首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability to recognize tRNA identities is essential to the function of the genetic coding system. In translation aminoacyl-tRNA synthetases (ARSs) recognize the identities of tRNAs and charge them with their cognate amino acids. We show that an in vitro evolved ribozyme can also discriminate between specific tRNAs, and can transfer amino acids to the 3' ends of cognate tRNAs. The ribozyme interacts with both the CCA-3' terminus and the anticodon loop of tRNA(fMet), and its tRNA specificity is controlled by these interactions. This feature allows us to program the selectivity of the ribozyme toward specific tRNAs, and therefore to tailor effective aminoacyl-transfer catalysts. This method potentially provides a means of generating aminoacyl tRNAs that are charged with non-natural amino acids, which could be incorporated into proteins through cell-free translation.  相似文献   

2.
Transfer RNAs (tRNAs) are the macromolecules that transfer activated amino acids from aminoacyl‐tRNA synthetases to the ribosome, where they are used for the mRNA guided synthesis of proteins. Transfer RNAs are ancient molecules, perhaps even predating the existence of the translation machinery. Albeit old, these molecules are tremendously conserved, a characteristic that is well illustrated by the fact that some bacterial tRNAs are efficient and specific substrates of eukaryotic aminoacyl‐tRNA synthetases and ribosomes. Considering their ancient origin and high structural conservation, it is not surprising that tRNAs have been hijacked during evolution for functions outside of translation. These roles beyond translation include synthetic, regulatory and information functions within the cell. Here we provide an overview of the non‐canonical roles of tRNAs and their mimics in bacteria, and discuss some of the common themes that arise when comparing these different functions.  相似文献   

3.
RNA minihelices and the decoding of genetic information   总被引:1,自引:0,他引:1  
P Schimmel 《FASEB journal》1991,5(8):2180-2187
The rules of the genetic code are determined by the specific aminoacylation of transfer RNAs by aminoacyl transfer RNA synthetase. A straightforward analysis shows that a system of synthetase-tRNA interactions that relies on anticodons for specificity could, in principle, enable most synthetases to distinguish their cognate tRNA isoacceptors from all others. Although the anticodons of some tRNAs are recognition sites for the cognate aminoacyl tRNA synthetases, for other synthetases the anticodon is dispensable for specific aminoacylation. In particular, alanine and histidine tRNA synthetases aminoacylate small RNA minihelices that reconstruct the part of their cognate tRNAs that is proximate to the amino acid attachment site. Helices with as few as six base pairs can be efficiently aminoacylated. The specificity of aminoacylation is determined by a few nucleotides and can be converted from one amino acid to another by the change of only a few nucleotides. These findings suggest that, for a subgroup of the synthetases, there is a distinct code in the acceptor helix of transfer RNAs that determines aminoacylation specificity.  相似文献   

4.
Metazoan organisms have many tRNA genes responsible for decoding amino acids. The set of all tRNA genes can be grouped in sets of common amino acids and isoacceptor tRNAs that are aminoacylated by corresponding aminoacyl-tRNA synthetases. Analysis of tRNA alignments shows that, despite the high number of tRNA genes, specific tRNA sequence motifs are highly conserved across multicellular eukaryotes. The conservation often extends throughout the isoacceptors and isodecoders with, in some cases, two sets of conserved isodecoders. This study is focused on non-Watson–Crick base pairs in the helical stems, especially GoU pairs. Each of the four helical stems may contain one or more conserved GoU pairs. Some are amino acid specific and could represent identity elements for the cognate aminoacyl tRNA synthetases. Other GoU pairs are found in more than a single amino acid and could be critical for native folding of the tRNAs. Interestingly, some GoU pairs are anticodon-specific, and others are found in phylogenetically-specific clades. Although the distribution of conservation likely reflects a balance between accommodating isotype-specific functions as well as those shared by all tRNAs essential for ribosomal translation, such conservations may indicate the existence of specialized tRNAs for specific translation targets, cellular conditions, or alternative functions.  相似文献   

5.
The translation elongation factor Tu (EF-Tu) delivers aminoacyl-tRNAs to ribosomes by recognizing the tRNA acceptor and T stems. However, the unusual truncation observed in some animal mitochondrial tRNAs seems to prevent recognition by a canonical EF-Tu. For instance, nematode mitochondria contain tRNAs lacking a T or D arm. We recently found an atypical EF-Tu (EF-Tu1) specific for nematode mitochondrial tRNAs that lack the T arm. We have now discovered a second factor, EF-Tu2, which binds only to tRNAs that lack a D arm. EF-Tu2 seems unique in its amino acid specificity because it recognizes the aminoacyl moiety of seryl-tRNAs and the tRNA structure itself. Such EF-Tu evolution might explain tRNA structural divergence in animal mitochondria.  相似文献   

6.
Molecular dissection of a transfer RNA and the basis for its identity   总被引:2,自引:0,他引:2  
The recognition of transfer RNAs (tRNAs) by aminoacyl tRNA synthetases establishes the connection between amino acids and trinucleotides. However, for E. coli alanine tRNA the trinucleotide sequence which specifies alanine is not important for recognition. Instead a single base pair is a major determinant for the identity of this tRNA. Even a synthetic RNA microhelix with seven base pairs can be aminoacylated if it includes the major determinant.  相似文献   

7.
A murine monoclonal anti-AMP antibody affinity matrix was used for isolation of individual species of amino acid transfer nucleic acids (tRNAs). The antibodies had been prepared using 5'-AMP covalently attached to bovine serum albumin as antigen and exhibited high affinity for 5'-AMP but greatly reduced affinity for 3'-AMP. Native uncharged tRNAs that terminate in a 5'-AMP group on the amino acid acceptor arm of the molecule bind tightly to the anti-AMP affinity matrix, whereas aminoacylated tRNAs are not retained. This allows separation of a particular tRNA species as its aminoacyl derivative from a complex mixture of uncharged tRNAs under very mild conditions.  相似文献   

8.
9.
The fidelity of tRNA aminoacylation is dependent in part on amino acid editing mechanisms. A hydrolytic activity that clears mischarged tRNAs typically resides in an active site on the tRNA synthetase that is distinct from its synthetic aminoacylation active site. A second pre-transfer editing pathway that hydrolyzes the tRNA synthetase aminoacyl adenylate intermediate can also be activated. Pre- and post-transfer editing activities can co-exist within a single tRNA synthetase resulting in a redundancy of fidelity mechanisms. However, in most cases one pathway appears to dominate, but when compromised, the secondary pathway can be activated to suppress tRNA synthetase infidelities.  相似文献   

10.
Fluorescent tRNAs species with formycine in the 3'-terminal position (tRNA-CCF) were derived from Escherichia coli tRNA(Val). Thermus thermophilus tRNA(Aap) and Thermus thermophilus tRNA(Phe). The fluorescence of formycine was used to monitor the conformational changes at the 3'-terminus of tRNA caused by aminoacylation and hydrolysis of aminoacyl residue from aminoacyl-tRNAs. An increase of about 15% in the fluorescence intensity was observed after aminoacylation of the three tRNA-CCF. This change in fluorescence amplitude that is reversed by hydrolysis of the aminoacyl residue, does not depend on the structure of the amino acid or tRNA sequence. A local conformational change at the 3'-terminal formycine probably involving a partial destacking of the base moiety in the ACCF end takes place as a consequence of aminoacylation. A structural change at the 3'-terminus of tRNA induced by attachment and detachment of the acyl residue may be important in controlling the substrate/product relationship in reactions in which tRNA participates during protein biosynthesis.  相似文献   

11.
Using synthetic oligonucleotides, we have constructed a collection of Escherichia coli amber suppressor tRNA genes. In order to determine their specificities, these tRNAs were each used to suppress an amber (UAG) nonsense mutation in the E. coli dihydrofolate reductase gene fol. The mutant proteins were purified and subjected to N-terminal sequence analysis to determine which amino acid had been inserted by the suppressor tRNAs at the position of the amber codon. The suppressors can be classified into three groups on the basis of the protein sequence information. Class I suppressors, tRNA(CUAAla2), tRNA(CUAGly1), tRNA(CUAHisA), tRNA(CUALys) and tRNA(CUAProH), inserted the predicted amino acid. The class II suppressors, tRNA(CUAGluA), tRNA(CUAGly2) and tRNA(CUAIle1) were either partially or predominantly mischarged by the glutamine aminoacyl tRNA synthetase. The class III suppressors, tRNA(CUAArg), tRNA(CUAAspM), tRNA(CUAIle2), tRNA(CUAThr2), tRNA(CUAMet(m)) and tRNA(CUAVal) inserted predominantly lysine.  相似文献   

12.
Proper recognition of tRNAs by their aminoacyl-tRNA synthetase is essential for translation accuracy. Following evidence that the enzymes can recognize the correct tRNA even when anticodon information is masked, we search for additional nucleotide positions within the tRNA molecule that potentially contain information for amino acid identification. Analyzing 3936 sequences of tRNA genes from 86 archaeal species, we show that the tRNAs’ cognate amino acids can be identified by the information embedded in the tRNAs’ nucleotide positions without relying on the anticodon information. We present a small set of six to 10 informative positions along the tRNA, which allow for amino acid identification accuracy of 90.6% to 97.4%, respectively. We inspected tRNAs for each of the 20 amino acid types for such informative positions and found that tRNA genes for some amino acids are distinguishable from others by as few as one or two positions. The informative nucleotide positions are in agreement with nucleotide positions that were experimentally shown to affect the loaded amino acid identity. Interestingly, the knowledge gained from the tRNA genes of one archaeal phylum does not extrapolate well to another phylum. Furthermore, each species has a unique ensemble of nucleotides in the informative tRNA positions, and the similarity between the sets of positions of two distinct species reflects their evolutionary distance. Hence, we term this set of informative positions a “tRNA cipher.” It is tempting to suggest that the diverging code identified here might also serve the aminoacyl tRNA synthetase in the task of tRNA recognition.  相似文献   

13.
Fahlman RP  Uhlenbeck OC 《Biochemistry》2004,43(23):7575-7583
Crystallographic studies suggest that the esterified amino acid of aminoacyl tRNA make contacts with the ribosomal A-site but not in the P-site. Biochemical evidence indicating a thermodynamic contribution of the esterified amino acid to binding aminoacyl-tRNA to either the ribosomal P- and A-sites has been inconsistent, partly because of the labile nature of the aminoacyl linkage and the long times required to reach equilibrium. Measuring the association and dissociation rates of deacylated and aminoacylated tRNAs to the A-site and P-site of E. coli ribosomes afforded an accurate estimate of the contribution of the amino acid. While esterified phenylalanine or methionine has no effect on the affinity of tRNA to the P-site, an esterified pheylalanine stabilizes binding to the A-site by 7 kJ/mol, in agreement with the contacts observed in the X-ray crystal structure. In addition, it was shown that the presence of an esterified amino acid in one ribosomal site does not affect the binding of an aa-tRNA to the other site.  相似文献   

14.
Four out of the 22 aminoacyl‐tRNAs (aa‐tRNAs) are systematically or alternatively synthesized by an indirect, two‐step route requiring an initial mischarging of the tRNA followed by tRNA‐dependent conversion of the non‐cognate amino acid. During tRNA‐dependent asparagine formation, tRNAAsn promotes assembly of a ribonucleoprotein particle called transamidosome that allows channelling of the aa‐tRNA from non‐discriminating aspartyl‐tRNA synthetase active site to the GatCAB amidotransferase site. The crystal structure of the Thermus thermophilus transamidosome determined at 3 Å resolution reveals a particle formed by two GatCABs, two dimeric ND‐AspRSs and four tRNAsAsn molecules. In the complex, only two tRNAs are bound in a functional state, whereas the two other ones act as an RNA scaffold enabling release of the asparaginyl‐tRNAAsn without dissociation of the complex. We propose that the crystal structure represents a transient state of the transamidation reaction. The transamidosome constitutes a transfer‐ribonucleoprotein particle in which tRNAs serve the function of both substrate and structural foundation for a large molecular machine.  相似文献   

15.
The selection of tRNAs by their cognate aminoacyl-tRNA synthetases is critical for ensuring the fidelity of protein synthesis. While nucleotides that comprise tRNA identity sets have been readily identified, their specific role in the elementary steps of aminoacylation is poorly understood. By use of a rapid kinetics analysis employing mutants in tRNA(His) and its cognate aminoacyl-tRNA synthetase, the role of tRNA identity in aminoacylation was investigated. While mutations in the tRNA anticodon preferentially affected the thermodynamics of initial complex formation, mutations in the acceptor stem or the conserved motif 2 loop of the tRNA synthetase imposed a specific kinetic block on aminoacyl transfer and decreased tRNA-mediated kinetic control of amino acid activation. The mechanistic basis of tRNA identity is analogous to fidelity control by DNA polymerases and the ribosome, whose reactions also demand high accuracy.  相似文献   

16.
17.
Nordin BE  Schimmel P 《Biochemistry》2003,42(44):12989-12997
The genetic code depends on amino acid fine structure discrimination by aminoacyl-tRNA synthetases. For isoleucyl- (IleRS) and valyl-tRNA synthetases (ValRS), reactions that hydrolyze misactivated noncognate amino acids help to achieve high accuracy in aminoacylation. Two editing pathways contribute to aminoacylation fidelity: pretransfer and post-transfer. In pretransfer editing, the misactivated amino acid is hydrolyzed as an aminoacyl adenylate, while in post-transfer editing a misacylated tRNA is deacylated. Both reactions are dependent on a tRNA cofactor and require translocation to a site located approximately 30 A from the site of amino acid activation. Using a series of 3'-end modified tRNAs that are deficient in either aminoacylation, deacylation, or both, total editing (the sum of pre- and post-transfer editing) was shown to require both aminoacylation and deacylation activities. These and additional results with IleRS are consistent with a post-transfer deacylation event initiating formation of an editing-active enzyme/tRNA complex. In this state, the primed complex processively edits misactivated valyl-adenylate via the pretransfer route. Thus, misacylated tRNA is an obligatory intermediate for editing by either pathway.  相似文献   

18.
Proteinase k, a seryl-protease obtained from Tritirachium album, is able to specifically hydrolyze N-blocked aminoacyl transfer ribonucleic acids (tRNAs). The blocked amino acid is released, and the tRNA molecule remains able to be recharged by its cogante amino acid. Aminoacyl-tRNAs are highly resistant to hydrolysis by the protease. This activity is not due to contamination of the protease preparation. A commercial protease from Streptomyces griseus displayed a similar activity, while trypsin, chymotrypsin, and papain unspecifically hydrolyzed all charged tRNAs tested. The characteristics of the hydrolysis performed by proteinase k closely resemble the peptidyl-tRNA hydrolase activity described in different cells as a scavenger for the peptidyl-tRNA that eventually falls from the polysomes. Out results warn about a hasty identification of any N-blocked aminoacyl-tRNA hydrolase activity in the cytoplasm as an independent peptidyl-tRNA hydrolase.  相似文献   

19.
A J Lloyd  H U Thomann  M Ibba    D Sll 《Nucleic acids research》1995,23(15):2886-2892
We describe a convenient, simple and novel continuous spectrophotometric method for the determination of aminoacyl-tRNA synthetase activity. The assay relies upon the measurement of inorganic pyrophosphate generated in the first step of the aminoacylation of a tRNA. Pyrophosphate release is coupled to inorganic pyrophosphatase, to generate phosphate, which in turn is used as the substrate of purine nucleoside phosphorylase to catalyze the N-glycosidic cleavage of 2-amino 6-mercapto 7-methylpurine ribonucleoside. Of the reaction products, ribose 1-phosphate and 2-amino 6-mercapto 7-methylpurine, the latter has a high absorbance at 360 nm relative to the nucleoside and hence provides a spectrophotometric signal that can be continuously followed. The non-destructive nature of the spectrophotometric assay allowed the re-use of the tRNAs in question in successive experiments. The usefulness of this method was demonstrated for glutaminyl-tRNA synthetase (GlnRS) and tryptophanyl-tRNA synthetase. Initial velocities measured using this assay correlate closely with those assayed by quantitation of [3H]Gln-tRNA or [14C]Trp-tRNA formation respectively. In both cases amino acid transfer from the aminoacyl adenylate to the tRNA represents the rate determining step. In addition, aminoacyl adenylate formation by aspartyl-tRNA synthetase was followed and provided a more sensitive means of active site titration than existing techniques. Finally, this novel method was used to provide direct evidence for the cooperativity of tRNA and ATP binding to GlnRS.  相似文献   

20.
To understand the mechanism of mutual recognition between aminoacyl tRNA synthetases (EC 6.1.1) and tRNAs, it is important to obtain more information about the structure of these enzymes. X-ray crystallography offers one approach, but although several aminoacyl tRNA synthetases have been isolated in very pure form1 and crystallization of tryptophanyl2 and seryl3 tRNA synthetases has been reported, no crystals were available that were suitable for structural analysis. Only very recently have Rymo and Lagerkvist4 described the formation of crystals of yeast lysyl tRNA synthetase which are apparently suitable for further X-ray analysis. Here we deal with the phenomenon of polymerization of the tryptophanyl tRNA synthetase complex with tryptophan in the form of rod-like particles and the subsequent formation of para-crystalline aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号