首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Murata  Takao 《Plant & cell physiology》1976,17(6):1099-1109
Phosphomannomutase [Glazer et al.: Biochim. Biophys. Acta 33:522–625 (1959)] was purified 1700-fold in a 39% yieldfrom cell-free extract of konjak (Amorphophallus konjac C. Koch)corms. The molecular weight of the enzyme as determined by gelfiltration was about 62,000. The enzyme required both Mg2+ and-D-glucose-l,6-bisphosphate for activity, although Mg2+ waspartially replaceable by either Co2+ or Ni2+. An apparent equilibriumconstant, Keq=(mannose-6-phosphate) (mannose-1-phosphate), wasdetermined to be 8.5. Activity was maximal at pH 6.5 to 7.0.Activation energy was 11.1 kcal/mole. The enzyme was the moststable at pH 7.5. The addition of substrate or cofactor markedlyincreased enzyme stability toward heat denaturation. The enzymewas more labile to heat than phosphoglucomutase from konjakcorms. Treatment with various metal ions in Tris buffer inhibited theenzyme. Cu2+ and Zn2+ were the most potent inhibitors amongthe metal ions tested, while Co2+ and Ni2+ were weak. When theenzyme was treated with metal ions in the presence of histidinebuffer, Cu2+ and Zn2+ showed no inhibitory effect on the enzyme,whereas Be2+ inhibited it to an extent similar to that in Trisbuffer. Plots of 1/v versus l/(mannose-l-phosphate) at different fixedconcentrations of glucose-1,6-bisphosphate and 1/v versus 1/(glucose-1,6-bisphosphate)at different fixed concentrations of mannose-1-phosphate wereseries of converging lines. Mannose-1-phosphate at high concentrationswas found to inhibit the enzyme competitively with respect toglucose-l,6-bisphosphate. Apparent Km and K1 values for mannose-1-phosphatewere calculated to be 0.2 mM and 1.2 mM, respectively. The Kmvalue for glucose-1,6-bisphosphate was 1.8 µM. 1This paper constitutes part 5 of a series of studies on konjakmannan biosynthesis. (Received May 24, 1976; )  相似文献   

2.
1-Aminocyclopropane-1-carboxylate (ACC) oxidase (ethylene-formingenzyme) was isolated from wounded mesocarp tissue of Cucurbitamaxima (winter squash) fruit, and its enzymatic properties wereinvestigated. The enzyme required Fe2+ and ascorbate for itsactivity as well as ACC and O2 as substrates. The in vitro enzymeactivity was enhanced by CO2. The apparent Km value for ACCwas 175 µM under atmospheric conditions. The enzyme activitywas inhibited by sulfhydryl inhibitors and divalent cationssuch as Co2+, Cu2+, and Zn2+. ACC oxidase activity was induced at a rapid rate by woundingin parallel with an increase in the rate of ethylene production.The exposure of excised discs of mesocarp to 2,5-norbornadiene(NBD),an inhibitor of ethylene action, strongly suppressed inductionof the enzyme, and the application of ethylene significantlyaccelerated the induction of the activity of ACC oxidase inthe wounded mesocarp tissue. These results suggests that endogenousethylene produced in response to wounding may function in promotingthe induction of ACC oxidase. (Received January 13, 1993; Accepted April 15, 1993)  相似文献   

3.
Konjak phosphomannose isomerase was inactivated in a time-dependentprocess by metal binding agents, and the inactivated enzymewas instantaneously reactivated by adding such metal ions asZn++, Co++, Fe++, Mn++ and Cu++. However, neither Ca++ nor Mg++were effective for reactivation. Zn++, at a low concentration,brought about complete reactivation of the enzyme at pH 6–7. The EDTA-treated enzyme was more susceptible to heat denaturationwhen compared with the native enzyme, but the addition of variousmetal ions caused the recovery of the thermal stability of theEDTA-treated enzyme. The magnitude of the recovery dependedon the metal ion species and the concentrations. The most effectivemetal ion was Co++, which caused the recovery of thermal stabilityto a level higher than that of the native enzyme. Phosphomannoseisomerase was inhibited by pchloromercuribenzoate and HgCl2;the inhibition by p-chloromercuribenzoate being more pronouncedas incubation progressed. In contrast, the EDTA-treated enzymewas more readily inhibited by the mercurial ion than was thenative enzyme. Zn++, when added to the EDTA-treated enzyme,markedly restored its resistance to the mercurial-induced inhibition.The metal-substituted enzyme was also inhibited by EDTA in atime-dependent process. 1 This paper constitutes part 4 of studies on konjak mannanbiosynthesis. (Received March 3, 1975; )  相似文献   

4.
Quinate:NAD oxidoreductase, which catalyzes the interconversionof quinic acid and 3-dehydroquinic acid, has been extractedfrom liquid N2-frozen powders of 2-day-old etiolated seedlingsof Phaseolus mungo. The enzyme was partially purified by ammoniumsulfate fractionation and by DEAE-cellulose and gel filtrationcolumn chromatographies, and was separable from shikimate: NADPoxidoreductase and 3-dehydroquinate hydrolyase. The activityappeared to be maximal at pH 8.6–9.0. The apparent Kmvalues at pH 8.6 were 0.48 mM for quinic acid and 0.043 mM forNAD. The involvement of sulfhydryl group in the reaction wasdemonstrated by the potent inhibitory action of both heavy metalions and sulfhydryl inhibitors. The purified preparation ofthe enzyme was reasonably stable for storage in the presenceof dithiothreitol. The metal ions tested, except Hg2+ and Ag+,showed practically no inhibitory action on the enzyme activity.Aromatic amino acids and other aromatic and alicyclic compoundstested had little or no effect on the activity. 1 Part 9 of "Alicyclic acid metabolism in plants". (Received January 20, 1977; )  相似文献   

5.
For a deeper understanding of the germination of chick–pea(Cicer arietinum) seeds, which is dependent upon ethylene synthesis,a crude extract containing authentic ACC oxidase (ACCO) activitywas isolated in soluble form from the embryonic axes of seedsgerminated for 24 h. Under our optimal assay conditions (200mM HEPES at pH 7.0, 4µM FeS04, 6 mM Na–ascorbate,1 mM ACC, 20% 02, 3% CO2 , and 10%glycerol) this enzyme was5–fold more active than under the conditions we used initiallyin the present work. The enzyme has the following Km: 28 µMfor ACC (approximately 4–fold less than in vivo), 1.2%for O2 (in the presence of an optimal CO2 concentration of 3%),and 1% for CO2 in the presence of O2 (20%). The enzyme is inhibitedby phenanthroline (PNT) (specific chelating agent of ferrousion), and competitively inhibited (K1, =0.5 mM) by 2–aminoisobutyricacid (AIB), and the enzymatic activity was not detectable inthe absence of CO2. Under optimal assay conditions, the enzymehas two optimum temperatures (28 C and 35 C) and is inhibitedby divalent metal cations (Zn2+> CO2+>Ni2+>Cu2+>Mn2+>Mg2+) and by salicylic acid, propylgallate, carbonyl cyanidem–chlorophenyl hydrazone (CCCP), dinitrophenol (DNP),and Na–benzoate. The in vitro ACCO activity which we recoveredin soluble form is equivalent to approximately 80–85%of the apparent activity evaluated in vivo. Key words: ACC oxidase, Cicer arietinum, ethylene, germination, seeds  相似文献   

6.
In the present work, certain biochemical characteristics ofthe enzyme 1-aminocyclopropane-1-carboxylate N-malonyltransferase(ACC N-MTase) which is responsible for the malonylation of 1-aminocyclopropane-1-carboxylate(ACC) in chickpea (Cicer arietinum) are described. Phosphatebuffer was the most appropriate buffer with regard to enzymestability and, therefore, ACC N-MTase was extracted, assayedand purified in the presence of this buffer. ACC N-MTase waspartially purified approximately 900-fold from embryonic axesof chick-pea seeds using ammonium sulphate precipitation, hydrophobicinteraction and molecular filtration chromatography. By gelfiltration chromatography on Superose-12, the molecular massof the enzyme was estimated to be 54 4 kDa. ACC N-MTase hadan optimal pH and temperature of 7.5 and 40C, respectively,as well as a Km for ACC and malonyl-CoA of 400 M and 90 M,respectively. D-Phenylalanine was a competitive inhibitor ofACC N-MTase with respect to ACC (Ki of 720 M), whereas co-enzymeA was a competitive product inhibitor with respect to malonyl-CoA(Ki of 300 M) and a non-competitive inhibitor with respectto ACC (Ki of 600 M). Under optimal assay conditions, ACC N-MTasewas strongly inhibited by (a)divalent [Zn2+>Mg2+>>Co2+>Co2+>(NH4)2+>Fe2+]and monovalent metal cations (Li+>Na+>K+), without activitybeing detected in the presence of Hg2+, and (b) PCMB or mersalicacid, suggesting that sulphydryl group(s) are involved at theactive site of the enzyme. Key words: ACC-N-malonyltransferase, Cicer arietinum, embryonic axes, ethylene, germination, seeds  相似文献   

7.
1. Polyphenol oxidase (o-diphenol : O2 oxidoreductase; E.C.1.10.3.1 [EC] ) was isolated from the other phenolases which werepresent in root-forming carrot callus, and its properties wereexamined. 2. The enzyme was purified about 45-fold over crudeextracts (precipitates between 40–70% saturation widiammonium sulfate) by a combination of Bio-gel filtration, protein-bagfiltration, and carboxymethyl cellulose chromatography. Thepurified oxidase was homogeneous according to polyacrylamidegel electrophoresis and Sephadex gel filtration. It was confirmedby CM-cellulose chromatography that the enzyme was absent incallus tissues without accompanying redifferentiation. 3. Themolecular weight of this oxidase was estimated to be 110,000-120,000 from molecular weight-mobility profiles on polyacrylamidegels containing sodium dodecyl sulfate and molecular size-elutionvolume correlations on Sephadex G-150 columns. 4. The enzymeoxidized o-diphenols but showed no detectable activity againstmonophenols. Pyrocatechol, dopamine, caffeic acid, and chlorogenicacid were effectual substrates of the enzyme with Km valuesranging from 10–3 M to 10–5M. The enzyme effectivelycatalyzed the oxidation of o-diphenols over the range of pH6.0 to 7.0 and was readily inactivated by heating. The enzymeactivity was slightly influenced by increasing ionic strength.The initial rate of the enzymic reaction was enhanced by additionof Cu2+, Co2+ and Mn2+ ions, and was reduced in the presenceof DTT, PCMPS, glycylglycine, and DIECA. (Received June 17, 1978; )  相似文献   

8.
Hydrosulfite-reduced FMN served as an electron donor for nitratereductase purified from broad bean leaves. FMN was successfullyreplaced with BV. The flavine nucleotide nitrate reductase hadits pH optima at about 7.8 with phosphate buffer and at about7.4 with Tris-HCl buffer. The Km's for nitrate and FMN were3.7 ? 10–4 M and 3.7 ? 10–5 M, respectively. NADH2: nitrate reductase activity was completely inhibited by0.1 mM p-CMB, whereas FMNH2: nitrate reductase activity wasnot. Inhibited activity was restored by the addition of cysteine.A sulfhydryl enzyme is involved in the NADH2: nitrate reductasesystem but not in the FMNH2 : nitrate reductase system. NADH2and FMNH2 probably feed electrons into the electron transportchain at different sites. The nitrate reductase preparationhad an NADH2-specific diaphorase activity which was almost completelyinhibited by 0.1 mM p-CMB. The NADH2-specific diaphorase mayform the sulfhydryl enzyme which mediates electron transferbetween NADH2 and nitrate. (Received May 6, 1969; )  相似文献   

9.
A sulfite-dependent ATPase [EC 3.6.1.3 [EC] ] of Thiobacillus thiooxidanswas activated and solubilized by treatment with trypsin [EC3.4.4.4 [EC] ], and purified 84-fold with a 32% recovery. It requiredboth Mg2+ and SO32– for full activity, and its optimumpH was found at 7.5–8.0. Mn2+, Co2+, and Ca2+ could partiallysubstitute for Mg2+, while SeO32– and CrO42– couldpartially substitute for SO32–. The enzyme hydrolyzed ATP and deoxy-ATP most rapidly and otherphosphate esters were poorer substrates. The apparent Km valuefor ATP was 0.33 mM. The enzyme activity was strongly inhibitedby 0.2 mM NaN3 and 10 mM NaF. (Received July 27, 1977; )  相似文献   

10.
NADP malic enzyme (EC 1.1.1.40 [EC] ) from leaves of two C4 speciesof Cyperus (C. rotundus and C. brevifolius var leiolepis) exihibiteda low level of activity in an assay mixture that contained lowconcentrations of Cl. This low level of activity wasmarkedly enhanced by increases in the concentration of NaClup to 200 mM. Since the activity of NADP malic enzyme was inhibitedby Na2SO4 and stimulated by relatively high concentration ofTris-HCl (50–100 mM, pH 7–8), the activation ofthe enzyme by NaCl appears to be due to Cl. Variationsin the concentration of Mg2+ affected the KA (the concentrationof activator giving half-maximal activation) for Cl,which decreased from 500 mM to 80 mM with increasing concentrationsof Mg2+ from 0.5 mM to 7 mM. The Km for Mg2+ was decreased from7.7 mM to 1.3 mM with increases in the concentration of NaClfrom zero to 200 mM, although the increase of Vmax was not remarkable.NADP malic enzyme from Cyperus, being similar to that from otherC4 species, was able to utilize Mn2+. The Km for Mn2+ was 5mM, a value similar to that for Mg2+. The addition of 91 mMNaCl markedly decreased the Km for Mn2+ to 20 +M. NADP malicenzyme from Setaria glauca, which contains rather less Clthan other C4 species, was inactivated by concentrations ofNaCl above 20 mM, although slight activation of the enzyme wasobserved at low concentrations of NaCl at pH7.6. (Received February 20, 1989; Accepted June 12, 1989)  相似文献   

11.
Cell-free extracts of peanut (Arachis hypogaea L., cv. Shulamit)seeds, incubated with various substrates, synthesized ATP. Significantsynthesis occurred in the presence of AMP + PEP, NADH2 + PEPand NAD + PEP. When the activities were examined in extractsprepared with 0.3 M mannitol, the rates were 0.6, 0.1 and 0.04nmol min–1 mg–1 protein, respectively. The activitiesunder such conditions were linear with time up to 90 min incubationat 30 °C. In the presence of PEP + NADH2 there was a higherspecific activity in extracts from non-dormant seeds than fromdormant seeds. No such difference was found when PEP + AMP orNAD + PEP was used as the substrate. The temperature dependenceof the activity showed a relatively high energy of activation(Ea) for AMP + PEP and a low one if NADH2 + PEP or NAD + PEPwas used as substrate. In buffer extracts of seeds ATP was synthesizedin the presence of the above-mentioned substrate combinationsbut the rate of activity exhibited a lag phase at the earlytime of incubation, after which higher rates of activities (ascompared with mannitol extracts) were obtained. The activitieswere Co+-dependent, with a Km of about 0.7 mM. In the bufferextracts relatively high activities of adenylate kinase (EC2.7.4.3 [EC] (AK) and pyruvate kinase (EC 2.7.1.50 [EC] ) (PK) were found.AK was stimulated by ethephon (ethylene). This effect is temperature-dependentand occurs in both directions: in the presence of ADP (ATP +AMP) as well as if ATP + AMP is used as substrate to synthesizeADP. PK is Co+-dependent, and unaffected by ethephon. Both activitieswere stimulated by malonate. Key words: Adenylate Kinase, Arachis hypogaea, ATP synthesis, Peanut, Pyruvate kinase, Seed  相似文献   

12.
Mitochondria isolated from leaves of Mesembryanthemum crystallinumoxidized malate by both NAD malic enzyme and NAD malate dehydrogenase.Rates of malate oxidation were higher in mitochondria from plantsgrown at 400 mil NaCl in the rooting medium and performing Crassulaceanacid metabolism (CAM) than in mitochondria from plants grownat 20 mM NaCl and exhibiting C3-photosynthetic CO2 fixation.The mitochondria isolated from plants both in the CAM and C3modes were tightly coupled and gave high respiratory control.At optimum pH for malate oxidation (pH 7.0), pyruvate was themajor product in mitochondria from CAM-M. crystallinum, whereasmitochondria from C3-M. crystallinum produced predominantlyoxaloacetate. Both the extracted NAD malic enzyme in the presenceof CoA and the oxidation of malate to pyruvate by the mitochondriafrom plants in the CAM mode had a pH optimum around 7.0 withactivity declining markedly above this pH. The activity of NAD-malicenzyme, expressed on a cytochrome c oxidase activity basis,was much higher in mitochondria from the CAM mode than the C3mode. The results indicate that mitochondria of this speciesare adapted to decarboxylate malate at high rates during CAM. 1Current address: Lehrstuhl für Botanik II, UniversitätWurzburg, Mittlerer Dallenbergweg 64, 8700 Würzburg, WestGermany. 2Current address: KD 120, Chemical Research Division, OntarioHydro, 800 Kipling Avenue, Toronto, Ontario M8Z5S4, Canada. 3Current address: Department of Botany, Washington State University,Pullman, Washington 99164-4230, U.S.A. (Received March 13, 1986; Accepted September 18, 1986)  相似文献   

13.
Gibberellin 3/ß-hydroxylase,a 2-oxoglutarate-dependentdioxygenase that catalyzes the hydroxylation of GA20 to GA1,was purified 313-fold from immature seeds of Phaseolus vulgarisL. The mol wt of the enzyme was estimated to be 42,000 by gelfiltration HPLC and SDS-polyacrylamide gel electrophoresis.The enzyme exhibited maximum activity at pH 7.7. The Km valuesfor [2,3-3H]GA20 and [2,3-3H]GA, were 0.29µu and 0.33µm, respectively. The enzyme requires 2-oxoglutarate asa cosubstrate; the Km value for 2-oxoglutarate was 250µMusing [3H]- GA20 as a substrate. Fe2+ and ascorbate significantlyactivated the enzyme at all purification steps, while catalaseand BSA activated the purified enzyme only. The enzyme was inhibitedby divalent cations Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+.3ß-Hydroxylation of [3H]- GA20 was also inhibitedby non-radioactive GA5, GA9,GA15, GA20 and GA44. The possiblesite of 3ß-hydroxylation in gibberellin biosynthesisis discussed in terms of the substrate specificity of partiallypurified gibberellin 3ß-hydroxylase. (Received February 29, 1988; Accepted June 3, 1988)  相似文献   

14.
Regulation of Pyruvate Decarboxylase In Vitro and In Vivo   总被引:2,自引:0,他引:2  
Results presented in this paper strongly support the view thatregulation of the key enzyme of alcoholic fermentation, pyruvatedecarboxylase (PDC), is achieved in a number of ways, all associatedwith possible lowering of the cytoplasmic pH during anoxia.These mechanisms include not only the well-known acid pH optimumof PDC, but also long-term, reversible changes in characteristicsof the enzyme established both in vitro and in vivo. Following transfer of desalted extracts from pH 6.0 to 7.4,maximal activity of PDC was decreased, while there was a considerableincrease in the lag before maximal activity was reached. Similarchanges in enzyme characteristics were observed when wheat (Triticumaestivum L. cv. Gamenya) roots and rice (Oryza sativa L. cv.Calrose) coleoptiles were transferred from anoxic to aerobicsolutions, provided PDC was assayed within 10 min of the startof maceration. All of the above changes were usually readilyreversible when extracts were returned to pH 6.0, or when plantswere returned to anoxic solutions. Additional regulation of PDC would be achieved by the S0.5 forpyruvate which is 0.75 mol m–3 at pH 6.0, 1.0 mol m–3at pH 6.8, and 2.5 mol m–3 at pH 7.4; the latter is wellabove estimates for pyruvate concentrations in the cytoplasmof aerated tissues. We assess that the combined effects of the acid pH optimum,the high S0.5 at pH 7.4 and the long-term decreases in activityobserved during incubation at pH 7.4 would reduce PDC activityin aerobic cells to at most 7% of the activity in anoxic cells.Possible additional controls for the pathway of alcoholic fermentationare briefly considered. Key words: PDC, regulation, anoxia  相似文献   

15.
Cells of Porphyridium cruentum R-l, a unicellular red alga,grown under ordinary air (0.04% CO2) showed much higher activityof carbonic anhydrase (CA) than those grown under CCvenrichedair (2% CO2). CA activity was not detected in a suspension ofintact cells, and was detectable only after the cells had beenhomogenized, indicating that this enzyme was localized onlywithin the algal cells. After partial purification of Porphyridium CA, its mol wt wasestimated as 59 kDa by SDS-PAGE and 55 kDa by gelfiltration.This suggests that the native enzyme is a monomer. Its activitywas not affected by benzensulfonamides, potent inhibitors ofCAs isolated from Chlamydomonas and other organisms. Chloride(or bromide) ions was essential for CA activity. CA activitymarkedly decreased when the cell extract had been incubatedat pH lower than 7 before assay. Upon readjusting the pH ofthe preincubation medium to 9 or higher, the enzyme activitywas restored, indicating that the inactivation is reversible. (Received April 17, 1987; Accepted July 21, 1987)  相似文献   

16.
The in vitro conversion of [3H]tryptophan by a plasma membraneenriched fraction from Arabidopsis thaliana (L.) Heynh. seedlings,grown in liquid culture, revealed indole-3-acetaldoxime (IAOX)as the only detectable reaction product. The pH optimum of thereaction was at pH 8, the Km value for tryptophan 12 µM.The formation of IAOX was stimulated about 10-fold by H2O2 Incubationexperiments with solubilized proteins and membrane vesiclesshowed that the investigated enzyme(s) were bound covalent tothe plasma membrane. Tryptophan oxidizing enzyme (TrpOxE) andperoxidase activity were not only found in the plasma membrane,but also in the culture medium. Specific IAOX forming activitywas 74-fold and 6-fold higher compared to the crude extractand the plasma membrane fraction, respectively. After isoelectricfocusing of solubilized plasma membrane and precipitated mediumproteins, TrpOxE activity co-migrated with two prominent highpI peroxidase bands stained with benzidine-guaiacol. The zonesof the IEF gel with peroxidase and TrpOxE activity were analyzedby SDS PAGE and revealed in all fractions a main protein bandof ca. 55 kDa. TrpOxE activity and peroxidase activity wereboth inhibited by antisera directed against tobacco and horseradishperoxidase. TrpOxE activity and peroxidase activity were determinedduring plant development. TrpOxE activity peaked after 8 and42 days, whereas peroxidase activity was consistently presentduring the whole life cycle. The inhibitory effects of indolederivatives, especially indole-3-glyoxylic acid, on (i) seedlingdevelopment and (ii) on TrpOxE and peroxidase activity werealso compared. (Received November 1, 1991; Accepted September 2, 1992)  相似文献   

17.
A plasma membrane fraction was isolated from the hypocotylsof cowpea {Vigna unguiculata) by a combination of differentialcentrifugation and sucrose density gradient centrifugation.The ATPase activity of this fraction was dependent on divalentcations (Mn2+>Mg2+>Co2+>Ca2+>Fe2+>Zn2+>Ni2+)but was not further stimulated by monovalent cations (K+ and/orNa+). The pH optimum for the activation of ATPase by Mg2+ was7.0. This fraction hydrolyzed ATP or UTP as a substrate andthe ATPase activity obeyed a Michaelis-Menten type of kinetics.The Km for MgATP ranged from 0.65 to 1.1 mM. The ATPase activitywas inhibited by inhibitors such as N, N'- dicyclohexylcarbodiimide,diethylstilbestrol and triphenyltin chloride, all of which arereported to block proton (H+) transport in plant cells, butwas insensitive to those of mitochondrial ATPase such as oligomycinand sodium azide. The ATPase activity was not stimulated bytreatment with ionophores (e.g., carbonyl cyanide p-trifluoromethoxyphenylhydrazone,3,5-di-ter-butyl-4-hydroxybenzilidenemalononitrile and valinomycin+KCl)which would be expected to dissipate the electrochemical potentialdifference of H+ or the membrane potential difference. The characteristics of the ATPase are compared with those ofplasma membrane ATPases of other plants and its possible rolein H+-transport is discussed. 1 Present address: Institute of Applied Biochemistry, Yagi MemorialPark, Mitake, Gifu 505-01, Japan or Laboratory for Plant EcologicalStudies, Faculty of Science, Kyoto University, Kyoto 606, Japan. (Received April 20, 1984; Accepted August 14, 1984)  相似文献   

18.
星天牛Anoplophora chinensis (Frster)幼虫肠道匀浆液经80%丙酮沉淀、Q-Sepharose阴离子交换柱层析、PAGE制备电泳等方法纯化后,获得在SDS-PAGE上呈现单一区带的木聚糖酶。该酶的分子量约25 kD,等电点约4.0,最适温度50℃,最适pH 5.4,pH 3.0~7.8对酶活性的恢复无大的影响, 50℃保温2 h仍有60%酶活性。Hg2+、MnO-4、变性剂SDS完全抑制该酶活性, Cu2+、Mn2+、Ag+、Zn2+、Pb+、脲对酶活性有强烈的抑制作用。该酶具有水解纤维素的交叉活性,其Km值为2.47 mg/mL,Vmax为0.6 IU/mL。  相似文献   

19.
A sorbitol oxidase that converts sorbitol to glucose in apple leaf   总被引:3,自引:0,他引:3  
A new type of sorbitol oxidase which converts sorbitol to glucosein the absence of NAD or NADP was found in the leaf of the apple.The partially purified enzyme consumed 1/2 mole of oxygen inconverting one mole of sorbitol to glucose (sorbitol+1/2 O2 glucose+H2O). The enzyme had its optimum activity at pH 4.0,and it had a Km value of 100 mM for sorbitol and showed a weakdependency on divalent cations. This sorbitol oxidase seemsto play an important role in the utilization of accumulatedsorbitol. 1This paper is contribution A-109, Fruit Tree Research Station (Received March 15, 1980; )  相似文献   

20.
Chloroplast preparations from the young primary leaves of Phaseolusvulgaris L. cv. Canadian Wonder carry out the DNA-dependentincorporation of UTP into RNA at rates between 8 and 14 pmolUTP µg–1 chlorophyll h–1. It is estimatedthat 90% of the activity was localized in the chloroplasts.The incorporation proceeded for between 20 and 30 min at 35°C. The maximum rates of RNA synthesis were attained atpH 8.3, in the presence of 15 mM MgCl2. Chloroplasts were alsoactive, to a lesser extent, with 1.5 mM MnCl2. The simultaneouspresence of MnCl2 and MgCl2 resulted in inhibition of activity.Nuclear material prepared from young P. vulgaris leaves incorporatedUTP at a rate of about 12 pmol UTP µg–1 DNA h–1.On a chloroplast (Tritonsoluble) DNA basis chloroplast activitywas over 40-fold that of nuclei. Methods of solubilizing chloroplastRNA polymerase were explored. Yields of over 75% were achieved,but methods suitable for one species were not always successfulwhen applied to another. The highest yields of the P. vulgarisenzyme were obtained using EDTA and KCl. All methods resultedin solubilization of DNA. RNA synthesis by the soluble P. vulgarisenzyme proceeded for more than 40 min at 35 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号