首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Avicelase, carboxymethyl cellulase (CMCase), and β-glucosidase activities have been compared between Clostridium thermocellum and three extremely thermophilic, cellulolytic anaerobes, isolates TP8, TP11, and KT8. The three isolates were all small, gram-negative staining, oval-ended rods which occurred singly and, at exponential phase, in long chains. They were nonflagellated and no spores were visible. The KT8 and TP11 isolates caused clumping of the cellulose during growth. In all four organisms the CMCase activity paralleled cell growth; however, in C. thermocellum and TP8 the avicelase activity did not increase until early stationary phase. Total CMCase activity in C. thermocellum was significantly higher than in the three isolates; however, avicelase activities were much more comparable among the four organisms. C. thermocellum produced higher levels of ethanol, and all four organisms produced similar concentrations of acetate. The amounts of free and bound CMCase and avicelase activities were investigated. In C. thermocellum and TP8 most of the CMCase and avicelase activities were bound to the cellulose in the medium. In contrast, most of the CMCase activity in TP11 and KT8 was free in the culture supernatant; a significant percentage of avicelase activity was also free. The TP8 isolate was also grown on a defined medium with urea as sole nitrogen source and cellulose serving as the carbon source. Under these conditions the pattern of enzyme production was the same as that in the enriched medium, although the level of that production was considerably reduced.  相似文献   

2.
Volvariella volvacea, commonly known as the straw or paddy mushroom, had the following growth characteristics: minimum temperature, 25°C; optimal temperature, 37°C; maximal temperature, 40°C; pH optimum 6.0. Optimal pH for cellulase production was 5.5. The optimal initial pH for cellulase production and mycelial growth was found to be 6.0. The pH and temperature optima for cellulolytic activity were 5.0 and 50°C, respectively. Maximal cellulolytic activity was obtained within 5 days in shake-flask culture. The cellulases were found to be partly cell free and partly cell bound during growth on microcrystalline cellulose. The endoglucanase activity was primarily extracellular, and β-glucosidase activity was found exclusively extracellularly. Weak cellulase activity was detected when cells were grown on cellobiose and lactose. V. volvacea could not digest the lignin portion of newspaper in shake-flask cultivation. Phenol oxidase, an important enzyme in lignin biodegradation, also was lacking in the cell-free filtrate. However, the organism oxidized phenolic compounds when it was cultured on agar plates containing commercial lignin.  相似文献   

3.
The crude extracellular cellulase of Clostridium thermocellum LQRI (virgin strain) was very active and solubilized microcrystalline cellulose at one-half the rate observed for the extracellular cellulase of Trichoderma reesei QM9414 (mutant strain). C. thermocellum cellulase activity differed considerably from that of T. reesei as follows: higher endoglucanase/exoglucanase activity ratio; absence of extracellular cellobiase or β-xylosidase activity; long-chain oligosaccharides instead of short-chain oligosaccharides as initial (15-min) hydrolytic products on microcrystalline cellulose; mainly cellobiose or xylobiose as long-term (24-h) hydrolysis products of Avicel and MN300 or xylan; and high activity and stability at 60 to 70°C. Under optimized reaction conditions, the kinetic properties (Vmax, 0.4 μmol/min per mg of protein; energy of activation, 33 kJ; temperature coefficient, 1.8) of C. thermocellum cellulose-solubilizing activity were comparable to those reported for T. reesei, except that the dyed Avicel concentration at half-maximal velocity was twofold higher (182 μM). The cellulose-solubilizing activity of the two crude cellulases differed considerably in response to various enzyme inhibitors. Most notably, Ag2+ and Hg2+ effectively inhibited C. thermocellum but not T. reesei cellulase at <20 μM, whereas Ca2+, Mg2+, and Mn2+ inhibited T. reesei but not C. thermocellum cellulase at >10 mM. Both enzymes were inhibited by Cu2+ (>20 mM), Zn2+ (>1.0 mM), and ethylene glycol-bis(β-aminoethyl ether)- N,N-tetraacetic acid (>10 mM). T. reesei but not C. thermocellum cellulose-solubilizing activity was 20% inhibited by glucose (73 mM) and cellobiose (29 mM). Both cellulases preferentially cleaved the internal glycosidic bonds of cellooligosaccharides. The overall rates of cellooligosaccharide degradation were higher for T. reesei than for C. thermocellum cellulase, except that the rates of conversion of cellohexaose to cellotriose were equivalent.  相似文献   

4.
Among 180 Streptomyces strains tested, 25 were capable of hydrolyzing microcrystalline cellulose (Avicel) at 30°C. Streptomyces reticuli was selected for further studies because of its ability to grow at between 30 and 50°C on Avicel. Enzymatic activities degrading Avicel, carboxymethyl cellulose, and cellobiose were found both in the culture supernatant and in association with the mycelium and crystalline substrate. The bound enzymes were efficiently solubilized by repeated washes with buffer of low ionic strength (50 mM Tris hydrochloride [pH 7.5]) and further purified by fast protein liquid chromatography. A high-molecular-weight Avicelase of >300 kilodaltons could be separated from carboxymethyl cellulase (CMCase) and β-glucosidase activities (molecular mass, 40 to 50 kilodaltons) by gel filtration on Superose 12. The CMCase fraction was resolved by Mono Q anion-exchange chromatography into two enzymes designated CMCase 1 and CMCase 2. The β-glucosidase activity was found to copurify with CMCase 2. The purified cellulase components showed optimal activity at around pH 7.0 and temperatures of between 45 and 50°C. Avicelase (but not CMCase) activity was stimulated significantly by the addition of CaCl2.  相似文献   

5.
Cellulases play a key role in enzymatic routes for degradation of plant cell-wall polysaccharides into simple and economically-relevant sugars. However, their low performance on complex substrates and reduced stability under industrial conditions remain the main obstacle for the large-scale production of cellulose-derived products and biofuels. Thus, in this study a novel cellulase with unusual catalytic properties from sugarcane soil metagenome (CelE1) was isolated and characterized. The polypeptide deduced from the celE1 gene encodes a unique glycoside hydrolase domain belonging to GH5 family. The recombinant enzyme was active on both carboxymethyl cellulose and β-glucan with an endo-acting mode according to capillary electrophoretic analysis of cleavage products. CelE1 showed optimum hydrolytic activity at pH 7.0 and 50 °C with remarkable activity at alkaline conditions that is attractive for industrial applications in which conventional acidic cellulases are not suitable. Moreover, its three-dimensional structure was determined at 1.8 Å resolution that allowed the identification of an insertion of eight residues in the β8-α8 loop of the catalytic domain of CelE1, which is not conserved in its psychrophilic orthologs. This 8-residue-long segment is a prominent and distinguishing feature of thermotolerant cellulases 5 suggesting that it might be involved with thermal stability. Based on its unconventional characteristics, CelE1 could be potentially employed in biotechnological processes that require thermotolerant and alkaline cellulases.  相似文献   

6.
True cellulase activity has been demonstrated in cell-free preparations from the thermophilic anaerobe Clostridium thermocellum. Such activity depends upon the presence of Ca2+ and a thiol-reducing agent of which dithiothreitol is the most promising. Under these conditions, native (cotton) and derived forms of cellulose (Avicel and filter paper) were all extensively solubilized at rates comparable with cellulase from Trichoderma reesei. Maximum activity of the Clostridium cellulase was displayed at 70°C and at pH 5.7 and 6.1 on Avicel and carboxymethylcellulose, respectively. In the absence of substrate at temperatures up to 70°C, carboxymethylcellulase was much more unstable than the Avicel-hydrolyzing activity.  相似文献   

7.
A cellulase gene of Clostridium thermocellum was transferred to Escherichia coli by molecular cloning with bacteriophage lambda and plasmid vectors and shown to be indentical with the celA gene. The celA gene product was purified from extracts of plasmid-bearing E. coli cells by heat treatment and chromatography on DEAE-Trisacryl. It was characterized as a thermophilic endo-β-1,4-glucanase, the properties of which closely resemble those of endoglucanase A previously isolated from C. thermocellum supernatants. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis the enzyme purified from E. coli exhibited two protein bands with molecular weights of 49,000 and 52,000. It had a temperature optimum at 75°C and was stable for several hours at 60°C. Endoglucanase activity was optimal between pH 5.5 and 6.5. The enzyme was insensitive against end product inhibition by glucose and cellobiose and remarkably resistant to the denaturing effects of detergents and organic solvents. It was capable of degrading, in addition to cellulosic substrates, glucans with alternating β-1,4 and β-1,3 linkages such as barley β-glucan and lichenan.  相似文献   

8.
Two xylanases, designated XylA and XylB, were purified from the culture supernatant of the alkaliphilic Bacillus sp. strain AR-009. The molecular masses of the two enzymes were estimated to be 23 kDa (XylA) and 48 kDa (XylB) by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The optimum pHs for activity were 9 for XylA and 9 to 10 for XylB. The temperature optima for the activity of XylA were 60°C at pH 9 and 70°C at pH 8. XylB was optimally active at 75°C at pH 9 and 70°C at pH 8. Both enzymes were stable in a broad pH range and showed good stability when incubated at 60 and 65°C in pH 8 and 9 buffers.  相似文献   

9.
Seven anaerobic fungal isolates from Cervus dama (domesticated and free living) were grown on carboxymethyl cellulose (CMC) and avicel, and monitored over a five day period for substrate utilization and cellulase activities. All fungal isolates showed monocentric growth patterns; four of them had polyflagellated zoospores and morphologically resembled members of the genus Neocallimastix; the other three had monoflagellated zoospores and resembled members of the genus Piromyces. All of the isolates degraded CMC and avicel, and exhibited cellulolytic activities (carboxymethyl cellulase-(CMC-ase) and avicelase).  相似文献   

10.
Degradation of cellulose for biofuels production holds promise in solving important environmental and economic problems. However, the low activities (and thus high enzyme-to-substrate ratios needed) of hydrolytic cellulase enzymes, which convert cellulose into simple sugars, remain a major barrier. As a potential strategy to stabilize cellulases and enhance their activities, we have embedded cellulases of extremophiles into hyperstable α-helical consensus ankyrin domain scaffolds. We found the catalytic domains CelA (CA, GH8; Clostridium thermocellum) and Cel12A (C12A, GH12; Thermotoga maritima) to be stable in the context of the ankyrin scaffold and to be active against both soluble and insoluble substrates. The ankyrin repeats in each fusion are folded, although it appears that for the C12A catalytic domain (CD; where the N and C termini are distant in the crystal structure), the two flanking ankyrin domains are independent, whereas for CA (where termini are close), the flanking ankyrin domains stabilize each other. Although the activity of CA is unchanged in the context of the ankyrin scaffold, the activity of C12A is increased between 2- and 6-fold (for regenerated amorphous cellulose and carboxymethyl cellulose substrates) at high temperatures. For C12A, activity increases with the number of flanking ankyrin repeats. These results showed ankyrin arrays to be a promising scaffold for constructing designer cellulosomes, preserving or enhancing enzymatic activity and retaining thermostability. This modular architecture will make it possible to arrange multiple cellulase domains at a precise spacing within a single polypeptide, allowing us to search for spacings that may optimize reactivity toward the repetitive cellulose lattice.  相似文献   

11.
A moderate halophile and thermotolerant fungal strain was isolated from a sugarcane bagasse fermentation in the presence of 2 M NaCl that was set in the laboratory. This strain was identified by polyphasic criteria as Aspergillus caesiellus. The fungus showed an optimal growth rate in media containing 1 M NaCl at 28°C and could grow in media added with up to 2 M NaCl. This strain was able to grow at 37 and 42°C, with or without NaCl. A. caesiellus H1 produced cellulases, xylanases, manganese peroxidase (MnP) and esterases. No laccase activity was detected in the conditions we tested. The cellulase activity was thermostable, halostable, and no differential expression of cellulases was observed in media with different salt concentrations. However, differential band patterns for cellulase and xylanase activities were detected in zymograms when the fungus was grown in different lignocellulosic substrates such as wheat straw, maize stover, agave fibres, sugarcane bagasse and sawdust. Optimal temperature and pH were similar to other cellulases previously described. These results support the potential of this fungus to degrade lignocellulosic materials and its possible use in biotechnological applications.  相似文献   

12.

Background

Trichoderma reesei is a key cellulase source for economically saccharifying cellulosic biomass for the production of biofuels. Lignocellulose hydrolysis at temperatures above the optimum temperature of T. reesei cellulases (~50°C) could provide many significant advantages, including reduced viscosity at high-solids loadings, lower risk of microbial contamination during saccharification, greater compatibility with high-temperature biomass pretreatment, and faster rates of hydrolysis. These potential advantages motivate efforts to engineer T. reesei cellulases that can hydrolyze lignocellulose at temperatures ranging from 60–70°C.

Results

A B-factor guided approach for improving thermostability was used to engineer variants of endoglucanase I (Cel7B) from T. reesei (TrEGI) that are able to hydrolyze cellulosic substrates more rapidly than the recombinant wild-type TrEGI at temperatures ranging from 50–70°C. When expressed in T. reesei, TrEGI variant G230A/D113S/D115T (G230A/D113S/D115T Tr_TrEGI) had a higher apparent melting temperature (3°C increase in Tm) and improved half-life at 60°C (t1/2 = 161 hr) than the recombinant (T. reesei host) wild-type TrEGI (t1/2 = 74 hr at 60°C, Tr_TrEGI). Furthermore, G230A/D113S/D115T Tr_TrEGI showed 2-fold improved activity compared to Tr_TrEGI at 65°C on solid cellulosic substrates, and was as efficient in hydrolyzing cellulose at 60°C as Tr_TrEGI was at 50°C. The activities and stabilities of the recombinant TrEGI enzymes followed similar trends but differed significantly in magnitude depending on the expression host (Escherichia coli cell-free, Saccharomyces cerevisiae, Neurospora crassa, or T. reesei). Compared to N.crassa-expressed TrEGI, S. cerevisiae-expressed TrEGI showed inferior activity and stability, which was attributed to the lack of cyclization of the N-terminal glutamine in Sc_TrEGI and not to differences in glycosylation. N-terminal pyroglutamate formation in TrEGI expressed in S. cerevisiae was found to be essential in elevating its activity and stability to levels similar to the T. reesei or N. crassa-expressed enzyme, highlighting the importance of this ubiquitous modification in GH7 enzymes.

Conclusion

Structure-guided evolution of T. reesei EGI was used to engineer enzymes with increased thermal stability and activity on solid cellulosic substrates. Production of TrEGI enzymes in four hosts highlighted the impact of the expression host and the role of N-terminal pyroglutamate formation on the activity and stability of TrEGI enzymes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12896-015-0118-z) contains supplementary material, which is available to authorized users.  相似文献   

13.
Several extracellular enzymes that are responsible for plant tissue maceration were detected in culture supernatant of the psychrotrophic bacterium Chryseomonas luteola MFCL0. Isoelectrofocusing experiments showed that pectate lyase (PL) activity resulted from the cumulative action of three major isoenzymes, designated PLI, PLII, and PLIII. Cellulolytic activity was also detected in culture supernatants. These enzymes exhibited different behaviors with respect to growth temperature. PLII was not regulated by temperature, whereas PLI and PLIII were regulated similarly by growth temperature. Maximal levels of PLI and PLIII were produced at 14°C when cells were grown in polygalacturonate-containing synthetic medium and at around 20 to 24°C in nutrient broth. In contrast, thermoregulation of cellulolytic activity production differed from thermoregulation of PL. The level of cellulolytic activity was low in all media at temperatures up to 20°C, and then it increased dramatically until the temperature was 28°C, which is the optimal temperature for growth of C. luteola. Previously, we defined the critical temperature by using the modified Arrhenius equation to characterize bacterial behavior. This approach consists of monitoring changes in the maximal specific growth rate as a function of temperature. Our most striking result was the finding that the temperature at which maximum levels of PLI and PLIII were produced in two different media was the same as the critical temperature for growth observed in these two media.  相似文献   

14.
Hemicellulose fractions with a predetermined distribution of xylose, xylooligomers, and xylan fractions were obtained through steam explosion of wood by the steam explosion-extraction process of BFA-Hamburg, Hamburg, Federal Republic of Germany. A differential utilization of various molecular-weight fractions by several thermophilic anaerobic bacteria was determined during their growth on the hemicellulose preparations. Clostridium thermocellum (60°C) first utilized the high-molecular-weight fractions (polymerization degree of 15 to 40 xylose units). Xylose and xylooligomers of n = 2 to 5 accumulated while C. thermocellum was not growing, as evident from the fermentation products formed. Whereas the xylan was hydrolyzed and the small oligoxylans were utilized after more than 100 h of incubation, xylose was not significantly utilized. In contrast to this, C. thermohydrosulfuricum (70°C) and Thermoanaerobium brockii (70°C) utilized xylose first and then xylooligomers of n = 2 to 5, but xylooligomers of n greater than 6 were only slowly utilized. Thermoanaerobacter ethanolicus (70°C), Thermobacteroides acetoethylicus (70°C), and C. thermosaccharolyticum (60°C) utilized xylose preferentially. Xylooligomers of n = 2 to 5 and n = 6 and greater were apparently concomitantly utilized without significant differences. In contrast to C. thermocellum, the non-cellulolytic organisms grew during xylan hydrolysis, producing ethanol, lactate, acetate, CO2, and H2.  相似文献   

15.
Crude extracts of the anaerobic, cellulolytic protozoan Trichomitopsis termopsidis possessed endo-β-1,4-glucanase and cellobiase activities, as evidenced by hydrolytic action on carboxymethyl cellulose and cellobiose, respectively. Cell extracts also hydrolyzed microcrystalline cellulose. Hydrolysis of microcrystalline cellulose displayed optima at pH 5 and at 30°C, and glucose was the sole product liberated. Cellulolytic activities of T. termopsidis appeared to be entirely cell associated. Hydrolytic activity was also detected against Douglas fir wood powder, xylan, starch, and protein, but not chitin. The importance of these enzymes in the nutrition of T. termopsidis is discussed in terms of the natural habitat of this protozoan (the hindgut of wood-eating termites).  相似文献   

16.
Summary Temperature sensitive mutants of Trichoderma reesei derived from hypersecretory strain RL-P37 were isolated and characterized. Compared to the parent strain, one mutant (LU-ts 1) grew well in the mycelial phase at both permissive (25°C) and non-permissive (37°C) temperatures. However, the secretion of overall protein and active cellulases was significantly reduced in the mutant at the higher temperature. No accumulation of active cellulases or intracellular proteins was observed in the mycelia of LU-ts 1 at 37°C. The inhibitory effects of temperature on cellulase secretion in LU-ts 1 were reversible. Isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gel electrophoretic analyses confirmed that the secretion of the major cellulases was greatly reduced in LU-ts 1 at 37°C. Molecular characterization of the various temperature sensitive secretion mutants of T. reesei should help elucidate the crucial aspects of the secretory pathway of this cellulolytic fungus.  相似文献   

17.
A potentially novel aerobic, thermophilic, and cellulolytic bacterium designated as Brevibacillus sp. strain JXL was isolated from swine waste. Strain JXL can utilize a broad range of carbohydrates including: cellulose, carboxymethylcellulose (CMC), xylan, cellobiose, glucose, and xylose. In two different media supplemented with crystalline cellulose and CMC at 57°C under aeration, strain JXL produced a basal level of cellulases as FPU of 0.02 IU/ml in the crude culture supernatant. When glucose or cellobiose was used besides cellulose, cellulase activities were enhanced ten times during the first 24 h, but with no significant difference between these two simple sugars. After that time, however, culture with glucose demonstrated higher cellulase activities compared with that from cellobiose. Similar trend and effect on cellulase activities were also obtained when glucose or cellobiose served as a single substrate. The optimal doses of cellobiose and glucose for cellulase induction were 0.5 and 1%. These inducing effects were further confirmed by scanning electron microscopy (SEM) images, which indicated the presence of extracellular protuberant structures. These cellulosome-resembling structures were most abundant in culture with glucose, followed by cellobiose and without sugar addition. With respect to cellulase activity assay, crude cellulases had an optimal temperature of 50°C and a broad optimal pH range of 6–8. These cellulases also had high thermotolerance as evidenced by retaining more than 50% activity at 100°C after 1 h. In summary, this is the first study to show that the genus Brevibacillus may have strains that can degrade cellulose.  相似文献   

18.
Hidden cellulases in termites: revision of an old hypothesis   总被引:1,自引:0,他引:1  
The intestinal flagellates of termites produce cellulases that contribute to cellulose digestion of their host termites. However, 75% of all termite species do not harbour the cellulolytic flagellates; the endogenous cellulase secreted from the midgut tissue has been considered a sole source of cellulases in these termites. Using the xylophagous flagellate-free termites Nasutitermes takasagoensis and Nasutitermes walkeri, we successfully solubilized cellulases present in the hindgut pellets. Zymograms showed that the hindguts of these termites possessed several cellulases and contained up to 59% cellulase activity against crystalline cellulose when compared with the midgut. Antibiotic treatment administered to N. takasagoensis significantly reduced cellulase activity in the hindgut, suggesting that these cellulases were produced by symbiotic bacteria.  相似文献   

19.
Cellulase activity measured as filter paper digesting activity (FPase) and carboxymethyl cellulase (CMCase) was demonstrated in hindgut extracts of the cockroach Periplaneta americana. The highest activities measured amounted to 0.89 and 0.12 U · ml-1 for CMCase and FPase, respectively. The cellulolytic capacity of the hindgut population increased dramatically when protozoa were present, and the activities were found to vary depending on the feeding regimen. Cellulose-rich diets induced high protozoal numbers, resulting in a high cellulase activity. A close correlation was found between the number of Nyctotherus ovalis organisms, the major protozoans in the hindgut, and both FPase and CMCase activity. Since the numbers of this protozoan also correlated with the methane production of the insect, it appears that N. ovalis is responsible for the major part of cellulolytic and methanogenic activity found in the hindgut of P. americana.  相似文献   

20.
纤维素酶在饲料、造纸、纺织和纤维素乙醇生产等领域有重要用途,因而备受关注.使用稻草为唯一碳源进行纤维素降解微生物的富集,从云南大理苍山地区的土壤样品中筛选获得1株纤维素降解真菌DLCS-F18,其适宜生长温度为15-40℃、pH 2.0-13.0.通过形态学和ITS rRNA分子生物学鉴定,菌株DLCS-F18被鉴定为...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号