首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultraviolet difference spectra, solvent perturbation difference spectra, and temperature perturbation difference spectra indicate that tyrosyl residues of model compounds are affected by sodium dodecyl sulfate. This effect is dependent on the nature of the model compound, being enhanced by positive charges, and is attributed to partial masking of the tyrosyl chromophores by sodium dodecyl sulfate. With reduced carboxymethylated ribonuclease as a model, all three difference spectral methods can be interpreted as indicating nearly complete externalization of tyrosyl chromophores in ribonuclease in the detergent. With small tyrosyl model compounds the calculated number of external tyrosyl residues depends on the nature of the model compound. Using net positively charged tyrosyl compounds as models, nearly 6 external tyrosyl residues are calculated for RNase. N-Acetyltyrosine amide or N-acetyltyrosine esters appear to be inadequate models for tyrosine in proteindetergent solutions because of their weak interactions with detergents.  相似文献   

2.
Ultraviolet difference absorption spectra produced by ethylene glycol were measured for hen lysozyme [EC 3.2.1.17] and bovine chymotrypsinogen. N-Acetyl-L-tryptophanamide and N-acetyl-L-tyrosinamide were employed as model compounds for tryptophyl and tyrosyl residues, respectively, and their ultraviolet difference spectra were also measured as a function of ethylene glycol concentration. By comparison of the slopes of plots of molar difference extinction coefficients (delta epsilon) versus ethylene glycol concentration for the proteins with those of the model compounds at peak positions (291-293 and 284-287 nm) in the difference spectra, the average number of tyrosyl as well as tryptophyl residues in exposed states could be estimated. The results gave 2.7 tryptophyl and 1.9 tyrosyl residues exposed for lysozyme at pH 2.1 and 2.6 tryptophyl and 3.4 tyrosyl residues exposed for chymotrypsinogen at pH 5.4. The somewhat higher tyrosyl exposure of chymotrypsinogen, compared with the findings from spectrophotometric titration and chemical modification, was not unexpected, because delta epsilon285 was larger than delta epsilon292, and the situation is discussed with reference to preferential interaction of ethylene glycol with the tyrosyl residues and/or side chains in the vicinity of the chromophore in the protein. The procedure employed in the present work seems to be suitable for estimation of the average number of exposed tryptophyl and tyrosyl residues in tryptophan-rich proteins. The effects of ethylene glycol on the circular dichroism spectra of lysozyme at pH 2.1 and chymotrypsinogen at pH 5.4 were also investigated. At high ethylene glycol concentrations, both proteins were found to undergo conformational changes in the direction of more ordered structures, presumably more helical for lysozyme and more beta-structured for chymotrypsinogen.  相似文献   

3.
We present a calculation of the relative changes in binding free energy between the complex of ribonuclease T1 (RNase Tr) with its inhibitor 2'-guanosine monophosphate (2'GMP) and that of RNase T1-2'-adenosine monophosphate (2'AMP) by means of a thermodynamic perturbation method implemented with molecular dynamics. Using the available crystal structure of the RNase T1-2'GMP complex, the structure of the RNase T1-2'AMP complex was obtained as a final structure of the perturbation calculation. The calculated difference in the free energy of binding (delta delta Gbind) was 2.76 kcal/mol. This compares well with the experimental value of 3.07 kcal/mol. The encouraging agreement in delta delta Gbind suggests that the interactions of inhibitors with the enzyme are reasonably represented. Energy component analyses of the two complexes reveal that the active site of RNase T1 electrostatically stabilizes the binding of 2'GMP more than that of 2'AMP by 44 kcal/mol, while the van der Waals' interactions are similar in the two complexes. The analyses suggest that the mutation from Glu46 to Gln may lead to a preference of RNase T1 for adenine in contrast to the guanine preference of the wild-type enzyme. Although the molecular dynamics equilibration moves the atoms of the RNase T1-2'GMP system about 0.9 A from their X-ray positions and the mutation of the G to A in the active site increases the deviation from the X-ray structure, the mutation of the A back to G reduces the deviation. This and the agreement found for delta delta Gbind suggest that the molecular dynamics/free energy perturbation method will be useful for both energetic and structural analysis of protein-ligand interactions.  相似文献   

4.
The thermal perturbation difference spectra of phenolic and indolic chromophores in water resemble the isothermal D2O and H2O spectra of these chromophores. For phenols approximately equal Δ? values are obtained in both types of spectra, but for their methyl ethers Δ? values of D2O vs H2O spectra are about half of those of the thermal perturbation spectra. Phenols and their methyl ethers were studied in deuterated ethylene glycol and glycerol vs the corresponding protiated solvent, and in nonprotic solvents containing 0.25–4% D2O or H2O. For phenols in D2O vs H2O, about one-third to one-half of the difference spectrum is attributed to solvent structure difference, and the remainder to the effects of replacing OH by OD and to differences in accepting hydrogen bonds from D2O and H2O. The refractive index difference between D2O and H2O was shown to be a minor contribution by means of experiments in which D2O was at 5 dgC and H2O at 47 dgC, conditions of equal refractive index (NaD). D2O vs H2O and glycerol-d vs glycerol-h difference spectra of ribonuclease are about twice as large as expected from the known number of exposed tyrosyl side chains. Possible sources of error in D2O vs H2O spectra of proteins are discussed.  相似文献   

5.
In order to study the state of tyrosyl residues in a ribouuclease from bovine semina vesicles [EC 3.1.4.22, RNase Vs1] several lines of experiments were carried out. Spectrophotometric titration of RNase Vs1 indicated that two out of 8 tyrosine residues were titrated very easily and their apparent pKa values were about 9.8. Next, about 4 residues were titrated at pH up to 13.5. The remaining 2 residues were titrated time-dependently at pH 13.5. In 8 M urea, about 6 tyrosine residues were titrated with apparent pK4 values of about 11.2 and about 2 residues were titrated time-dependently at pH 13.5. Acetylation of RNase Vs1 with N-acetylimidazole was studied at pH 7.5. In aqueous solution, about 1.1-3.5 tyrosine residues were acetylated, depending on the experimental conditions, and in 8 M urea, 5.3 tyrosine residues were modified. RNase Vs1 was nitrated with tetranitromethane at pH 7.5. In aqueous solution, about 2.5 tyrosine residues were nitrated very easily; the enzymatic activity of the modified enzymes was 130-200% of that of the native enzyme. In 8 M urea, the reactivity of the tyrosine residues increased and about 4-5.5 residues were modified. The results of chemical modification and spectrophotometric titration indicated that about two tyrosine residues in RNase Vs1 were exposed to the solvent and were more reactive to various reagents, and 3-4 tyrosine residues were less reactive. The final 2 residues were not accessible to the reagent even in the presence of urea, but were titraten at pH 13.5. The solvent perturbation difference spectrum using ethylene glycol as a perturbant indicated that about 4 tyrosine residues were perturbed. When the pH of the enzyme solution was changed from 7.0 to 1.0, the change in optical density of RNase Vs1 due to denaturation blue shift was about 1,600 at 287nm. The optical density change at 287 nm of native RNase Vs1 on exposure to 8 M urea and 6 M guanidine-HCl indicated that the environments of 2-3 and 4 tyrosine residues were changed by the addition of the denaturants, urea and guanidine-HCl, respectively. In RNase Vs1 having about four nitrotyrosine residues, the two most inaccessible tyrosine residues remained resistant to titration with alkali. On adding nucleotide, nitrated RNase Vs1 gave a difference spectrum in the ultraviolet region but not in 320-460 nm region, where nitrotyrosine residues absorb light. This may indicate that tyrosine residues located relatively near the surface of the molecule are not perturbed directly by nucleotide binding.  相似文献   

6.
CD spectra of bovine pancreatic ribonuclease A (RNase A) and its subtilisin-modified form (RNase S) have been calculated, based upon high-resolution structures from x-ray diffraction. All known transitions in the peptide and side-chain groups, especially the aromatic and disulfide groups, have been included. Calculations have been performed with both the matrix method and with first-order perturbation theory. A newly developed method for treating the electrostatic interactions among transition charge densities and between static charge distributions and transition charge densities is used. The effects of local electrostatic fields upon the group transition energies are included for all transitions. Rotational strengths generated by the matrix method were combined with Gaussian band shapes to generate theoretical CD spectra. The calculated spectra reproduce the signs and approximate magnitudes of the near-uv CD bands of both RNase A and S. Agreement is most satisfactory for the negative 275 nm band, dominated by tyrosine contributions. In agreement with two previous studies by other workers, coupling between Tyr 73 and Tyr 115 is the single most important factor in this band. The positive band observed near 240 nm is dominated by disulfide contributions, according to our results. The far-uv CD spectrum is poorly reproduced by the calculations. The observed 208 nm band, characteristic of α-helices, is absent from the calculated spectrum, probably because the helices in RNase are short. A strong positive couplet centered near 190 nm is predicted but not observed. Possible reasons for these incorrect predictions of the current theoretical model in the far-uv are discussed. © 1997 John Wiley & Sons, Inc.  相似文献   

7.
8.
A relatively important change in UV absorption is observed upon thermal perturbation of nucleotide solutions. Comparison of these thermal perturbation spectra of nucleic acid residues with solvent perturbation spectra of the same compounds suggests that this spectral change can most probably be attributed to temperature induced hydration change of the bases. This conclusion is confirmed by the results obtained from acid-base perturbation spectra of these nucleotides as well as thermal perturbation spectra of nucleotides containing modified bases. It is shown that this temperature dependent change in UV absorption is also present in dinucleoside monophosphates. In that case, this effect is superimposed upon the well known change in absorbance due to the unstacking of the bases during heating.  相似文献   

9.
Bovine pancreatic ribonuclease A (RNase A) catalyzes the cleavage of P-O5' bonds in RNA on the 3' side of pyrimidine to form cyclic 2',5'-phosphates. Even though extensive structural information is available on RNase A complexes with mononucleotides and oligonucleotides, the interaction of RNase A with tRNA has not been fully investigated. We report the complexation of tRNA with RNase A in aqueous solution under physiological conditions, using a constant RNA concentration and various amounts of RNase A. Fourier transform infrared, UV-visible, and circular dichroism spectroscopic methods were used to determine the RNase binding mode, binding constant, sequence preference, and biopolymer secondary structural changes in the RNase-tRNA complexes. Spectroscopic results showed 2 major binding sites for RNase A on tRNA, with an overall binding constant of K = 4.0 x 105 (mol/L)-1. The 2 binding sites were located at the G-C base pairs and the backbone PO2 group. Protein-RNA interaction alters RNase secondary structure, with a major reduction in alpha helix and beta sheets and an increase in the turn and random coil structures, while tRNA remains in the A conformation upon protein interaction. No tRNA digestion was observed upon RNase A complexation.  相似文献   

10.
cis-Pt(NH3)2Cl2 (cisplatin) is an antitumor drug with many severe toxic side effects including enzymatic structural changes associated with its mechanism of action. This study is designed to examine the interaction of cisplatin drug with ribonuclease A (RNase A) in aqueous solution at physiological pH, using drug concentration of 0.0001 mM to 0.1 mM with final protein concentration of 2% w/v. Absorption spectra and Fourier transform infrared (FTIR) spectroscopy with its self-deconvolution, second derivative resolution enhancement and curve-fitting procedures were used to characterize the drug binding mode, association constant and the protein secondary structure in the cisplatin-RNase complexes. Spectroscopic results show that at low drug concentration (0.0001 mM), no interaction occurs between cisplatin and RNase, while at higher drug concentrations, cisplatin binds indirectly to the polypeptide C=O, C-N (via H2O or NH3 group) and directly to the S-H donor atom with overall binding constant 5.66 x 10(3)M(-1). At high drug concentration, major protein secondary structural changes occur from that of the alpha-helix 29% (free enzyme) to 20% and beta-sheet 39% (free enzyme) to 45% in the cisplatin-RNase complexes. The observed structural changes indicate a partial protein unfolding in the presence of cisplatin at high drug concentration.  相似文献   

11.
Several studies have shown that divalent anion binding to ribonuclease A (RNase A) contributes to RNase A folding and stability. However, there are conflicting reports about whether chloride binds to or stabilizes RNase A. Two broad-zone experimental approaches, membrane-confined electrophoresis and analytical ultracentrifugation, were used to examine the electrostatic and electrohydrodynamic characteristics of aqueous solutions of bovine RNase A in the presence of 100 mM KCl and 10 mM Bis-Tris propane over a pH range of 6.00-8.00. The results of data analysis using a Debye-Huckel-Henry model, compared with expectations based on pK(A) values, are consistent with the binding of two chlorides by RNase A. The decreased protein valence resulting from anion binding contributes 2-3 kJ/mol to protein stabilization. This work demonstrates the utility of first-principle valence determinations to detect protein solution properties that might otherwise remain undetected.  相似文献   

12.
Two mechanisms have been proposed for the thermal unfolding of ribonuclease S (RNase S). The first is a sequential partial unfolding of the S peptide/S protein complex followed by dissociation, whereas the second is a concerted denaturation/dissociation. The thermal denaturation of ribonuclease S and its fragment, the S protein, were followed with circular dichroism and infrared spectra. These spectra were analyzed by the principal component method of factor analysis. The use of multiple spectral techniques and of factor analysis monitored different aspects of the denaturation simultaneously. The unfolding pathway was compared with that of the parent enzyme ribonuclease A (RNase A), and a model was devised to assess the importance of the dissociation in the unfolding. The unfolding patterns obtained from the melting curves of each protein imply the existence of multiple intermediate states and/or processes. Our data provide evidence that the pretransition in the unfolding of ribonuclease S is due to partial unfolding of the S protein/S peptide complex and that the dissociation occurs at higher temperature. Our observations are consistent with a sequential denaturation mechanism in which at least one partial unfolding step comes before the main conformational transition, which is instead a concerted, final unfolding/dissociation step.  相似文献   

13.
Derivatives of ribonuclease A (RNase A) with modifications in positions 1 and/or 7 were prepared by subtilisin-catalyzed semisynthesis starting from synthetic RNase 1-20 peptides and S-protein (RNase 21-124). The lysyl residue at position 1 was replaced by alanine, whereas Lys-7 was replaced by cysteine that was specifically modified prior to semisynthesis. The enzymes obtained were characterized by protein chemical methods and were active toward uridylyl-3',5'-adenosine and yeast RNA. When Lys-7 was replaced by S-methyl-cysteine or S-carboxamido-contrast, the catalytic properties were only slightly altered. The dissociation constant for the RNase A-RI complex increased from 74 fM (RNase A) to 4.5 pM (Lys-1, Cys-7-methyl RNase), corresponding to a decrease in binding energy of 10 kJ mol-1. Modifications that introduced a positive charge in position 7 (S-aminoethyl- or S-ethylpyridyl-cysteine) led to much smaller losses. The replacement of Lys-1 resulted in a 4-kJ mol-1 loss in binding energy. S-protein bound to RI with Ki = 63.4 pM, 800-fold weaker than RNase A. This corresponded to a 16-kJ mol-1 difference in binding energy. The results show that the N-terminal portion of RNase A contributes significantly to binding of ribonuclease inhibitor and that ionic interactions of Lys-7 and to a smaller extent of Lys-1 provide most of the binding energy.  相似文献   

14.
In this study, we report the inhibition of ribonuclease A (RNase A) by certain aminonucleosides. This is the first such instance of the use of this group of compounds to investigate the inhibitory activity of this protein. The compounds synthesized have been tested for their ability to inhibit the ribonucleolytic activity of RNase A by an agarose gel-based assay. A tRNA precipitation assay and inhibition kinetic studies with cytidine 2',3'-cyclic monophosphate as the substrate have also been conducted for two of the compounds. Results indicate substantial inhibitory activity with inhibition association constants in the micromolar range. The experimental studies have been substantiated by docking of the aminonucleoside ligands to RNase A using AutoDock. We find that the ligands preferentially bind to the active site of the protein molecule with a favorable free energy of binding. The study has been extended to a member of the ribonuclease superfamily, angiogenin, which is a potent inducer of blood vessel formation. We show that the aminonucleosides act as potent inhibitors of angiogenin induced angiogenesis.  相似文献   

15.
Spectroscopic measurements of virgin bovine trypsin-kallikrein inhibitor and its modified species (in which the reactive-site peptide bond Lys-15--Ala-16 is split) indicate a conformational difference between both proteins. The inhibitor contains four tyrosines but no tryptophan. In the modified inhibitor a tyrosyl blue shift is seen in the difference absorption spectrum of modified against virgin inhibitor. The solvent perturbation spectra show an increase of the fraction of exposed tyrosyls from 0.45 in the virgin inhibitor to 0.59 in the modified form. Comparison of the circular dichroism spectra of the modified and virgin inhibitors reveals a decrease of the mean residue ellipticity in the tyrosine and peptide bond region of the modified inhibitor. In the fluorescence spectra a 50% increase in the quantum yield of the tyrosine fluorescence is observed in the modified inhibitor. All these spectroscopic data support the idea, which is also evidenced by the X-ray crystallographic model, that in the modified inhibitor up to five residues from Ala-16 to Arg-20 gain rotational freedom.  相似文献   

16.
A cytochrome c from Humicola lanuginosa is unique among eukaryotic cytochromes c in having phenylalanine as Residue 74. This protein has certain properties which differ from those of other cytochromes c to which it is generally similar. The Humicola cytochrome c is as stable as horse heart cytochrome c in urea, but more stable than both horse heart and yeast cytochromes c in acidic and alkaline conditions. Spectrophotometric titration of the four tyrosyl residues of the Humicola protein was nonsigmoidal with a pKapp of 11.4. Solvent perturbation difference spectra indicate that 50% of the tyrosyl residues are exposed to solvent in the native protein, and that the single tryptophanyl and all four tyrosyl residues become exposed in 8 m urea. Certain unusual features in both the optical rotatory dispersion and circular dichroism spectra in the 290-250-nm region are tentatively attributed to the substitution of phenylalanine for tyrosine at position 74.  相似文献   

17.
The model system made up of a monomeric and a dimeric ribonuclease of the pancreatic-type superfamily has recently attracted the attention of investigators interested in the evolution of oligomeric proteins. In this system, bovine pancreatic ribonuclease (RNase A) is the monomeric prototype, and bovine seminal ribonuclease (BS-RNase) is the dimeric counterpart. However, this evolutionary case is unusual, as BS-RNase is the only dimeric member of the whole large superfamily comprising more than 100 identified members from amphibia, aves, reptilia and mammalia. Furthermore, although the seminal-type RNase gene can be traced back to the divergence of the ruminants, it is expressed only in a single species (Bos taurus). These unusual findings are discussed, as well as previous hypotheses on the evolution of seminal RNase. Furthermore, a new 'minimalist' hypothesis is proposed, in line with basic principles of structural biology and molecular evolution.  相似文献   

18.
The dynamics of the unfolding process of bovine pancreatic ribonuclease A (RNase A) unfolded by dithiothreitol (DTT) at a low concentration of 1:30 were investigated in alkaline phosphate-buffered saline solutions at 303K and 313K by using proton nuclear magnetic resonance ((1)H NMR) spectra. Three NMR spectral parameters including Shannon entropy, mutual information, and correlation coefficient were introduced into the analysis. The results show that the unfolding process of RNase A was slowed to the order of many hours, and the kinetics of the unfolding pathway described by the three parameters is best fit by a model of two consecutive first-order reactions. Temperature greatly influences the rate constants of the unfolding kinetics with different temperature effects observed for the fast and the slow processes. The consistencies and the differences between the three sets of parameters show that they reflect the same relative denaturation pathway but different spectra windows of the unfolding process of RNase A. The results suggest that the unfolding process of RNase A induced by low concentrations of DTT is a two-phase pathway containing fast and slow first-order reactions.  相似文献   

19.
Chen DT  Lin A 《Protein engineering》2002,15(12):997-1003
A mutant of ribonuclease T1 (RNase T1), denoted RNase Talpha, that is designed to recognize double-stranded ribonucleic acid was created. RNase Talpha carries the structure of RNase T1 except for a part of its loop L3 domain, which has been swapped for a corresponding domain from alpha-sarcin. The RNase Talpha maintains the pleated beta-sheet structure and retains the guanyl-specific ribonuclease activity of the wild-type RNase T1. A steady-state kinetic study on the RNase Talpha-catalyzed transesterification of GpU dinucleoside phosphates reveals a slightly reduced K(m) value of 6.94 x 10(-7) M. When the stranded specificity is examined, RNase Talpha catalyzes the hydrolysis of guanine base not only of single-stranded but also, as by design, of double-stranded RNA. The change of stranded specificity suggests the feasibility of using domain swapping to make a substrate-specific ribonuclease. This study suggests that the loop L3 in RNase T1 can be used as a 'cassette player' for inserting a functional domain to make ribonuclease of various specificities.  相似文献   

20.
Mounting evidence suggests that human pancreatic ribonuclease (RNase 1) plays important roles in vivo, ranging from regulating blood clotting and inflammation to directly counteracting tumorigenic cells. Understanding these putative roles has been pursued with continual comparisons of human RNase 1 to bovine RNase A, an enzyme that appears to function primarily in the ruminant gut. Our results imply a different physiology for human RNase 1. We demonstrate distinct functional differences between human RNase 1 and bovine RNase A. Moreover, we characterize another RNase 1 homolog, bovine brain ribonuclease, and find pronounced similarities between that enzyme and human RNase 1. We report that human RNase 1 and bovine brain ribonuclease share high catalytic activity against double-stranded RNA substrates, a rare quality among ribonucleases. Both human RNase 1 and bovine brain RNase are readily endocytosed by mammalian cells, aided by tight interactions with cell surface glycans. Finally, we show that both human RNase 1 and bovine brain RNase are secreted from endothelial cells in a regulated manner, implying a potential role in vascular homeostasis. Our results suggest that brain ribonuclease, not RNase A, is the true bovine homolog of human RNase 1, and provide fundamental insight into the ancestral roles and functional adaptations of RNase 1 in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号