首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The distribution of scalariform and simple perforation plates along vessels in Arthrophyllum otopyrenum, Meryta tenuifolia, and Polyscias multijuga (Araliaceae) is examined. In all three species, most vessels bear simple perforation plates only, but the combination of simple and scalariform perforation plates in variable ratios also occurs. Aggregated arrangement of scalariform perforation plates along the vessels was statistically confirmed in some vessel portions. The scalariform perforation plates occur mostly in narrow vessels that are grouped in multiples. Within the clade represented by Polyscias and Arthrophyllum, the evolutionary transition from scalariform to simple perforation plates is realized as the gradual elimination of vessels or vessel portions with scalariform perforation plates, but is not accompanied by a gradual decrease of the number of bars per perforation plate. The narrow vessels that are grouped in vessel multiples are likely to retain the ability to develop scalariform plates, which could promote the evolution from simple to scalariform perforation plates as is the case within Meryta.  相似文献   

2.
利用扫描电子显微镜对鹅掌楸属仅存的2个自然种鹅掌楸和北美鹅掌楸的次生木质部导管穿孔板特征进行了详细的研究。结果显示,鹅掌楸属的2个种均以梯状穿孔板为主,同时存在网状-梯状混合穿孔板。鹅掌楸和北美鹅掌楸的导管穿孔板具有明显差异:(1)鹅掌楸具网状穿孔板,而北美鹅掌楸没有观察到;(2)北美鹅掌楸具单穿孔板,而鹅掌楸在该实验中未发现;(3)北美鹅掌楸具有横隔较粗的梯状穿孔板且横隔数目较多;(4)鹅掌楸的导管穿孔板多数横隔较少;(5)北美鹅掌楸的穿孔板倾斜角度较大;(6)北美鹅掌楸具麻黄式穿孔板的存在,且有纹孔膜残留存在。研究认为,北美鹅掌楸导管分子穿孔板分化较鹅掌楸更为剧烈。  相似文献   

3.
The wood of theSarraceniaceae has a considerable number of primitive features including scalariform perforation plates, long and oblique end walls, scalariform lateral wall pitting, solitary vessels, tracheids with scalariform pitting, and diffuse axial parenchyma. Vessel elements in the genusHeliamphora have the greatest number of primitive features, while vessel elements inDarlingtonia andSarracenia appear to have modifications relating to temperate climates. The wood anatomy suggests thatHeliamphora is growing in a habitat more similar to the original habitat for the family thanDarlingtonia andSarracenia. The wood of theSarraceniaceae is similar to the wood of theTheales.  相似文献   

4.
The wood anatomy of 16 of the 37 genera within the epacrids (Styphelioideae, Ericaceae s.l.) is investigated by light and scanning electron microscopy. Several features in the secondary xylem occur consistently at the tribal level: arrangement of vessel-ray pits, distribution of axial parenchyma, ray width, and the presence and location of crystals. The primitive nature of Prionoteae and Archerieae is supported by the presence of scalariform perforation plates with many bars and scalariform to opposite vessel pitting. The wood structure of Oligarrheneae is similar to that of Styphelieae, but the very narrow vessel elements, exclusively uniseriate rays and the lack of prismatic crystals in Oligarrheneae distinguish these two tribes. The secondary xylem of Monotoca tamariscina indicates that it does not fit in Styphelieae; a position within Oligarrheneae is possible. Like most Cosmelieae, all Richeeae are characterized by exclusively scalariform perforation plates with many bars, a very high vessel density and paratracheal parenchyma, although they clearly differ in ray width (exclusively uniseriate rays in Cosmelieae vs. uniseriate and wide multiseriate rays in Richeeae). Several wood anatomical features confirm the inclusion of epacrids in Ericaceae s.l. Furthermore, there are significant ecological implications. The small vessel diameter and high vessel frequency in many epacrids are indicative of a high conductive safety to avoid embolism caused by freeze-thaw cycles, while the replacement of scalariform by simple vessel perforation plates and an increase in vessel diameter would suggest an increased conductive efficiency, which is especially found in mesic temperate or tropical Styphelieae.  相似文献   

5.
JUDD, W. S., STERN, W. L. & CHEADLE, V. I. 1993. Phylogenetic position of Apostasia and Neuwiedia (Orchidaceae). Cladistic analyses of the phylogenetic relationships of selected orchid taxa were conducted in order to assess the phylogenetic position of Apostasia and Neuwiedia (Orchidaceae: Apostasioideae). These analyses employed newly available anatomical characters, along with several morphological features that had been used in recent phylogenetic analyses of Orchidaceae. Our analyses indicate that Apostasia is more closely related to Neuwiedia than it is to Cypripedioideae. The two genera comprise an apostasiad clade; this clade is the sister-group to a clade including Cypripedioideae and monandrous orchids. The apostasiad clade is diagnosed by the derived features of operculate pollen colpi, Apostasia-type seeds, and vessel members with simple perforation plates. Of these, the presence of simple perforation plates is considered to be the most significant phylogenetically. Therefore, the apostasiads should not be considered ancestral to the remaining orchid groups. Vessel members of the monandrous orchids, as well as the cypripediads, are multiperforate–the hypothesized ancestral state based on the condition in Hypoxidaceae.  相似文献   

6.
7.
领春木茎次生木质部中导管穿孔板的变异   总被引:12,自引:0,他引:12  
领春木Euptelea pleiosperma Hook. f. &; Thoms.隶属领春木科Eupteleaceae。该科为东亚特有的单型科,其系统位置一直颇有争议。本文对中国产领春木茎次生木质部中导管穿孔板的变异进行了观察,以期为它的系统位置提供进一步的解剖学证据。结果表明,领春木茎次生木质部中包括无明显穿孔板的管胞状导管和典型的导管两种类型。在无明显穿孔板的导管中,穿孔中的纹孔膜全部或部分消失,但穿孔无规则排列或聚集,不形成具典型的形态特征的穿孔板;在典型的导管中,穿孔板形态变异较大,包括几个类型:网状穿孔板(含麻黄式穿孔板)、网状和梯状混合型穿孔板、梯状穿孔板、梯状穿孔板向单穿孔板的过渡。在上述导管穿孔板类型中,只有梯状穿孔板的穿孔中可以观察到纹孔膜的残余。在领春木次生木质部中也观察到了端壁多穿孔板及侧壁穿孔板。根据观察结果,我们认为领春木次生木质部导管穿孔板的许多特征说明该科可能处于毛茛目中比较原始的系统位置。  相似文献   

8.
This paper deals mainly with comparative studies on elements of secondary xylem in 39 species of Chinese Magnolia and Michelia. The former plants present longer and slender vessels. Most of them have simple perforation and only a few scalariform perforation plates. In contrast, most of the Michelia species possess scalariform perforation plates and only one with simple perforation. The scalariform perforation plates of Magnolia species, if present, exhibit more bars than that of Michelia With few exceptions, there is no spiral thickening on the vessel wall in Magnolia, whereas in Michelia it is lust the opposite. In addition, some other differences in vessel elements between these two genera are also discussed.  相似文献   

9.
中国木兰属和含笑属导管分子的比较解剖   总被引:4,自引:0,他引:4  
本文对我国木兰科的39种木兰属和含笑属植物次生木质部的导管分子进行了初步分析。两属导管分子的长度和宽度略有差异。木兰属中多数种的导管分于有单穿孔板,但有的可见到梯状穿孔板。含笑属植物的导管分子大多具有梯状穿孔板,仅有一种可看到单穿孔板。在具有梯状穿孔板的木兰属植物中,穿孔板的横隔数目较含笑属的多。木兰属的导管壁上一般无螺纹加厚;含笑属则相反。此外,在两属之间,导管尚存在一些其它差异。  相似文献   

10.
CARLQUIST, S., 1984. Wood and stem anatomy of Lardizabalaceae, with comments on the vining habit, ecology and systematics. Qualitative and quantitative data, based mostly upon liquid-preserved specimens, are presented for Akebia, Roquila, Decaisnea, Holbodia, Lardizabala, Sinofranchetia and Stauntonia . Because Decaisnea is a shrub whereas the other genera are vines, anatomical differences attributable to the scandent habit can be considered. These include exceptionally wide vessels, a high proportion of vessels to tracheids (or other imperforate trdcheary elements) as seen in transection, simple perforation plates, multiseriate rays which are wide and tall, and pith which is partly or wholly sclerenchymatous. With respect to ecology, two features are discussed: spirals in narrower vessels may relate to adaptation to freezing in the species of colder areas, and crystalliferous sclereids seem adapted in morphology and position to deterrence of phytophagous insects or herbivores. The wood may provide mechanisms for maintaining conduction even if wider vessels are deactivated temporarily by formation of air embolisms. Wood and stem anatomy of Lardizabalaceae compare closely to those of Berberidaceae and of Clematis (Ranunculaceae), as well as to other families of Berberidales. Decaisnea is more primitive than these in having consistently sralariform perforation plates and in having scalariform pitting on lateral walls of vessels. A tentative listing of anatomical features which may correspond to generic limits is given.  相似文献   

11.
The anatomical structure of the wood of Bretschneidera sinensis Hemsl. was studied with both light and scanning electron microscopy. The main characters of the secondary xylem are as follows: (1) The wood is diffuse porous with distinct growth ring. (2) Most vessel elements possess simple perforation plates, only a few are with scalariform perforation plates, but both of them have spiral thickenings on their secondary walls. (3) Tracheids, fiber-tracheids and libriform fibers all exist and the libriform fibers may or may not have septa. (4) Wood parenchyma is mainly of terminal distribution type. (5) Wood ray is heterogenous belonging to the Krib′s heterogenous IIB type. (6) Tylosis, resin canal and secretory cell are absent. Based on the present study and other data derived from external morphology, bark anatomy, chromosome study, palynology and embryogenetic study, the systematic position of Bretschneidera sinensis was analysed and discussed. The authors agree that the genus should be elevated to the level of a monotypic family—Bretschneideraceae, belonging to the order of Sapindales; also it is closely related to other primitive families of the same order such as Staphyleaceae, Sabiaceae and Connaraceae.  相似文献   

12.
There are few investigations that analyze the xylem functional anatomy of monocotyledons, as the methods have been developed for woody plants. This study describes the root, rhizome and aerial stem xylem anatomy and functional anatomy of Canna indica, Cyperus papyrus and Phragmites communis grown on flooded substrates; and it aims to evaluate the relationship between the xylem anatomy and its cavitation resistance. To calculate the indexes of vulnerability, mesomorphy, collapse and relative hydraulic conductivity in the three organs mentioned, the diameter, number of vessels per mm2, thickness of the walls and the length of the tracheal elements were recorded. In addition, the xylem specific conductivity of the aerial stem was measured with the pipette method, and its resistance to cavitation was determined experimentally by the air injection technique. The protoxylem is xeromorphic, it has longer vessel elements, smaller diameters, thin walls and scalariform perforation plates, whereas the metaxylem is mesomorphic, with shorter vessel elements, larger diameters, thicker walls and simple perforation plates. Both present low collapse resistance but have a high relative hydraulic conductivity. P. communis recorded the highest cavitation resistance, and the number of vessels per mm2 was related to xylem cavitation resistance in Canna indica and Cyperus papyrus. The experimental results of this investigation match partially the anatomical indexes and showed that the xylem of these species has a low specific conductivity and is more vulnerable to cavitation than that of other monocots.  相似文献   

13.
During vessel evolution in angiosperms, scalariform perforation plates with many slit‐like openings transformed into simple plates with a single circular opening. The transition is hypothesized to have resulted from selection for decreased hydraulic resistance. Previously, additional resistivity of scalariform plates was estimated to be small – generally 10% or less above lumen resistivity – based on numerical and physical models. Here, using the single‐vessel technique, we directly measured the hydraulic resistance of individual xylem vessels. The resistivity of simple‐plated lumens was not significantly different from the Hagen–Poiseuille (HP) prediction (+6 ± 3.3% mean deviation). In the 13 scalariform‐plated species measured, plate resistivity averaged 99 ± 13.7% higher than HP lumen resistivity. Scalariform species also showed higher resistivity than simple species at the whole vessel (+340%) and sapwood (+580%) levels. The strongest predictor of scalariform plate resistance was vessel diameter (r2 = 0.84), followed by plate angle (r2 = 0.60). An equation based on laminar flow through periodic slits predicted single‐vessel measurements reasonably well (r2 = 0.79) and indicated that Baileyan trends in scalariform plate evolution maintain an approximate balance between lumen and plate resistances. In summary, we found scalariform plates of diverse morphology essentially double lumen flow resistance, impeding xylem flow much more than previously estimated.  相似文献   

14.
利用扫描电子显微镜对东亚特有植物黄三七( Souliea vaginata (Maxim. ) Franch. ) 茎的次生木质部
离析材料进行了观察, 结果表明, 黄三七茎次生木质部中的导管分子端壁上具网状穿孔板( 麻黄式穿孔
板) 、梯状穿孔板、网状- 梯状混合穿孔板、网状- 梯状- 单穿孔混合型穿孔板、梯状- 单穿孔混合型穿
孔板及单穿孔板, 同时也观察到了端壁多穿孔板和侧壁穿孔板, 并对不同类型穿孔板中纹孔膜的残留也进
行了观察。其中, 网状穿孔板、各种过渡类型的穿孔板均为毛茛科植物中首次报道。根据观察结果, 对导
管分子穿孔板的演化及黄三七属植物的系统位置进行了分析。  相似文献   

15.
The occurrence and variation among vessels in available parts of 41 species in 16 genera of Rapateaceae and of 20 species in the four genera of Xyridaceae were determined. The vessels in Xyridaceae are more specialized in all organs of the plant than they are in Rapateaceae. Simple and scalariform perforation plates occur in the inflorescence axes and leaves of nearly all species of Xyridaceae but only scalariform plates occur in these organs of Rapateaceae – infrequently vessels are lacking in stems and leaves, at least in early metaxylem. Vessels in roots and stems of Mono–tremeae are most specialized (simple and scalariform plates) among tribes of Rapateaceae, with those in Rapateeae intermediate, and those in Schoenocephalieae and Saxofridericieae most primitive (only scalariform perforation plates). Brief comments are made about vessels as possible indicators of relationships with other families.  相似文献   

16.
Wood anatomy of 16 collections representing three species containing eight subspecies of the single genusDaphniphyllum is analyzed quantitatively and qualitatively.Daphniphyllum has vessels angular to roundish in transection, scalariform perforation plates, scalariform to opposite lateral wall vessel pitting, tracheids with fully bordered pits, heterocellular multiseriate and uniseriate rays, diffuse axial parenchyma and, in one taxon, chambered crystals in axial parenchyma cells. Growth rings, narrower vessels, and more numerous, vessels per square mm characterize taxa from cooler habitats. All of the taxa have highly mesomorphic woods. Comparisons are made between Daphniphyllaceae and the other families of Thorne's Pittosporales (Balanopaceae, Bruniaceae, Buxaceae, Byblidaceae, Geissolomataceae. Grubbiaceae, Myrothamnaceae, Pittosporaceae, Roridulaceae, and Tremandraceae). These families are most comparable to hamamelidoid or rosoid families; other similarities or relationships for these families may exist, but are less conspicuous or less close. The families cited may form a plexus, characterized by primitive xylary and other features, comparable to Annonales (Magnoliales) as products of an early radiation of dicotyledons.  相似文献   

17.
Our main goals were to identify diagnostic characters at the species, genus, and subfamily levels, find anatomical features with potential for future morphological and molecular (combined) phylogenetic analyses, and to reconstruct the evolution of wood anatomical characters in two subfamilies of Primulaceae in a molecular phylogenetic framework. We investigated twenty-seven species from the woody Myrsinoideae (4 genera) and Theophrastoideae (2 genera) using scanning electron, light, and epifluorescence microscopy. Samples were prepared using standard protocols. Based on the wood anatomical characters, we were able to identify synapomorphies and to detect evolutionary trends of interest for the genera and subfamilies. Both subfamilies share the presence of diffuse porosity, simple perforation plates, septate fibres, and scanty paratracheal axial parenchyma. Theophrastoideae species have rays?>?10 cells wide and short (<?350 µm) vessel elements, and Myrsinoideae have breakdown areas in rays and longer vessel elements. Ardisia and Stylogyne have scalariform intervessel pits, Myrsine exhibit breakdown areas in rays, and two Cybianthus species from subgenus Weilgetia have distinguishing features (e.g., scalariform perforation plate in C. nemoralis and the absence of rays in C. densiflorus). Overall, when combining characters, we were able to segregate the Neotropical Primulaceae subfamilies and genera from each other and from the subfamily Maesoideae based on wood anatomy.  相似文献   

18.
Wood anatomy has been investigated from 35 species belonging to the Neotropical clade of the polyphyletic genus Schefflera (Araliaceae), representing three of the five subgroups (Didymopanax, Crepinella and Sciodaphyllum). The species examined are rather uniform in their wood structure, sharing the presence of scalariform and simple perforation plates, septate fibres and scanty paratracheal axial parenchyma. The observed variation in many wood characters showed statistically significant differences relative to latitude, climate and, especially, vegetation types. In particular, the intervessel pits are larger in species from higher latitudes and in seasonally dry habitats than those from lower latitudes and rainforests. Latitudinal and ecological trends in the variation of vessel element lengths, bar numbers on perforation plates, intervessel pit sizes and ray widths may be at least partially explained as effects of adaptation to drier environments in the course of dispersal outside the Amazonian region and diversification in the Atlantic Forest subclade and the Savannic subclade within the Didymopanax group. The occurrence of a granular annulus on the intervessel pit membranes in S. chimantensis and S. sprucei (both of the Crepinella group) is the first record of this feature in Araliaceae. In comparisons of Neotropical Schefflera with the other major clades of Schefflera sensu lato, wood anatomical diversity is consistent with the polyphyly of this genus based on molecular phylogenetic analyses. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 452–475.  相似文献   

19.
Paraphyllanthoxylon abbottii n. sp. and cf. Plataninium haydenii Felix from the Paleocene Black Peaks Formation, Big Bend National Park, Texas, are the first Paleocene dicotyledonous woods described from North America. Both represent wood types common in the Cretaceous. There are 30 logs of Paraphyllanthoxylon abbottii; it is rare that a single locality has such as large number of petrified dicotyledonous logs with a similar structural pattern, and the variability in mature wood structure can be documented. Paraphyllanthoxylon abbottii has a combination of features that occurs in many dicotyledonous families, but it is most similar to genera of Burseraceae. The Big Bend Paraphyllanthoxylon trees lack distinct growth rings, which suggests they grew in a climate without marked seasonality; they have high (10–74) vulnerability indices; such high values occur in extant tropical trees. The type species of Paraphyllanthoxylon, P. arizonense Bailey was reexamined, and its quantitative features are described. Aplectotremas Serlin of Albian age from the Edwards Limestone has anatomy like Paraphyllanthoxylon, and most probably is wood from a tree. The wood designated cf. Plataninium haydenii Felix resembles extant Platanaceae but differs in having exclusively scalariform perforation plates. Comparison of this wood with other platanoid woods suggests that in platanoid woods there has been a shortening of vessel elements and a decrease in the frequency of scalariform perforation plates from the Cretaceous through the Tertiary. These changes are consistent with the Baileyan model for specialization in tracheary elements.  相似文献   

20.
The genus Penthorum L. consists of two species of perennial herbs, P. sedoides of eastern North America and P. chinense of eastern Asia. Penthorum has long been considered intermediate between Crassulaceae and Saxifragaceae. An anatomical study of both species was undertaken to contribute to a better understanding of the relationships of these plants. Prominent anatomical features of Penthorum include: an aerenchymatous cortex and closely-spaced collateral vascular bundles of stems; one-trace unilacunar nodes; brochidodromous venation, rosoid teeth bearing hydathodes, and anomocytic stomata of leaves; angular vessel elements with many-barred scalariform perforation plates and alternate to scattered intervascular pits; thin-walled non-septate fiber-tracheids; abundant homocellular erect uniseriate and biseriate rays; and absence of axial xylem parenchyma. In general, Penthorum possesses neither the morphological nor the anatomical synapomorphies which define Crassulaceae, and features shared with Saxifragaceae are largely symplesiomorphous. Thus Penthorum is probably best classified in the monogeneric Penthoraceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号