首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The herbicides chlorsulfuron and clopyralid were taken up rapidly by excised pea root tissue and accumulated in the tissue to concentrations ten and four times those in the external medium, respectively. Uptake was related linearly to external herbicide concentration over a wide concentration range, implying that transport across the membrane is by nonfacilitated diffusion. Uptake of both compounds was influenced by pH, with greatest uptake at low pH. The pH dependence of uptake suggests that the herbicides (both of which are weak acids) are transported across the plasma membrane in the undissociated form, and accumulate in the cytoplasm by an ion trap mechanism. Most of the absorbed herbicide effluxed from the tissue when it was transferred to herbicide-free buffer, indicating that the accumulation was not due to irreversible binding. Consequently, both herbicides remain available for transfer to the phloem. These results can explain the high reported phloem mobility of clopyralid in intact plants. The low phloem mobility of chlorsulfuron must be accounted for by factors that override its ability to accumulate in the symplast.  相似文献   

2.
Cadmium (Cd) uptake and secretion across the apical membrane of epithelial cells was studied using LLC-PK1 cells cultured on Petri dishes and permeable membranes, respectively. Cd accumulation in cells from the apical medium was decreased by low temperature and metabolic inhibitors. A saturable tendency was observed between initial Cd accumulation and increased concentrations of Cd in the apical medium at 37 degrees C, but not at 4 degrees C. Co-incubation with ZnCl2 or CuCl2 competitively decreased Cd accumulation at 37 degrees C. A decrease in the pH of the apical medium markedly decreased Cd accumulation. Pretreatment of cells with an inorganic anion-exchange inhibitor significantly decreased Cd uptake at pH 7.4 in the presence of bicarbonate, but only marginally in its absence. A decrease in the pH of the apical medium increased the secretory (basolateral-to-apical) transport of Cd, with a concomitant decrease in the cellular accumulation of Cd. Co-incubation with Cd and tetraethylammonium, a typical substrate of the organic cation transporter, decreased Cd transport, with a concomitant increase in cellular Cd accumulation. The uptake and secretion of Cd across the apical membrane appear to be partly mediated via an inorganic anion exchanger and a H+ antiport of the organic cation transport system, respectively. Therefore, a decrease in pH of the apical medium markedly decreases Cd accumulation, possibly as a result of not only the decrease in Cd uptake via an inorganic anion exchanger, but also the increase in Cd secretion via the Cd2+/H+ antiport. Further evidence of the antiport was obtained from experiments using brush border membrane vesicles isolated from rat kidney and small intestine. In addition, passive diffusion of Cd appears to be decreased by low temperature and a decrease in pH.  相似文献   

3.
Bentazon removal by Ganoderma lucidum cultured in liquid and solid state conditions was compared in this work. In solid state cultures, the fungus produced both ligninolytic enzymes, namely laccase and Mn peroxidase. In liquid cultures, the main ligninolytic enzyme produced was laccase. In both types of cultures bentazon improved the production of laccase without significant alteration in the production of Mn peroxidase. In solid state cultures, where high levels of both laccase and Mn peroxidase activities were found, the fungus was more resistant to the action of the herbicide (50 mM in solid state cultures against 20 mM in liquid cultures) and more efficient in removing bentazon (90% removal against 55% in liquid cultures after 10 days of cultivation). Furthermore, the solid state culture filtrates were more efficient in the in vitro degradation of bentazon than the liquid culture filtrates. These observations suggest that both enzymes, laccase and Mn peroxidase, are involved in bentazon degradation. The results further suggest that solid state cultures of Ganoderma lucidum could be useful in strategies designed to reduce environmental contamination by bentazon.  相似文献   

4.
Enzyme production and degradation of the herbicide bentazon by Phanerochaete chrysosporium growing on straw (solid substrate fermentation, SSF) and the effect of nitrogen and the hydraulic retention time (HRT) were studied using a small bioreactor and batch cultures. The best degradation of bentazon was obtained in the low nitrogen treatments, indicating participation of the ligninolytic system of the fungus. The treatments that degraded bentazon also had manganese peroxidase (MnP) activity, which seemed to be necessary for degradation. Pure MnP (with Mn(II) and H2O2) did not oxidize bentazon. However, in the presence of MnP, Mn(II) and Tween 80, bentazon was slowly oxidized in a H2O2-independent reaction. Bentazon was a substrate of pure lignin peroxidase (LiP) and was oxidized significantly faster (22,000–29,000 times) as compared to the MnP-Tween 80 system. Although LiP was a better enzyme for bentazon oxidation in vitro, its role in the SSF systems remains unclear since it was detected only in treatments with high nitrogen and high HRT where no degradation of bentazon occurred. Inhibition of LiP activity may be due to phenols and extractives present in the straw.  相似文献   

5.
The aim of the present work is to clarify the mechanism(s) that regulates the accumulation of protoporphyrin IX (PpIX) in human histiocytic lymphoma cell line U937 incubated with 5-aminolevulinic acid (ALA). Biosynthesis and accumulation of PpIX in the cells was determined after incubation with 0.1-5 mM ALA using a flow cytometric technique. The synthesized endogenous PpIX was found to localize predominantly in the mitochondrial region of the cells. The ALA-enhanced PpIX synthesis was suppressed by the presence of either beta-alanine, a competitive inhibitor of beta-transporters on cell membranes, or carbonyl cyanide p-trifluoromethoxyphenyl hydrazone, an uncoupler of mitochondrial oxidative phosphorylation. In contrast, cellular accumulation of PpIX was enhanced by the presence of either deferoxamine (an iron chelater), MnCl2 (a ferrochelatase inhibitor), or Sn-mesoporphyrin (heme oxygenase inhibitor). These results suggest that ALA-enhanced accumulation of PpIX in U937 cells was regulated by cellular uptake and conversion of ALA to PpIX and by degradation of Heme.  相似文献   

6.
The uptake and anaerobic metabolism of benzoate were studied in short-term experiments with phototrophic cells of Rhodopseudomonas palustris. Cells that were preincubated and assayed anaerobically in the presence of 1 mM dithiothreitol accumulated [7-14C]benzoate at a rate of at least 0.5 nmol . min-1 . mg-1 of protein. Cells that were preincubated aerobically, or anaerobically in the absence of a reducing agent or an electron donor such as succinate, took up benzoate at reduced rates. Benzoate was removed from the external medium with remarkably high efficiency; initial uptake rates were independent of substrate concentration, and uptake remained linear down to concentrations of less than 1 microM. Uptake rates were not sensitive to external pH in the range of 6.5 to 8.1, and very little free benzoate was found associated with the cells. By contrast, benzoyl coenzyme A (CoA) was formed rapidly in cells exposed to labeled benzoate. Its appearance in such cells, together with the more gradual accumulation of other compounds tentatively identified as reduction products, is consistent with the identification of benzoyl CoA as an intermediate in the anaerobic reductive metabolism of benzoate. The very effective uptake of external benzoate can be explained by its conversion to benzoyl CoA immediately after its passage across the cell membrane by simple or facilitated diffusion. Such a chemical conversion would serve to maintain a downhill concentration gradient between the cell cytoplasm and the cell surroundings, even at very low external benzoate concentrations.  相似文献   

7.
Abstract The herbicides DCMU, bentazon, amitrole, and SAN 6706 were tested for their ability to influence the carotenoid and pro-tochlorophyll(ide) composition as well as the protochloro-phyll(ide) phototransformation and the Shibata shift in dark-grown radish seedlings (Raphanus sativus L. cv. Saxa Treib). Bentazon enhanced the formation of lutein and carotenes, while SAN 6706 suppressed the biosynthesis of carotenoids. Amitrole led to a reduced accumulation of phototransformable pro-tochlorophyll(ide). The phototransformation of pro-tochlorophyll(ide) and the Shibata shift were not affected by any of the tested herbicides, irrespective of the presence or absence of activated phytochrome. From this we conclude that herbicides inhibiting photosystem II or producing chlorosis partly affect, but do not block, carotenoid and chlorophyll biosynthesis in dark-grown plants. The main herbicide effect becomes visible only after prolonged illumination.  相似文献   

8.
Riechers DE  Wax LM  Liebl RA  Bush DR 《Plant physiology》1994,105(4):1419-1425
Plasma membrane vesicles were isolated from mature leaves of lambsquarters (Chenopodium album L.) to investigate whether this membrane is a barrier to glyphosate uptake and whether surfactants possess differential abilities to enhance glyphosate permeability. Amino acids representing several structural classes showed [delta]pH-dependent transport, indicating that the proteins necessary for active, proton-coupled amino acid transport were present and functional. Glyphosate uptake was very low compared to the acidic amino acid glutamate, indicating that glyphosate is not utilizing an endogenous amino acid carrier to enter the leaf cells and that the plasma membrane appears to be a significant barrier to cellular uptake. In addition, glyphosate flux was much lower than that measured for either bentazon or atrazine, both lipid-permeable herbicides that diffuse through the bilayer. Glyphosate uptake was stimulated by 0.01% (v:v) MON 0818, the cationic surfactant used in the commercial formulation of this herbicide for foliar application. This concentration of surfactant did not disrupt the integrity of the plasma membrane vesicles, as evidenced by the stability of imposed pH gradients and active amino acid transport. Nonionic surfactants that disrupt the cuticle but that do not promote glyphosate toxicity in the field also increased glyphosate transport into the membrane vesicles. Thus, no correlation was observed between whole plant toxicity and surfactant-aided uptake. Current data suggest that surfactant efficacy may be the result of charged surfactants' ability to diffuse away from the cuticle into the subtending apoplastic space, where they act directly on the plasma membrane to increase glyphosate uptake.  相似文献   

9.
The uptake of lucifer yellow CH by suspension-cultured carrotcells and protoplasts has been studied by laser scanning microscopy.This fluorochrome, which does not diffuse across membranes,gradually accumulates in the cell vacuole over a period of hours.In contrast, the central vacuole of protoplasts did not showlucifer yellow fluorescence. The latter was restricted, in protoplasts,to punctate sources in the peripheral cytoplasm. Confocal opticsallowed the complexity of the vacuolar system to be dramaticallydepicted with the laser scanning microscope. Control experimentssupport the contention that lucifer yellow uptake, as in othereukaryotic systems, occurs via endocytosis. Key words: Carrot cells, endocytosis, laser scanning microscopy, lucifer yellow CH, protoplasts, vacuolar apparatus  相似文献   

10.
The lectin family is composed of mono- and oligosaccharide binding proteins that could activate specific cellular activities, such as cell-cell attachment and toxin production. In the present study, the effect of the external addition of lectins to culture media containing the freshwater cyanobacterium Microcystis aeruginosa on its metabolic activities, such as iron uptake and toxin production was investigated. Among the three lectins examined in this study (concanavalin A [Con A], wheat germ agglutinin [WGA] and peanut agglutinin [PNA]), PNA substantially increased the accumulated intracellular and extracellular iron content. The binding of PNA and Con A to M. aeruginosa cells was visualized via fluorescence microscopy using a lectin adjunct with fluorescein isothiocyanate, and resulted in carbohydrate and protein accumulation in the cellular capsule. Given that the highest carbohydrate accumulation was seen in the Con A system (where iron accumulation was relatively lower), carbohydrate quality is likely important factor that influences cellular iron accumulation. Since PNA specifically binds to sugars such as galactose and N-acetylgalactosamine, these saccharide species could be important candidates for intracellular and extracellular iron accumulation and transport. Microcystin biosynthesis was stimulated in the presence of PNA and WGA, whereas cellular iron uptake increased only in the presence of PNA. Thus, the iron uptake was not necessarily congruent with the upregulation of microcystin synthesis, which suggested that the positive effect of lectin on iron uptake is probably attributable to the PNA-assisted iron accumulation around the cell surface. Overall, the present study provides insights into the interactions of lectin that influence cellular metabolic activities such as iron uptake, extracellular polymeric substance accumulation, and toxin production.  相似文献   

11.
Photosynthesis, the fundamental physiological process of plant responsible for the growth and yield of crops, is strongly affected by environmental stresses. Several methods have been used to study changes in the physiological parameters of plants exposed to stresses. The work aimed to study physiological parameters related to photosynthesis in leaf discs of soybean plants exposed to a photosystem II-inhibiting herbicide. Soybean leaf discs obtained from mature leaves of plants in the vegetative stage immersed in bentazon herbicide solutions at concentrations of 0, 100, 250 or 500 μM were evaluated. In experiment I, the effect of the herbicide on chlorophyll a fluorescence transient was measured using a portable fluorometer. In the second experiment, the effect of the herbicide on modulated chlorophyll a fluorescence and gas exchange were evaluated, with the latter being measured with an infrared gas analyzer. The evaluations of transient and modulated fluorescence provided additional information on the photosynthetic activity of soybean leaf discs exposed to the action of bentazon. For the fluorescence transient analysis, performance indices were the parameters most sensitive to the action of bentazon, showing a decrease of approximately 70 % at a dose of 500 μM. For the modulated fluorescence analysis, the photochemical quenching coefficient, the electron transport rate, the photochemical efficiency of photosystem II and the net assimilation rate, decreased in response to herbicide application, with values that were almost equal to zero at a dose of 500 µM, which are the parameters that showed the greatest sensitivity to bentazon in soybean.  相似文献   

12.
The interaction of 13,15-N-(3′-hydroxypropyl)cycloimide chlorin p6 (CIC) with normal blood cells and human myeloid leukemia K562 and HL60 cells was studied. CIC was found to be bound by the erythrocyte membrane but did not penetrate into the cytoplasm. It is characterized by a diffuse distribution in the cytoplasm of normal leukocytes, whereas its diffuse distribution in K562 and HL60 cells is accompanied by perinuclear accumulation and binding to the plasma membrane. The average cytoplasmic concentration corresponding to the CIC accumulation in leukemic cells at saturation is 2.2 to 2.6 times higher than that in normal leukocytes. CIC is more intensely accumulated in granulocytes than in lymphocytes. The kinetics of the cellular uptake and efflux was characterized. The normal leukocytes and erythrocytes were found to be 1.5 times and 3 to 4 times less sensitive, respectively, to the photodynamic action of CIC than the K562 and HL60 cells.  相似文献   

13.
Bentazon and sulfonylurea are two different classes of herbicides that have been widely used to kill broad-leaf weeds in rice fields. A cytochrome P450 gene, CYP81A6, encoding a monooxygenase has been previously identified to confer resistance to these two classes of herbicides in wild-type rice. In this study, we introduced the rice CYP81A6 gene into Arabidopsis and tobacco plants to test the possibility of engineering tolerance to these two types of herbicides in other susceptible plants. Arabidopsis and tobacco plants expressing CYP81A6 showed tolerance to both bentazon and bensulfuron-methyl (BSM), a widely applied sulfonylurea herbicide. The optimal concentrations of bentazon and BSM for the selection of CYP81A6 transgenic plants were also determined. In addition, we also demonstrated that CYP81A6 can be used as a selection marker to effectively screen for positive transgenic Arabidopsis plants. The selection efficiency of CYP81A6 was comparable to that of the bar gene in Arabidopsis. These results suggest that CYP81A6 can not only be used to produce transgenic plants tolerant to both bentazon and sulfonylureas, but that it can also be used as a novel plant-derived selection marker in plant transformation.  相似文献   

14.
Anandamide is an endogenous ligand for cannabinoid receptor and its protein-mediated transport across cellular membranes has been demonstrated in cells derived from brain as well as in cells of the immune system. This lipid is inactivated via intracellular degradation by a fatty acid amidohydrolase (FAAH). In the present study, we report that rabbit platelets, in contrast to human platelets, do not possess a carrier-mediated mechanism for the transport of [3H]anandamide into the cell, i.e. cellular uptake was not temperature dependent and its accumulation was not saturable. This endocannabinoid appears to enter the cell by simple diffusion. Once taken up by rabbit platelets, [3H]anandamide was rapidly metabolized into compounds which were secreted into the medium. Small amounts of free arachidonic acid as well as phospholipids were amongst the metabolic products. FAAH inhibitors did not decrease anandamide uptake, whereas these compounds inhibited anandamide metabolism. In conclusion, anandamide is rapidly taken up by rabbit platelets and metabolized mainly into water-soluble metabolites. Interestingly, the present study also suggests the absence of a transporter for anandamide in these cells.  相似文献   

15.
Kim JE  Wang CJ  Bollag JM 《Biodegradation》1997,8(6):387-392
The herbicide bentazon (3-isopropyl-1H-2,1,3-benzothiadiazine-4(3 H)-one-2,2-dioxide), a relatively inert chemical, and some of its metabolites were incubated with a laccase or a peroxidase in the presence or absence of humic monomers to evaluate the incorporation of the herbicide and its metabolites into humic material by oxidative enzymes. Guaiacol and ferulic acid were used as representative electron donor co-substrates in most of the oxidative coupling reactions. Bentazon and its metabolites, with the exception of hydroxy metabolites, underwent little or no transformation by the two enzymes in the absence of guaiacol and ferulic acid,but in the presence of these co-substrates transformation occurred. The reaction of bentazon with guaiacol in the presence of the laccase or a peroxidase was almost complete in30 min. 6-Hydroxy- and 8-hydroxy-bentazon were completely transformed by each enzyme both with and with out co-substrates. At pH 3.0 and in the presence of laccase and guaiacol, the concentrations of bentazon and its metabolites2-amino-N-isopropyl-benzamide (AIBA), des-isopropyl-bentazon and 8-chloro-bentazon decreased by 27, 57, 20 and 4%,respectively. The corresponding levels of transformation with peroxidase at pH 3.0 were 9, 70, 30 and 5%, respectively. The extent of transformation decreased with increasing pH. At low pH, the hydroxy-bentazons were completely transformed,followed by (in order of percentage transformation) AIBA,des-isopropyl-bentazon, bentazon and 8-chloro-bentazon. Transformation of bentazon by the laccase increased with increasing guaiacol concentration. In the presence of the peroxidase, the most effective co-substrates for transformation of bentazon were (in decreasing order) catechol, vanillicacid, protocatechuic acid, syring aldehyde and caffeic acid,while in the presence of the laccase, catechol was most effective, followed by caffeic acid, protocatechuic acid and syringaldehyde. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Primary cultures of rat liver parenchymal cells maintained as a monolayer in serum-free culture medium were used to investigate the characteristics of zinc accumulation in vitro. Liver parenchymal cells accumulated zinc by a temperature-dependent, saturable process that was inhibited by cyanide, azide, oligomycin, N-ethylmaleimide and iodoacetamide. Cadmium reversibly inhibited zinc accumulation in both serum-free and serum-containing media. Gel filtration chromatographic studies showed that recently accumulated intracellular zinc was present as a low molecular weight complex smaller than metallothionein, the zinc storage protein, but larger than individual amino acids.The quantity of zinc accumulated was affected by preincubation of the cells with various hormones. Dexamethasone, prednisone and prednisolone each increased zinc uptake by 40–50% when either insulin or glucagon was also present. Hydrocortisone, cortisone and sex steroids did not influence zinc accumulation. Removal of the polypeptide hormones from the medium abolished the stimulatory effect of the synthetic glucocorticoid steroid hormones on zinc accumulation.  相似文献   

17.
L Ke  R Liu  B Chu  X Yu  J Sun  B Jones  G Pan  X Cheng  H Wang  S Zhu  Y Sun 《PloS one》2012,7(7):e39974
Cotton plants engineered for resistance to the herbicides, glyphosate or glufosinate have made a considerable impact on the production of the crop worldwide. In this work, embryogenic cell cultures derived from Gossypium hirsutum L. cv Coker 312 hypocotyl callus were transformed via Agrobacterium tumefaciens with the rice cytochrome P450 gene, CYP81A6 (bel). In rice, bel has been shown to confer resistance to both bentazon and sulfanylurea herbicides. Transformed cells were selected on a liquid medium supplemented alternately or simultaneously with kanamycin (50mg/L) and bentazon (4.2 μmol). A total of 17 transgenic cotton lines were recovered, based on the initial resistance to bentazon and on PCR detection of the bel transgene. Bel integration into the cotton genome was confirmed by Southern blot and expression of the transgene was verified by RT-PCR. In greenhouse and experimental plot trials, herbicide (bentazon) tolerance of up to 1250 mg/L was demonstrated in the transgenic plants. Transgenic lines with a single copy of the bel gene showed normal Mendelian inheritance of the characteristic. Importantly, resistance to bentazon was shown to be stably incorporated in the T1, T2 and T3 generations of self-fertilised descendents and in plants outcrossed to another upland cotton cultivar. Engineering resistance to bentazon in cotton through the heterologous expression of bel opens the possibility of incorporating this trait into elite cultivars, a strategy that would give growers a more flexible alternative to weed management in cotton crops.  相似文献   

18.
In vitro metabolism of the herbicide bentazon was studied in microsomal membranes isolated from 6-day-old etiolated corn shoots. Microsomes isolated from shoots of nontreated seeds did not metabolize bentazon when assayed with NADPH or peroxides. However, microsomes isolated from shoots of seeds pretreated with naphthalic anhydride formed a single bentazon metabolite when provided with NADPH. The metabolite was identified as 6-hydroxybentazon, the major phase I metabolite produced in vivo. In vitro formation of this metabolite was strongly inhibited by carbon monoxide, nitrogen, and tetcyclacis (10 microM). The results suggest that aryl hydroxylation of bentazon in corn shoots is catalyzed by a cytochrome P-450 (E.C. 1.14.14.1) and that a seed pretreatment with naphthalic anhydride is necessary for recovery of activity in vitro.  相似文献   

19.
Paraquat resistance in the grass weed Hordeum glaucum Steud. has been proposed to result from herbicide sequestration away from the growing points. In the present study, we used roots as a model system to investigate cellular transport of paraquat in resistant (R) and susceptible (S) H. glaucum biotypes. Both time- and concentration-dependent kinetics of paraquat influx across the root cell plasma membrane were similar in the S and R biotype. However, compartmentation analysis indicated greater herbicide accumulation in root vacuoles of the R seedlings. In contrast, the amount of paraquat accumulated in the cytoplasm of S was double that found in R biotype. While paraquat efflux from the cytoplasm back into the external solution was similar in the two biotypes, efflux across the tonoplast from the vacuole back into the cytoplasm was 5 times slower in the R than in the S biotype. At the end of a 48-h efflux period, nearly 7-fold more herbicide was retained in the roots of the R compared with those of the S biotype. These results suggest that paraquat resistance in H. glaucum may be due to the herbicide sequestration in the vacuole.  相似文献   

20.
The erythrocytes infection by a parasite (Babesia canis) induced a modification of the biological membrane which was studied using the effect of electric pulses of short duration. This process induces the formation of pores and during the opening hemoglobin and other cytoplasmic proteins diffuse out of the cells and are recovered in the external medium. The rate of molecular permeation across the electrically perforated membranes depends on several factors: electric-field strength, pulses number, pulse duration, temperature and cellular concentration. Even for low parasitemia, differences in the effect of these parameters were observed between infected and non-infected erythrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号