首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tumor formation by Agrobacterium tumefaciens involves the transfer and integration of a defined segment (T-DNA) of tumor-inducing (Ti) plasmid DNA into the plant nuclear genome. A set of plasmid genes outside the T-DNA, the vir genes, are thought to mediate the transfer process. We report here that the virD operon encodes a site-specific endonuclease that cleaves at a unique site within each of the 24 bp direct repeats that flank the T-DNA. The endonuclease function was further localized to the 5' end of this operon by demonstrating that cleavage does not occur in virD mutant strains of Agrobacterium and that the 5' end of the virD operon is sufficient to direct cleavage in E. coli. Analysis of nucleotide sequence and protein data indicate that two proteins of 16.2 and 47.4 kd are involved.  相似文献   

2.
The VirD1 and VirD2 proteins encoded by an inducible locus of the virulence (vir) region of the Agrobacterium tumefaciens Ti plasmid are required for site-specific nicking at T-DNA border sites. We have determined the nucleotide sequence of a 3.6-kilobase-pair fragment carrying the virD locus from nopaline Ti plasmid pTiC58. In contrast to the previous report (Hagiya et al., Proc. Natl. Acad. Sci. USA 82:2669-2673, 1985), we found that the first three open reading frames were capable of encoding polypeptides of 16.1, 49.7, and 21.4 kilodaltons. Deletion analysis demonstrated that the N-terminal conserved domain of VirD2 was absolutely essential for its endonuclease activity. When extra copies of the virD1 and virD2 genes were present in an A. tumefaciens strain carrying a Ti plasmid, increased amounts of T-strand and nicked molecules could be detected at early stages of vir induction. Such strains possessed the ability to transform plants with higher efficiency.  相似文献   

3.
T R Steck  T S Lin    C I Kado 《Nucleic acids research》1990,18(23):6953-6958
Virulence genes virD1 and virD2 are required for T-DNA processing in Agrobacterium tumefaciens. The regions within virD2 contributing to T-DNA processing and virulence were investigated. Some insertional mutations in virD2 prevented T-DNA border endonucleolytic cleavage and produced an avirulent phenotype. However, a non-polar insertion immediately after bp 684 of the 1344 bp open reading frame of virD2 did not inhibit endonucleolytic cleavage but still caused a loss of virulence. This suggested that in addition to T-DNA border cleaving activity, the VirD2 protein has another virulence function which resides in the C-terminal half of the protein. Comparative nucleotide sequence analyses of virD2 showed that the first 684 bp were 81% homologous to virD2 of an octopine Ti plasmid whereas the remaining 660 bp were only 44% homologous. A plasmid containing the virD region from octopine Ti plasmid could restore both virulence and processing to a nopaline virD2 mutant. No complementation resulted when a nopaline virD2 clone containing a region similar to eukaryotic nuclear envelope transport sequences was deleted from the 3' end. These results suggest that virD1 and only the first half of virD2 are required to encode for the T-DNA processing endonuclease, and that the 3'-half of virD2 encodes a function separate from endonuclease activity that is required for virulence.  相似文献   

4.
5.
Expression of Agrobacterium tumefaciens virulence (vir) genes is dependent on the presence of a conserved 'vir box' sequence in their 5' nontranscribed regions. The location and number of these sequences vary considerably in different vir genes. Site-directed mutagenesis was used to identify the functional vir box(es) of virB, virC and virD. For virB expression both vir box B1 and B2 are required but only the vir box B1 is absolutely essential. Of the five vir boxes of virC and virD two are required for virC expression while only one vir box is required for virD expression. To investigate the minimum sequences necessary for vir gene induction a deletion derivative of virE that lacks the vir box region was used. This mutant is not induced by acetosyringone. The inducibility of this promoter was restored when a synthetic deoxyoligonucleotide dGTTTCAATTGAAAC was introduced at a location analogous to that of the wild type vir box sequence. Mutational analysis indicate that the functional vir box sequence is 14 residues in length, contains a dyad symmetry and has the consensus sequence d ryTncAaTTGnAaY [corrected] (r = purine, y = pyrimidine).  相似文献   

6.
The entire vir regulon of Agrobacterium tumefaciens was subcloned and the complete 28.6-kbp nucleotide sequence was determined. The regulon was cloned as a single unit into two replicons, one of which replicates at a high copy number in this bacterium, and a second which has broad-host-range features to replicate in other Gram-negative bacteria. These vir region plasmids are able to confer in trans the processing and transfer activities on a second plasmid containing the T-DNA. In the high copy number vir region plasmid pUCD2614, a moderate increase in basal vir gene expression was observed as judged by virE::cat fusion expression assays relative to the wild-type control plasmid. Furthermore, higher efficiencies of tobacco leaf disk transformation were observed than with the widely used vir helper plasmid pAL4404. The nucleotide sequence studies showed that the vir region consists of 28,631 bp comprising 24 open reading frames which encode proteins involved in tumorigenicity. Two open reading frames not previously characterized, virH and ORF5, were uncovered within the virD/virE intervening spacer region. Together these studies more completely characterize the structure and function of the vir regulon.  相似文献   

7.
The mechanism of DNA transmission between distinct organisms has remained a subject of long-standing interest. Agrobacterium tumefaciens mediates the transfer of plant oncogenes in the form of a 25-kb T-DNA sector of a resident Ti plasmid. A growing body of evidence leading to the elucidation of the mechanism involved in T-DNA transfer comes from studies on the vir genes contained in six major operons that are required for the T-DNA transfer process. Recent comparative amino acid sequence studies of the products of these vir genes have revealed interesting similarities between Tra proteins of Escherichia coli F factor, which are involved in the biosynthesis and assembly of a conjugative pilus, and VirB proteins encoded by genes of the virB operon of A. tumefaciens pTiC58. We have previously identified VirB2 as a pilin-like protein with processing features similar to those of TraA of the F plasmid and have shown that VirB2 is required for the biosynthesis of pilin on a flagella-free Agrobacterium strain. In the present work, VirB2 is found to be processed and localized primarily to the cytoplasmic membrane in E. coli. Cleavage of VirB2 was predicted previously to occur between alanine and glutamine in the sequence -Pro-Ala-Ala-Ala-Glu-Ser-. This peptidase cleavage sequence was mutated by an amino acid substitution for one of the alanine residues (D for A at position 45 [A45D]), by deletion of the three adjacent alanines, and by a frameshift mutation 22 bp upstream of the predicted Ala-Glu cleavage site. With the exception of the frameshift mutation, the alanine mutations do not prevent VirB2 processing in E. coli, while in A. tumefaciens they result in VirB2 instability, since no holo- or processed protein is detectable. All of the above mutations abolish virulence. The frameshift mutation abolishes processing in both organisms. These results indicate that VirB2 is processed into a 7.2-kDa structural protein. The cleavage site in E. coli appears to differ from that predicted in A. tumefaciens. Yet, the cleavage sites are relatively close to each other since the final cleavage products are similar in size and are produced irrespective of the length of the amino-terminal portion of the holoprotein. As we observed previously, the similarity between the processing of VirB2 in A. tumefaciens and the processing of the propilin TraA of the F plasmid now extends to E. coli.  相似文献   

8.
Reductions to 2, 5, and 42% of the wild-type transformation efficiency were found when Agrobacterium mutants carrying transposon insertions in virD2, virC2, and virE2, respectively, were used to transform Aspergillus awamori. The structures of the T-DNAs integrated into the host genome by these mutants were analyzed by Southern and sequence analyses. The T-DNAs of transformants obtained with the virE2 mutant had left-border truncations, whereas those obtained with the virD2 mutant had truncated right ends. From this analysis, it was concluded that the virulence proteins VirD2 and VirE2 are required for full-length T-DNA integration and that these proteins play a role in protecting the right and left T-DNA borders, respectively. Multicopy and truncated T-DNA structures were detected in the majority of the transformants obtained with the virC2 mutant, indicating that VirC2 plays a role in correct T-DNA processing and is required for single-copy T-DNA integration.  相似文献   

9.
10.
The virulence regulon of the Agrobacterium tumefaciens TiC58 plasmid is composed of six operons, virA, virB, virG, virC, virD and virE, which direct the transfer of T-DNA into plant cells. The 9.5 kbp virB operon is the largest of these operons and its entire nucleotide sequence was determined and found to contain eleven open reading frames (ORFs). Gene fusions of each VirB ORF to T7 phi 10 were made and overexpressed in Escherichia coli to confirm that they encode proteins of predicted size. Hydrophobic analysis of these peptide sequences revealed nine proteins that contain hydrophobic spanning regions including signal-peptide-like sequences. These data suggest that the majority of VirB proteins may associate with bacterial cell membranes, while the two additional proteins possess a potential ATP-binding site. Strong homologies in amino acid sequences were observed between nopaline- and octopine-type plasmids. Specific differences in amino acid sequence encoded by VirB ORFs of nopaline and octopine Ti plasmid and a functional role of the gene products are discussed.  相似文献   

11.
Agrobacterium tumefaciens transfers its Ti-plasmid T-DNA to plant cells. This process is initiated by plant-induced activation of the Ti-plasmid virulence loci, resulting in the generation of single stranded (ss) cleavages of the Ti-plasmid T-DNA border sequences (border nicks) and ss linear unipolar T-DNA molecules (T-strands). A single T-strand is produced from the two-border T-region of the pGV3850 nopaline plasmid. In this paper the induced molecular events for the complex T-region of the pTiA6 octopine plasmid are analyzed. This T-region carries four T-DNA borders delimiting three T-DNA elements (TR, TC and TL). Induction of pTiA6 generates cleavages independently at its border repeats, and six distinct T-strand species corresponding to TR, TR/TC, TR/TC/TL, TC, TC/TL and TL. These T-strand molecules are linear and correspond to the bottom strand of the pTiA6 T-region. Thus, borders can function for both initiation and termination of T-strand synthesis. We propose that the different pTiA6 T-strands are independently generated, and that the distribution of border nicks within the parental T-region determines which T-strand is produced. To identify genes involved in T-strand production, pTiA6 virulence (vir) and chromosomal virulence (chv) mutant strains were analyzed. VirA and VirG, the vir regulatory loci are required. Furthermore, the two 5' cistrons of virD are required for both border nicks and T-strands, suggesting that these genes encode the border endonuclease, and that T-strand production is dependent on border nicks. That no mutants are defective for T-strands alone suggests that functions encoded outside of vir and chv might mediate some of the later reactions of T-strand synthesis.  相似文献   

12.
13.
A M Vogel  A Das 《Journal of bacteriology》1992,174(15):5161-5164
Genetic studies indicate that three of the four polypeptides encoded within the virD operon of the Agrobacterium tumefaciens Ti plasmid are essential for virulence. In order to determine whether the fourth polypeptide, VirD3, has any role in virulence, complementation analysis was used. An A. tumefaciens strain, A348 delta D, which lacked the entire virD operon in the Ti plasmid pTiA6, was constructed. Plasmids containing defined regions of the virD operon were introduced into this strain, and virulence was tested by the strains' abilities to form tumors on Kalanchoe leaves, tomato stems, and potato tubers. As expected, deletion of the virD operon led to an avirulent phenotype. The virulence of this strain could be restored by providing virD1, virD2, and virD4 in trans. No requirement for virD3 in tumor formation was observed in these assays.  相似文献   

14.
The virD operon of the resident Ti plasmid of Agrobacterium tumefaciens contains loci involved in T-DNA processing and undefined virulence functions. Nucleotide sequence of the entire virD operon of pTiC58 revealed similarities to the virD operon of the root-inducing plasmid pRiA4b and to that of the octopine-type plasmid pTiA6NC. However, comparative sequence data show that virD of pTiC58 is more akin to that of the pRiA4b than to that of the pTiA6NC. T7f10::virD gene fusions were used to generate polypeptides that confirm the presence of four open reading frames virD1, virD2, virD3, and virD4 within virD which have a coding capacity for proteins of 16.1, 49.5, 72.6, and 73.5 kDa, respectively. virD3 therefore encodes a polypeptide 3.4 times larger (72.6 versus 21.3 kDa) than that encoded by virD3 of octopine Ti plasmids. Non-polar virD4 mutants could not be complemented by a distant homologue, TraG protein of plasmid RP4. An independently regulated fifth ORF (orf5) is located immediately downstream of 3′ end of virD4 and encodes a polypeptide of 97.4 kDa. The expression of orf5 is dependent on its own promoter and is independent of acetosyringone induction in A. tumefaciens. Recently, it has been shown that virD3 of octopine Ri or Ti plasmids is not required for virulence. In this report, we confirm and extend these findings on a nopaline Ti plasmid by using several virD non-polar mutants that were tested for virulence. virD3 and orf5 non-polar mutants showed no effect on tumorigenicity on 14 different plant species, while virD4 mutants lost their tumorigenicity completely on all these test plants. These data suggest that virD3 and orfS are not essential for virulence whereas virD4 is absolutely required on a wide range of host plants.  相似文献   

15.
Induction of Ti plasmid virulence (vir) genes during early stages of the genetic transformation of plant cells by Agrobacterium tumefaciens results in several molecular events that are involved in generating a transferable T-DNA copy. These events include site-specific nicking at the T-DNA borders and synthesis of free, unipolar, linear, single-stranded copies of the T-DNA (T-strands). Here E. coli was used as a heterologous cell to assay the requirements for T-strand synthesis. Cells of E. coli harbored two compatible plasmids, one containing coding sequences overlapping the virC and virD regions of the nopaline Ti plasmid, and a second plasmid containing a T-DNA region. The amount of vir proteins produced was varied by placing their expression under the control of either native Agrobacterium, tac, or T7 promoters. The data show that VirD1 and VirD2 proteins are absolutely essential for T-strand production in E. coli, and the relative amounts of these polypeptides produced correlate with the amounts of T-strand observed. When VirD1 and VirD2 products are limiting, the VirC1 protein increases T-strand production. The yield of T-strands also varies as a function of the plasmid vector used to clone the T-DNA region substrate; the same T-DNA cloned into pLAFR1 produces more T-strands than that cloned into the higher copy number plasmid pACYC184. In summary, VirD1 and VirD2 proteins are the minimal requirements for T-strand production; however, other factors such as VirC1, the relative concentration of VirD1, VirD2, and the T-DNA substrate, and possibly additional functions (e.g., those specified by pLAFR1) influence the efficiency of T-strand production. Additional results regarding the requirements for expression of VirD1 and VirD2 polypeptides are presented.  相似文献   

16.
The T pilus, primarily composed of cyclic T-pilin subunits, is essential for the transmission of the Ti-plasmid T-DNA from Agrobacterium tumefaciens to plant cells. Although the virB2 gene of the 11-gene virB operon was previously demonstrated to encode the full-length propilin, and other genes of this operon have been implicated as members of a conserved transmembrane transport apparatus, the role of each virB gene in T-pilin synthesis and transport and T-pilus biogenesis remained undefined. In the present study, each virB gene was examined and was found to be unessential for T-pilin biosynthesis, except virB2, but was determined to be essential for the export of the T-pilin subunits and for T-pilus formation. We also find that the genes of the virD operon are neither involved in T-pilin export nor T-pilus formation. Critical analysis of three different virD4 mutants also showed that they are not involved in T-pilus biogenesis irrespective of the A. tumefaciens strains used. With respect to the environmental effects on T-pilus biogenesis, we find that T pili are produced both on agar and in liquid culture and are produced at one end of the A. tumefaciens rod-shaped cell in a polar manner. We also report a novel phenomenon whereby flagellum production is shut down under conditions which turn on T-pilus formation. These conditions are the usual induction with acetosyringone at pH 5.5 of Ti-plasmid vir genes. A search of the vir genes involved in controlling this biphasic reaction in induced A. tumefaciens cells revealed that virA on the Ti plasmid is involved and that neither virB nor virD genes are needed for this reaction. The biphasic reaction therefore appears to be mediated through a two-component signal transducing system likely involving an unidentified vir gene in A. tumefaciens.  相似文献   

17.
18.
Agrobacterium tumefaciens transfers T-DNA into the plant genome by a process mediated by Ti plasmid-encoded vir genes. Cleavage at T-DNA border sequences by the VirD endonuclease generates linear, single-stranded T-DNA molecules. In the work described in this report, we used electrophoretic mobility shift assays to show that the purified virE2 gene product binds to single-stranded DNA. VirE2 protein associates with T-DNA as shown by immunoprecipitation studies with VirE2-specific antiserum. The VirE2 protein was detected primarily in the cytoplasm, but also in the inner and outer membrane and periplasmic fractions. Virulence of a virE2 mutant was restored by mixed infection with strains carrying an intact vir region, but not with virA, virB, virD, virE, or virG mutants or chvA, chvB, or exoC mutants. We propose that the VirE2 protein is involved in the processing of T-DNA and in T-strand protection during transfer to the plant cell.  相似文献   

19.
The T-DNA transfer process of Agrobacterium tumefaciens is activated by the induction of the Ti plasmid virulence (vir) loci by plant signal molecules such as acetosyringone. Upon initiation of the T-DNA transfer process, site-specific nicks occur at the 25-bp border sequences. This cleavage leads to the generation of a free, linear ssT-DNA molecule which is bound by sequence non-specific VirE proteins. Here we present evidence for the involvement of other acetosyringone-induced proteins in the formation of a covalent complex between the T-strand and protein, designated the T-complex. Alkaline gel-electrophoretic analysis showed that proteins specifically bind to the 5' termini of nicked T-DNA molecules. The T-complex can be formed in Escherichia coli when the VirD1 and VirD2 proteins are expressed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号