首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
近年来 ,通过显微注射DNA至孵育的卵母细胞原核或外源基因转染后的胚胎干细胞进行转基因动物的生产已取得了令人瞩目的成就。在过去的 1 0年中 ,以精子作载体制备转基因哺乳动物或脊椎动物也取得了一些不同程度的进展。这些技术主要包括 :直接将外源DNA与精子共孵育至成熟 ;提取分离的精子DNA或进行预处理至精子发育成熟 ;以及在辅助受精前分离精子细胞等。此外 ,一些显微注射技术 ,如在输精管内进行体内直接转染雄性生殖细胞 ;将体内转染的雄性生殖细胞植入已分离的雄性生殖细胞 ,再显微注射至受体的睾丸 ,这些技术也逐渐成熟起来。研究表明 ,通过体内、体外转染外源DNA的显微操作技术只需将雄性受体与野生型雌性交配就可产生出转基因的后代个体 ,同时也避免了辅助受精和胚胎操作带来的机械损伤 ,因此具有一定的优势。本文综述了精子介导转基因 (SMGT)技术的发展历程、研究现状及前沿进展。  相似文献   

2.
Classical approaches for producing transgenic livestock require labor-intensive, time-consuming, and expensive methods with low efficiency of transgenic production. A promising approach for producing transgenic animals by using male stem cells was recently reported by Brinster and Zimmermann (1994: Proc Natl Acad Sci 91:11298-11302) and by Brinster and Avarbock (1994: Proc Natl Acad Sci USA 91:11303-11307). However, in order to apply this technique to producing transgenic animals, some difficulties have to be overcome. These include a satisfactory method for short-term in vitro culture for drug selection after transfection with exogenous DNA, and methods for the use of livestock such as pigs. We developed a new method for transferring foreign DNA into male germ cells. Mice and pigs were treated with busulfan, an alkylating agent, to destroy the developing male germ cells, and liposome/bacterial LacZ gene complexes were introduced into each seminiferous tubule by using a microinjection needle. As a control, lipofectin was dissolved in phosphate-buffered saline at a ratio of 1:1, and then injected into seminiferous tubules. In mice, 8.0–14.8% of seminiferous tubule expressed the introduced LacZ gene, and 7–13% of epididymal spermatozoa were confirmed as having foreign DNA by polymerase chain reaction. The liposome-injected testes were all negative for X-gal staining. These results indicate that some spermatozoa were successfully transformed in their early stages by liposome/DNA complexes. In pigs, foreign DNA was also incorporated efficiently into male germ cells, and 15.3–25.1% of the seminiferous tubules containing germ cells expressed the LacZ gene. The data suggest that these techniques can be used as a powerful tool for producing transgenic livestock. Mol. Reprod. Dev. 46:515–526, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
Use of germ cells as vectors for transgenesis in mammals has been well developed and offers exciting prospects for experimental and applied biology, agricultural and medical sciences.Such approach is referred to as either male germ cell mediated gene transfer (MGCMGT)or female germ cell mediated gene transfer(FGCMGT)technique.Sperm-mediated gene transfer (SMGT),including its alternative method,testis-mediated gene transfer(TMGT),becomes an established and reliable method for transgenesis.They have been extensively used for producing transgenic animals.The newly developed approach of FGCMGT,ovary-mediated gene transfer(OMGT) is also a novel and useful tool for efficient transgenesis.This review highlights an overview of the recent progress in germ cell mediated gene transfer techniques,methods developed and mechanisms of nucleic acid uptake by germ cells.  相似文献   

4.
H. Lejeune  P. Durand 《Andrologie》1999,9(4):498-504
Sperm auto-conservation before chimioradiotherapy allows preservation of future reproductive possibilities in case of malignancy in young adult male. Because of the lack of mature spermatozoa, such possibilities cannot be offered for boys before puberty, even though the rate of cure of childhood malignancies is high. This paper reviewed recent advances in reproductive technology, which open the field of withdrawal of immature germ cells in prepubertal boys for in vitro maturation and cryopreservation for future paternity. It has been shown that the main steps of male meiosis have been driven in vitro, allowing to obtain round spermatids from pachytene spermatocytes in the rat. In mice, cryopreserved round spermatids have been used for oocyte fertilization and gave rise to normal living pups. In humans pregnancies and living babies have been reported after microinjection of round spermatids in cases of azoospermia. One pregnancy has been obtained with a cryopreserved spermatid. Thus the project of withdrawal of testicular tissues before sterilizing treatment, in vitro maturation of spermatogonia into round spermatids and cryopreservation of immature germ cells for future use for assisted fertilization does not seem unrealistic since each step has been done individually. However developing animal models is necessary to study not only the efficiency of the whole procedure but also to check its harmlessness before clinical trials.  相似文献   

5.
Traditional methods of avian transgenesis involve complex manipulations involving either retroviral infection of blastoderms or the ex vivo manipulation of primordial germ cells (PGCs) followed by injection of the cells back into a recipient embryo. Unlike in mammalian systems, avian embryonic PGCs undergo a migration through the vasculature on their path to the gonad where they become the sperm or ova producing cells. In a development which simplifies the procedure of creating transgenic chickens we have shown that PGCs are directly transfectable in vivo using commonly available transfection reagents. We used Lipofectamine 2000 complexed with Tol2 transposon and transposase plasmids to stably transform PGCs in vivo generating transgenic offspring that express a reporter gene carried in the transposon. The process has been shown to be highly effective and as robust as the other methods used to create germ-line transgenic chickens while substantially reducing time, infrastructure and reagents required. The method described here defines a simple direct approach for transgenic chicken production, allowing researchers without extensive PGC culturing facilities or skills with retroviruses to produce transgenic chickens for wide-ranging applications in research, biotechnology and agriculture.  相似文献   

6.
Transplantation of male germ line cells into sterilized recipients has been used in mammals for conventional breeding as well as for transgenesis. We have previously adapted this approach for the domestic chicken and we present now an improvement of the germ cell transplantation technique by using an enriched subpopulation of c-Kit-positive spermatogonia as donor cells. Dispersed c-Kit positive testicular cells from 16 to 17 week-old pubertal donors were transplanted by injection directly into the testes of recipient males sterilized by repeated gamma irradiation. We describe the repopulation of the recipient's testes with c-Kit positive donor testicular cells, which resulted in the production of functional heterologous spermatozoa.Using manual semen collection, the first sperm production in the recipient males was observed about nine weeks after the transplantation. The full reproduction cycle was accomplished by artificial insemination of hens and hatching of chickens.  相似文献   

7.
We have attempted to transfect testicular spermatozoa with plasmid DNA by direct injection into testes to obtain transgenic animals [this technique was thus termed "testis-mediated gene transfer (TMGT)"]. When injected males were mated with superovulated females 2 and 3 days after injection, (i) high efficiencies (more than 50%) of gene transmission were achieved in the mid-gestational F0 fetuses, (ii) the copy number of plasmid DNA in the fetuses was estimated to be less than 1 copy per diploid cell, and (iii) overt gene expression was not found in these fetuses. These findings suggest the possibility that plasmid DNA introduced into a testis is rapidly transported to the epididymis and then incorporated by epididymal spermatozoa. The purpose of this study was to elucidate the mechanism of TMGT by introducing trypan blue (TB) or Hoechst 33342 directly into testis. We found that TB is transported to the ducts of the caput epididymis via rete testis within 1 min after testis injection, and TB reached the corpus and cauda epididymis within 2-4 days after injection. Staining of spermatozoa isolated from any portion of epididymis was observed 4 days after injection of a solution containing Hoechst 33342. Injection of enhanced green fluorescent protein (EGFP) expression vector/liposome complex into testis resulted in transfection of epithelial cells of epididymal ducts facing the lumen, although the transfection efficiency appeared to be low. In vivo electroporation toward the caput epididymis immediately after injection of EGFP expression vector into a testis greatly improved the uptake of foreign DNA by the epididymal epithelial cells. PCR analysis using spermatozoa isolated from corpus and cauda epididymis 4 days after injection of a DNA/liposome complex into testis revealed exogenous DNA in these spermatozoa even after treatment with DNase I. These findings indicate that exogenous DNA introduced into tesits is rapidly transported to epididymal ducts via the rete testis and efferent ducts, and then incorporated by epithelial cells of epididymis and epididymal spermatozoa.  相似文献   

8.
Spontaneous uptake of exogenous DNA by bull spermatozoa   总被引:6,自引:0,他引:6  
Anzar M  Buhr MM 《Theriogenology》2006,65(4):683-690
Sperm-mediated DNA transfer can be used to transfer exogenous DNA into the oocyte for the production of transgenic animals. In spite of controversy in the literature, sperm-mediated DNA transfer is a simple and quick technique that can be used in routine breeding programs (AI, embryo transfer and IVF). The main objective of this study was to determine the factors affecting the spontaneous uptake of exogenous DNA by bull spermatozoa. For this purpose, fresh and frozen spermatozoa (0.25 x 10(6)), from the same ejaculate from each of four bulls were co-incubated with fluorescent-labeled green fluorescent protein (GFP) and chloremphenicol acetyltransferase (CAT) plasmids at 37 degrees C for 30 min. Neither bull nor plasmid significantly affected the uptake of exogenous DNA. However, transfection efficiency was higher in frozen-thawed versus fresh spermatozoa (P<0.001). Regardless of whether transfected spermatozoa were alive or dead, all transfected spermatozoa were immotile. It can be concluded that a population of spermatozoa is present in bull semen which has the ability to uptake exogenous DNA spontaneously. There is tremendous scope to improve transfection efficiency of spermatozoa while maintaining motility; this needs to be achieved in order to more easily use this technique in transgenesis. However, live-transfected bull spermatozoa clearly can incorporate exogenous DNA and should be usable in intracytoplasmic sperm injection protocols.  相似文献   

9.
Use of germ cells as vectors for transgenesis in mammals has been well developed and offers exciting prospects for experimental and applied biology,agricultural and medical sciences.Such approach is referred to as either male germ cell mediated gene transfer(MGCMGT) or female germ cell mediated gene transfer(FGCMGT) technique.Sperm-mediated gene transfer(SMGT),including its alternative method,testis-mediated gene transfer(TMGT),becomes an established and reliable method for transgenesis.They have been exten...  相似文献   

10.
Embryonic germ (EG) cells are undifferentiated stem cells isolated from cultured primordial germ cells (PGC). Porcine EG cell lines with capacities of both in vitro and in vivo differentiation have been established. Because EG cells can be cultured indefinitely in an undifferentiated state, they may be more suitable for nuclear donor cells in nuclear transfer (NT) than somatic cells that have limited lifespan in primary culture. Use of EG cells could be particularly advantageous to provide an inexhaustible source of transgenic cells for NT. In this study the efficiencies of transgenesis and NT using porcine fetal fibroblasts and EG cells were compared. The rate of development to the blastocyst stage was significantly higher in EG cell NT than somatic cell NT (94 of 518, 18.2% vs. 72 of 501, 14.4%). To investigate if EG cells can be used for transgenesis in pigs, green fluorescent protein (GFP) gene was introduced into porcine EG cells. Nuclear transfer embryos using transfected EG cells gave rise to blastocysts (29 of 137, 21.2%) expressing GFP based on observation under fluorescence microscope. The results obtained from the present study suggest that EG cell NT may have advantages over somatic cell NT, and transgenic pigs may be produced using EG cells.  相似文献   

11.
Spermatogenesis, the maturation of spermatozoa and their concentration and storage in the seminiferous vessels are associated with considerable fluid secretion or absorption in the male reproductive tract. These fluid movements are in total agreement with the presence of multiple aquaporin (AQP) water channel proteins in germ cells and other tissues within the male reproductive tract. A series of functions of prime importance have already been hypothesized for aquaporins in the physiology of male reproduction. Aquaporins could be involved in the early stages of spermatogenesis, in the secretion of tubular liquid and in the concentration and storage of spermatozoa in the epididymis. In the male reproductive tract, alterations in the expression and functionality and/or regulation of aquaporins have already been demonstrated to be at the basis of forms of male infertility. Indeed, rats with reduced reabsorption of seminiferous fluid in the efferent ducts have been shown to be sub-fertile or infertile. Functions have also been suggested in the fertilization process, where aquaporins may play a role in maintaining osmotic homeostasis in gametes during fertilization. Aquaporins have also been suggested to mediate water movement into antral follicles and to be the pathway for transtrophectodermal water movement during cavitation. Aquaporins are the subject of considerable technological interest for cryopreservation used in medically assisted procreation, as they could be the molecular pathway by which water and/or solutes move across the plasma membrane during the process of freezing/thawing gametes and embryos. Indeed, artificial expression ofAQP3 has been showed to improve the survival of mouse oocytes after cryopreservation.  相似文献   

12.
利用雄性生殖细胞建立转基因动物   总被引:3,自引:0,他引:3  
追溯了用雄性生殖细胞建立转基因动物的发展历程 ,系统阐述了本领域理论和实践的最新进展 ,围绕方法学逐渐改进和完善的过程 ,从利用精子和精原干细胞携带外源DNA两个方向展开 ,分析和评价了DNA转移方法与精子载体法结合、胞浆内单精子注射、蛋白连接的精子介导的基因转移、输精管注射法以及曲细精管显微注射法和精原干细胞移植法 6种实验设计方法。  相似文献   

13.
The idea that sperm cells could be used as an effective tool for introducing exogenous DNA into an oocyte at fertilization is generally regarded with scepticism. However, in recent years, several investigators have been working on different aspects of this intriguing research topic. In the present review, their results are summarised and discussed. Sections have been dedicated to the way DNA molecules bind to spermatozoa of different species, to the events regulating such binding, to the fate of the DNA within sperm cells, and to the attempts made to produce transgenic animals with this method. The data available on the interaction between DNA and spermatozoa begin to explain how this event takes place and how it is regulated. However, the stable integration of exogenous genes into the genome of adult animals mediated by sperm cells is a very rare event, although several reports describe forms of partial success. Available evidence suggests that changes to the DNA molecules, oc curring mostly within the oocyte, represents the limiting step in the production of transgenic animals using spermatozoa as vectors of exogenous genes. At present there are not enough data to understand what happens to sperm-associated DNA upon its entrance into the oocyte at fertilization. Therefore, it has not yet been resolved whether sperm-mediated gene transfer is a possible way to manipulate the genome or if evolution has imposed some unsurpassable barriers to its use  相似文献   

14.
目的探讨睾丸内注射法pEGFP-N1在精细胞的整合和在早期胚胎中表达.方法选择4头本地山羊,双侧睾丸注射不同剂量质粒DNA pEGFP-N1,注射后PCR和Southern杂交检测pEGEP-N1在精子中的整合.结果pEGFP-N1整合到精子基因组中,转染效率最高发生在注射后第40天,转染阳性率最高为81%;绿色荧光蛋白在精子及其体外受精的部分胚胎中表达,胚胎阳性率最高的达66.7%.结论通过睾丸内注射pEGFP-N1能整合进入精子基因组,并能通过体外受精在山羊早期胚胎中表达;睾丸内注射法可能是一种可行、简单并利于推广的制备转基因山羊的方法.  相似文献   

15.
Mammalian spermatids and spermatozoa express functional G protein-coupled receptors. However, bicarbonate-regulated soluble adenylyl cyclase (AC), the major AC present in these cells, is not directly coupled to G proteins. To understand how G protein-coupled receptors signal in spermatozoa, we investigated whether a conventional transmembrane cyclase is present and biologically active in these cells. Here, we provide evidence for expression of type 3 AC (AC3) in male germ cells and describe the effects of disruption of the AC3 gene on fertility and function of mouse spermatozoa. As previously reported in rat, AC3 mRNA is expressed in mouse testes and localized, together with soluble AC mRNA, mainly in postmeiotic germ cells. AC3 protein was detected by immunolocalization in round and elongating spermatids in a region corresponding to the developing acrosome and was retained in the mature spermatozoa of the epididymis. Forskolin caused a small increase in cAMP production in mouse spermatozoa, but this increase could not be detected in the AC3(-/-) mice. Inactivation of the AC3 gene did not have overt effects on spermatogenesis; however, AC3(-/-) males were subfertile with only three litters generated by 11 males over a period of 6 months. When used in in vitro fertilization, spermatozoa from these AC3(-/-) mice produced few embryos, but their fertilizing ability was restored after removal of the zona pellucida. Despite an apparently normal structure, these spermatozoa had decreased motility and showed an increase in spontaneous acrosome reactions. These data support the hypothesis that AC3 is required for normal spermatid or spermatozoa function and male fertility.  相似文献   

16.
Oxidative stress in the male germ line is known to be a key factor in both the etiology of male infertility and the high levels of DNA damage encountered in human spermatozoa. Because the latter has been associated with a variety of adverse clinical outcomes, including miscarriage and developmental abnormalities in the offspring, the mechanisms that spermatozoa use to defend themselves against oxidative stress are of great interest. In this context, the male germ line expresses three unique forms of thioredoxin, known as thioredoxin domain-containing proteins (Txndc2, Txndc3, and Txndc8). Two of these proteins, Txndc2 and Txndc3, retain association with the spermatozoa after spermiation and potentially play an important role in regulating the redox status of the mature gamete. To address this area, we have functionally deleted the sperm-specific thioredoxins from the male germ line of mice by either exon deletion (Txndc2) or mutation of the bioactive cysteines (Txndc3). The combined inactivation of these Txndc isoforms did not have an overall impact on spermatogenesis, epididymal sperm maturation, or fertility. However, Txndc deficiency in spermatozoa did lead to age-dependent changes in these cells as reflected by accelerated motility loss, high rates of DNA damage, increases in reactive oxygen species generation, enhanced formation of lipid aldehyde–protein adducts, and impaired protamination of the sperm chromatin. These results suggest that although there is considerable redundancy in the systems employed by spermatozoa to defend themselves against oxidative stress, the sperm-specific thioredoxins, Txndc2 and Txndc3, are critically important in protecting these cells against the increases in oxidative stress associated with paternal age.  相似文献   

17.
Evidence exists to suggest detrimental effects of heat stress on male fertility. This study was designed to assess the effects of scrotal heat stress on mature and developing sperm in a mouse model. After receiving shock heat treatment (42 degrees C for 30 min), mature spermatozoa were recovered from the epididymis hours (6) or Days (7, 14, 21, 28, 60) later, to determine the variables: number of spermatozoa, sperm viability, motility and progressive motility, sperm DNA integrity as established by the TUNEL method, embryo implantation rate, and sex ratio of the fetuses conceived using the heat-exposed spermatozoa. Our results indicate that transient mild heat treatment does not affect in the same way the different types of male germ cells. Spermatocytes present within the testis at the time of heat stress resulted into a lower concentration of spermatozoa with reduced viability and low motility. Even though, DNA integrity of spermatozoa resulting from spermatocytes was also compromised by heat stress, the higher degree of DNA damage was found among spermatozoa resulting from spermatids present within the testis at the time of heat stress. At last, heat shock effect on spermatozoa present in the epididymis at the time of thermal stress resulted into a sex ratio distortion. These findings point to a higher sensitivity of spermatocytes to heat exposure and also suggest a different response of X and Y chromosome-bearing spermatozoa to heat stress that warrants further investigation.  相似文献   

18.
Transgenic technology and applications in swine.   总被引:5,自引:0,他引:5  
The introduction of foreign DNA into the genome of livestock and its stable integration into the germ line has been a major technical advance in agriculture. Production of transgenic livestock provides a method to rapidly introduce "new" genes into cattle, swine, sheep and goats without crossbreeding. It is a more extreme methodology, but in essence, not really different from crossbreeding or genetic selection in its result. Several recent developments will profoundly impact the use of transgenic technology in livestock production. These developments are: 1) the ability to isolate and maintain in vitro embryonic stem (ES) cells from preimplantation embryos, embryonic germ (EG) and somatic cells from fetuses; and somatic cells from adults, and 2) the ability to use these embryonic and somatic cells as nuclei donors in nuclear transfer or "cloning" strategies. Cell based (ES, EG, and somatic cells) strategies have several distinct advantages for use in the production of transgenic livestock that cannot be attained using pronuclear injection of DNA. There are many potential applications of transgenic methodology to develop new and improved strains of livestock. Practical applications of transgenesis in livestock production include enhanced prolificacy and reproductive performance, increased feed utilization and growth rate, improved carcass composition, improved milk production and/or composition and increased disease resistance. Development of transgenic farm animals will allow more flexibility in direct genetic manipulation of livestock.  相似文献   

19.
In vitro male germ cell cultures of zebrafish   总被引:1,自引:0,他引:1  
Transgenic modification of sperm before fertilization has the advantages of a much shorter timeline for the production of transgenic animals. A culture system using primary cultures of zebrafish male germ cells, in which the differentiation of spermatogonia to functional sperm can occur in vitro, allows us to introduce foreign DNA into the cultured sperm and to produce transgenics from the sperm. This chapter describes methods for the co-culture of male germ cells and a Sertoli cell feeder layer and the introduction of foreign DNA with retroviruses. This male germ cell culture system should prove useful not only in producing genetically modified sperm, but also in analyzing the regulatory function of Sertoli cells for spermatogenesis in vertebrates.  相似文献   

20.
To assess alternative methods for introducing expressing transgenes into the germ line of zebrafish, transgenic fish that express a nuclear-targeted, enhanced, green fluorescent protein (eGFP) gene were produced using both pseudotyped retroviral vector infection and DNA microinjection of embryos. Germ-line transgenic founders were identified and the embryonic progeny of these founders were evaluated for the extent and pattern of eGFP expression. To compare the two modes of transgenesis, both vectors used the Xenopus translational elongation factor 1-alpha enhancer/promoter regulatory cassette. Several transgenic founder fish which transferred eGFP expression to their progeny were identified. The gene expression patterns are described and compared for the two modes of gene transfer. Transient expression of eGFP was detected 1 day after introducing the transgenes via either DNA microinjection or retroviral vector infection. In both cases of gene transfer, transgenic females produced eGFP-positive progeny even before the zygotic genome was turned on. Therefore, GFP was being provided by the oocyte before fertilization. A transgenic female revealed eGFP expression in her ovarian follicles. The qualitative patterns of gene expression in the transgenic progeny embryos after zygotic induction of gene expression were similar and independent of the mode of transgenesis. The appearance of newly synthesized GFP is detectable within 5-7 h after fertilization. The variability of the extent of eGFP expression from transgenic founder to transgenic founder was wider for the DNA-injection transgenics than for the retroviral vector-produced transgenics. The ability to provide expressing germ-line transgenic progeny via retroviral vector infection provides both an alternative mode of transgenesis for zebrafish work and a possible means of easily assessing the insertional mutagenesis frequency of retroviral vector infection of zebrafish embryos. However, because of the transfer of GFP from oocyte to embryo, the stability of GFP may create problems of analysis in embryos which develop as quickly as those of zebrafish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号