only those molecules undergoing FRET. The large advantage of this method, as compared to donor fluorescence quenching method used more commonly, is that the transfer rate of FRET can be determined accurately even in cases where the FRET efficiencies approach 100% yielding highly quenched donor fluorescence. Subsequently, the relative orientation between donor and acceptor chromophores is obtained from time-dependent fluorescence anisotropy measurements carried out under identical conditions of donor excitation and acceptor detection. The FRET based calcium sensor Yellow Cameleon 3.60 (YC3.60) was used because it changes its conformation on calcium binding, thereby increasing the FRET efficiency. After mapping distances and orientation angles between the FRET moieties in YC3.60, cartoon models of this FRET sensor with and without calcium could be created. Independent support for these representations came from experiments where the hydrodynamic properties of YC3.60 under ensemble and single-molecule conditions on selective excitation of the acceptor were determined. From rotational diffusion times as found by fluorescence correlation spectroscopy and consistently by fluorescence anisotropy decay analysis it could be concluded that the open structure (without calcium) is flexible as opposed to the rather rigid closed conformation. The combination of two independent methods gives consistent results and presents a rapid and specific methodology to analyze structural and dynamical changes in a protein on ligand binding.  相似文献   

3.
Imaging of fluorescence resonance energy transfer (FRET) between fluorescently labeled molecules can measure the timing and location of intermolecular interactions inside living cells. Present microscopic methods measure FRET in arbitrary units, and cannot discriminate FRET efficiency and the fractions of donor and acceptor in complex. Here we describe a stoichiometric method that uses three microscopic fluorescence images to measure FRET efficiency, the relative concentrations of donor and acceptor, and the fractions of donor and acceptor in complex in living cells. FRET stoichiometry derives from the concept that specific donor-acceptor complexes will give rise to a characteristic FRET efficiency, which, if measured, can allow stoichiometric discrimination of interacting components. A first equation determines FRET efficiency and the fraction of acceptor molecules in complex with donor. A second equation determines the fraction of donor molecules in complex by estimating the donor fluorescence lost due to energy transfer. This eliminates the need for acceptor photobleaching to determine total donor concentrations and allows for repeated measurements from the same cell. A third equation obtains the ratio of total acceptor to total donor molecules. The theory and method were confirmed by microscopic measurements of fluorescence from cyan fluorescent protein (CFP), citrine, and linked CFP-Citrine fusion protein, in solutions and inside cells. Together, the methods derived from these equations allow sensitive, rapid, and repeatable detection of donor-, acceptor-, and donor-acceptor complex stoichiometry at each pixel in an image. By accurately imaging molecular interactions, FRET stoichiometry opens new areas for quantitative study of intracellular molecular networks.  相似文献   

4.
5.
Fluorescence resonance energy transfer (FRET) detects the proximity of fluorescently labeled molecules over distances >100 A. When performed in a fluorescence microscope, FRET can be used to map protein-protein interactions in vivo. We here describe a FRET microscopy method that can be used to determine whether proteins that are colocalized at the level of light microscopy interact with one another. This method can be implemented using digital microscopy systems such as a confocal microscope or a wide-field fluorescence microscope coupled to a charge-coupled device (CCD) camera. It is readily applied to samples prepared with standard immunofluorescence techniques using antibodies labeled with fluorescent dyes that act as a donor and acceptor pair for FRET. Energy transfer efficiencies are quantified based on the release of quenching of donor fluorescence due to FRET, measured by comparing the intensity of donor fluorescence before and after complete photobleaching of the acceptor. As described, this method uses Cy3 and Cy5 as the donor and acceptor fluorophores, but can be adapted for other FRET pairs including cyan fluorescent protein and yellow fluorescent protein.  相似文献   

6.
Green fluorescent protein (GFP)-centered fluorescence resonance energy transfer (FRET) relies on a distance-dependent transfer of energy from a donor fluorophore to an acceptor fluorophore and can be used to examine protein interactions in living cells. Here we describe a method to monitor the association and disassociation of heterotrimeric GTP-binding (G-proteins) from one another before and after stimulation of coupled receptors in living Dictyostelium discoideum cells. The Galpha(2)and Gbetagamma proteins were tagged with cyan and yellow fluorescent proteins and used to observe the state of the G-protein heterotrimer. Data from emission spectra were used to detect the FRET fluorescence and to determine kinetics and dose-response curves of bound ligand and analogs. Extending G-protein FRET to mammalian G-proteins should enable direct in situ mechanistic studies and applications such as drug screening and identifying ligands of new G-protein-coupled receptors.  相似文献   

7.
A new, simple and versatile method to measure phospholipid transfer has been developed, based on the use of a fluorescent phospholipid derivative, 1-acyl-2-parinaroylphosphatidylcholine. Vesicles prepared of this phospholipid show a low level of fluorescence due to interactions between the fluorescent groups. When phospholipid transfer protein and vesicles consisting of non-labeled phosphatidylcholine are added the protein catalyzes an exchange of phosphatidylcholine between the labeled donor and non-labeled acceptor vesicles. The insertion of labeled phosphatidylcholine into the non-labeled vesicles is accompanied by an increase in fluorescence due to abolishment of self-quenching. The initial rate of fluorescence enhancement was found to be proportional to the amount of transfer protein added. This assay was applied to determine the effect of membrane phospholipid composition on the activity of the phosphatidylcholine-, phosphatidylinositol- and non-specific phospholipid transfer proteins. Using acceptor vesicles of egg phosphatidylcholine and various amounts of phosphatidic acid it was observed that the rate of phosphatidylcholine transfer was either stimulated, inhibited or unaffected by increased negative charge depending on the donor to acceptor ratio and the protein used. In another set of experiments acceptor vesicles were prepared of phosphatidylcholine analogues in which the ester bonds were replaced with ether bonds or carbon-carbon bonds. Assuming that only a strictly coupled exchange between phosphatidylcholine and analogues gives rise to the observed fluorescence increase, orders of substrate preference could be established for the phosphatidylcholine- and phosphatidylinositol transfer proteins.  相似文献   

8.
Spectral variants of the green fluorescent protein (GFP) have been extensively used as reporters to image molecular interactions in living cells by fluorescence resonance energy transfer (FRET). However, those GFP variants which are the most efficient donor acceptor pairs for FRET measurements show a high degree of spectral overlap which has hampered in the past their use in FRET applications. Here we use spectral imaging and subsequent un-mixing to quantitatively separate highly overlapping donor and acceptor emissions in FRET measurements. We demonstrate the method in fixed and living cells using a novel GFP based FRET pair (GFP2-YFP (yellow)), which has an increased FRET efficiency compared to the most commonly used FRET pair consisting of cyan fluorescent protein and YFP. Moreover, GFP2 has its excitation maximum at 396 nm at which the YFP acceptor is excited only below the detection level and thus this FRET pair is ideal for applications involving sensitized emission.  相似文献   

9.
Beta-lactamase is a well established reporter for monitoring cellular events while chemiluminescence is the preferred read-out mode in high throughput screens. Here, we report the first chemiluminescent assay for beta-lactamase using beta-galactosidase based enzyme fragment complementation technology. The enzyme fragment complementation technology employs a large protein fragment called the enzyme acceptor and a small peptidic fragment called an enzyme donor. These fragments are inactive separately but recombine rapidly in solution to yield active beta-galactosidase detected by chemiluminescence or fluorescence. A cyclic enzyme donor comprising a substituted cephalosporin moiety is used as the lactamase substrate. The cyclic substrate does not complement with enzyme acceptor to yield active beta-galactosidase, but upon cleavage with lactamase yields the linear enzyme donor which complements readily with enzyme acceptor. This methodology has been exploited in a simple, sensitive, homogeneous cell based reporter gene assay to monitor G-protein coupled receptor activation in a microtitre plate with a chemiluminescent read out.  相似文献   

10.
Summary FLIM (Fluorescence Lifetime Imaging Microscopy) is a new tool to detect interaction between proteins. The proteins under investigation are fused with fluorescent donor and acceptor molecules. Interaction between the two proteins is accompanied by direct energy transfer from donor to acceptor (FRET), resulting in a shorter lifetime of the fluorescence emitted by the donor molecule. This change in lifetime is detected by FLIM. Fluorescence lifetime imaging can now be done on a widefield fluorescence microscope by using an attachment that is easy to install and simple to operate. The new LIFA attachment is equipped to use different excitation sources. High brightness modulated LEDs as well as lasers modulated by an Accousto Optical Modulator can be used as excitation light source. A modulated image intensifier with digital camera is used as a detector. Power supplies and signal generator are integrated in one control unit that is connected to the light source, detector and computer. All parameters for image acquisition, processing and viewing are easy accessible in the user interface of the software package that uses a modular structure. Lifetime images showing FRET in MCF7 cells with ErbB1-GFP as donor and Py72/Cy3 as acceptor that were taken at EMBL, Heidelberg are shown.  相似文献   

11.
A new microscopic technique is demonstrated that combines attributes from both near-field scanning optical microscopy (NSOM) and fluorescence resonance energy transfer (FRET). The method relies on attaching the acceptor dye of a FRET pair to the end of a near-field fiber optic probe. Light exiting the NSOM probe, which is nonresonant with the acceptor dye, excites the donor dye introduced into a sample. As the tip approaches the sample containing the donor dye, energy transfer from the excited donor to the tip-bound acceptor produces a red-shifted fluorescence. By monitoring this red-shifted acceptor emission, a dramatic reduction in the sample volume probed by the uncoated NSOM tip is observed. This technique is demonstrated by imaging the fluorescence from a multilayer film created using the Langmuir-Blodgett (LB) technique. The film consists of L-alpha-dipalmitoylphosphatidylcholine (DPPC) monolayers containing the donor dye, fluorescein, separated by a spacer group of three arachidic acid layers. A DPPC monolayer containing the acceptor dye, rhodamine, was also transferred onto an NSOM tip using the LB technique. Using this modified probe, fluorescence images of the multilayer film reveal distinct differences between images collected monitoring either the donor or acceptor emission. The latter results from energy transfer from the sample to the NSOM probe. This method is shown to provide enhanced depth sensitivity in fluorescence measurements, which may be particularly informative in studies on thick specimens such as cells. The technique also provides a mechanism for obtaining high spatial resolution without the need for a metal coating around the NSOM probe and should work equally well with nonwaveguide probes such as atomic force microscopy tips. This may lead to dramatically improved spatial resolution in fluorescence imaging.  相似文献   

12.
A homogeneous time-resolved fluorescence detection of telomerase activity   总被引:2,自引:0,他引:2  
The homogeneous time-resolved fluorescence (HTRF) technology is an assay developed to study the interaction between biomolecules. This detection system is based on a fluorescence resonance energy transfer (FRET) between a Tris-bipyridine europium cryptate used as a long-lived fluorescent donor and a chemically modified allophycocyanine as acceptor. This technology is characterized by both a spectral selectivity and a temporal selectivity (due to the time-resolved mode), ensuring a highly specific signal. Here a europium-cryptate-labeled deoxyuridine triphosphate analogue (K-11-dUTP) was used to monitor the extension reaction on a biotinylated oligonucleotide used as substrate for telomerase in a telomeric repeat amplification protocol (TRAP). After the addition of an allophycocyanine-streptavidin conjugate, the extension products give rise to a FRET between the incorporated cryptate moieties and the allophycocyanine acceptor that then displays a specific long-lived emission. The TRAP-HTRF format was validated as a screening tool by using a 2,6-diaminoanthraquinone analogue, a known inhibitor of telomerase activity. The IC(50) measured was consistent with the reported values, showing the convenience of the HTRF technology for the study of telomerase activity and inhibitors.  相似文献   

13.
We report here an extension of homogeneous assays based on fluorescence intensity and lifetime measuring on DNA hybridization. A novel decay probe that allows simple one-step nucleic acid detection with subnanomolar sensitivity, and is suitable for closed-tube applications, is introduced. The decay probe uses fluorescence resonance energy transfer (FRET) between a europium chelate donor and an organic fluorophore acceptor. The substantial change in the acceptor emission decay time on hybridization with the target sequence allows the direct separation of the hybridized and unhybridized probe populations in a time-resolved measurement. No additional sample manipulation or self-hybridization of the probes is required. The wavelength and decay time of a decay probe can be adjusted according to the selection of probe length and acceptor fluorophore, thereby making the probes applicable to multiplexed assays. Here we demonstrate the decay probe principle and decay probe-based, one-step, dual DNA assay using celiac disease-related target oligonucleotides (single-nucleotide polymorphisms [SNPs]) as model analytes. Decay probes showed specific response for their complementary DNA target and allowed good signal deconvolution based on simultaneous optical and temporal filtering. This technique potentially could be used to further increase the number of simultaneously detected DNA targets in a simple one-step homogeneous assay.  相似文献   

14.
Summary An energy transfer between donor and acceptor fluorophores across single lipid bilayer membranes is demonstrated. Anilino-naphthalene sulfonate is used as the donor chromophore: its fluorescence is enhanced by the presence of lipid and thus indicates association with the purely lipid membranes of our preparation of vesicles in suspension. Light emit ted by the donor molecules excites fluorescence of acriflavine, a suitable acceptor enclosed inside the vesicles. Absorption and fluorescence spectra of this system, in its components and as a whole, are presented in evidence for an energy transfer.Supported by a grant from the Medical Research Council of Canada. The results of this work were presented, in part, at the 17th Annual Meeting of the Biophysical Society, February 27–March 2, 1973, Columbus, Ohio.Scholar of the Medical Research Council of Canada.  相似文献   

15.
Förster resonance energy transfer (FRET) has become an important tool for analyzing different aspects of interactions among biological macromolecules in their native environments. FRET analysis has also been successfully applied to study the spatiotemporal regulation of various cellular processes using genetically encoded FRET-based biosensors. A variety of procedures have been described for measuring FRET efficiency or the relative abundance of donor-acceptor complexes, based on analysis of the donor fluorescence lifetime or the spectrally resolved fluorescence intensity. The latter methods are preferable if one wants to not only quantify the apparent FRET efficiencies but also calculate donor-acceptor stoichiometry and observe fast dynamic changes in the interactions among donor and acceptor molecules in live cells. This review focuses on a comparison of the available intensity-based approaches used to measure FRET. We discuss their strengths and weaknesses in terms of FRET quantification, and provide several examples of biological applications.  相似文献   

16.
We present a method of labeling and immobilizing a low-molecular-weight protein, calmodulin (CaM), by fusion to a larger protein, maltose binding protein (MBP), for single-molecule fluorescence experiments. Immobilization in an agarose gel matrix eliminates potential interactions of the protein and the fluorophore(s) with a glass surface and allows prolonged monitoring of protein dynamics. The small size of CaM hinders its immobilization in low-weight-percentage agarose gels; however, fusion of CaM to MBP via a flexible linker provides sufficient restriction of translational mobility in 1% agarose gels. Cysteine residues were engineered into MBP.CaM (MBP-T34C,T110C-CaM) and labeled with donor and acceptor fluorescent probes yielding a construct (MBP.CaM-DA) which can be used for single-molecule single-pair fluorescence resonance energy transfer (spFRET) experiments. Mass spectrometry was used to verify the mass of MBP.CaM-DA. Assays measuring the activity of CaM reveal minimal activity differences between wild-type CaM and MBP.CaM-DA. Single-molecule fluorescence images of the donor and acceptor dyes were fit to a two-dimensional Gaussian function to demonstrate colocalization of donor and acceptor dyes. FRET is demonstrated both in bulk fluorescence spectra and in fluorescence trajectories of single MBP.CaM-DA molecules. The extension of this method to other biomolecules is also proposed.  相似文献   

17.
Bioluminescence resonance energy transfer (BRET) is a straightforward biophysical technique for studying protein-protein interactions. It requires: (1) that proteins of interest and suitable controls be labeled with either a donor or acceptor molecule, (2) placement of these labeled proteins in the desired environment for assessing their potential interaction, and (3) use of suitable detection instrumentation to monitor resultant energy transfer. There are now several possible applications, combinations of donor and acceptor molecules, potential assay environments and detection system perturbations. Therefore, this review aims to demystify and clarify the important aspects of the BRET methodology that should be considered when using this technique.  相似文献   

18.
The research in the field of design and synthesis of unnatural amino acids is growing at a fast space for the increasing demand of proteins of potential therapeutics and many other diversified novel functional applications. Thus, we report herein the design and synthesis of microenvironment sensitive fluorescent triazolyl unnatural amino acids (UNAA) decorated with donor and/or acceptor aromatic chromophores via click chemistry. The synthesized fluorescent amino acids show interesting solvatochromic characteristic and/or intramolecular charge transfer (ICT) feature as is revealed from the UV–visible, fluorescence photophysical properties and DFT/TDDFT calculation. HOMO–LUMO distribution shows that the emissive states of some of the amino acids are characterized with more significant electron redistribution between the triazolyl moiety and the aromatic chromophores linked to it leading to modulated emission property. A pair of donor–acceptor amino acid shows interesting photophysical interaction property indicating a FRET quenching event. Furthermore, one of the amino acid, triazolyl-perylene amino acid, has been exploited for studying interaction with BSA and found that it is able to sense BSA with an enhancement of fluorescence intensity. Finally, we incorporated a pair of donor/acceptor amino acids into a Leu-enkephalin analogue pentapeptide which was found to adopt predominantly type II β-turn conformation. We envisage that our investigation is of importance for the development of new fluorescent donor–acceptor unnatural amino acids a pair of which can be exploited for generating fluorescent peptidomimetic probe of interesting photophysical property for applications in studying peptide–protein interaction.  相似文献   

19.
This paper presents a very sensitive fluorometric assay for sialyltransferase activity based on the transfer of 5-acetamido-9-deoxy-9-fluoresceinylthioure-idoneuraminic acid onto distinct glycoproteins, thus allowing determination of acceptor specificities. Acceptor protein-bound fluorescence was quantified after gel filtration which separated fluorescent sialoglycoprotein from the fluorescence-labeled CMP-glycoside donor. Kinetic constants obtained for five different purified sialyltransferases indicated that CMP-9-fluoresceinyl-NeuAc was a suitable donor substrate for each enzyme, affording low Km values and Vmax values comparable in magnitude (15-100%) to that obtained with the parent CMP-NeuAc. Sensitivity was enhanced 200- to 1000-fold compared to the radiometric sialyltransferase assay as it is used routinely. The method was applied to determination of the kinetic properties of purified rat liver alpha 2,6-sialyltransferase with four separate glycoprotein acceptors differing in glycan structure, employing very small amounts of donor, acceptor, and enzyme, and to the study of sialyltransferase activity of the human promyelocytic cell line HL-60 toward three different acceptors.  相似文献   

20.
Celiac disease (CD) is an immune-mediated disorder affecting genetically predisposed subjects. It is caused by the ingestion of wheat gluten and related prolamins. A final diagnosis for this disease can be obtained by examination of jejunal biopsies. Nevertheless, different analytical approaches have been established to detect the presence of anti-tissue transglutaminase antibodies that represent a serological hallmark of the disease. In this work, we explored a new method for the diagnosis of CD based on the detection of serum anti-transglutaminase antibodies by resonance energy transfer (RET) between donor molecules and acceptor molecules. In particular, we labeled the liver transglutaminase (tTG) enzyme from guinea pig and the rabbit anti-tTG antibodies with a couple of fluorescence probes that are able to make RET if they are located within with Förster distance. We labeled tTG with the fluorescence probe DyLight 594 as donor and the anti-tTG antibodies with the fluorescence probe DyLight 649 as acceptor. However, due to the large size of the formed complex (tTG/anti-tTG), and consequently to the low efficiency energy transfer process between the donor–acceptor molecules, we explored a new experimental approach that allows us to extend the utilizable range of RET between donor:acceptor pairs by using one single molecule as donor and multiple molecules as energy acceptors, instead of using a single acceptor molecule as usually occurs in RET experiments. The obtained results clearly show that the use of one donor and multiacceptor strategy enables for a simple and rapid detection of serum anti-transglutaminase antibodies. In addition, our results point out that it is possible to consider this approach as a new method for a wide variety of analytical assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号