首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thyroid peroxidase (TPO) located in the apical plasma membrane of follicular cells was investigated by means of a membrane-immunofluorescent technique. The epitope of TPO recognized by a murine monoclonal antibody (mAb 30.1.2) was identified on the apical membrane surface. Trypsinization removed TPO immunoreactivity and enzymatic activity after 60 min of incubation at 37 degrees C. The epitope reappeared on the apical membrane surface after short term culture for 120 min without the addition of TSH. With TSH the time required for reappearance was only 30 min. TPO activity was regenerated under both conditions. Since dibutyryl cyclic AMP could not accelerate the reappearance of the epitope, it was thought that TPO reappearance is mediated by other than the adenylate cyclase-cyclic AMP system.  相似文献   

2.
A distribution of immunoglobulin G (IgG) subclass of anti-thyroid peroxidase (TPO) autoantibodies was studied to know whether anti-TPO autoantibodies are closely implicated in the pathogenesis of human autoimmune thyroid diseases. As a result of analyzing 14 patients' sera, 7 with Graves' disease and 7 with Hashimoto's thyroiditis, anti-TPO autoantibodies were found to consist of mainly IgG1 subclass. Percentages of both IgG1 and IgG2 subclasses in IgG class of autoantibodies corresponded to those in the normal serum composition, whereas IgG3 subclass was scarcely contained in anti-TPO autoantibodies and IgG4 subclass markedly increased. It was thought that anti-TPO autoantibodies had a capability to lyse thyroid follicular cells by the mechanism of antibody-dependent complement-mediated cytolysis, because IgG1 and IgG2 subclasses of antibodies can fix complement and TPO locates in apical membrane surface of thyroid follicular cells. Comparing Graves' disease with Hashimoto's thyroiditis, mean percentages of both IgG1 and IgG2 subclasses of 2 groups were statistically different. Namely, sera of patients with Graves' disease had higher and lower mean percentages of IgG1 and IgG2 subclasses of autoantibodies, respectively, than those with Hashimoto's thyroiditis, though no plausible explanation for these differences can be offered at the present time.  相似文献   

3.
We have investigated the interaction between concanavalin A-agarose (Con A-agarose) and thyroid peroxidase, an integral membrane protein found in the 105,000 X g, 1-h particulate fraction of thyroid tissue. An intact form of porcine thyroid peroxidase was obtained by solubilization with the nonionic detergent Triton X-100 and two fragmented, hydrophilic forms of the enzyme were prepared by trypsin treatment of the membrane. The three types of thyroid peroxidase bind to Con A-agarose and can be eluted with alpha-methyl-D-mannoside. The alpha-methyl-D-mannoside eluate of the most purified thyroid peroxidase preparation has been analyzed by polyacrylamide gel electrophoresis. Peroxidase activity corresponds with a glycoprotein band. The binding of thyroid peroxidase to Con A-agarose can be inhibited by sugars in the following order: alpha-methyl-D-mannoside greater than D-mannose greater than alpha-methyl-D-glucoside greater than D-glucose greater than D-galactose. This order of specificity is typical of Con A-sugar interactions. Furthermore, inactivation of the carbohydrate binding site of Con A by demetallization greatly reduces the extent of thyroid peroxidase binding. Reactivation of the carbohydrate binding site by the addition of Ca2+ and Mn2+ to demetallized Con A-agarose restores thyroid peroxidase binding. These and other experiments suggest that htyroid peroxidase is, like several other peroxidases, a glycoprotein. In addition, the interaction between thyroid peroxidase and Con A-agarose may provide a new purification tool for thyroid peroxidase.  相似文献   

4.
5.
Molecular cloning of the structural gene for porcine thyroid peroxidase   总被引:4,自引:0,他引:4  
We have isolated and determined the nucleotide sequence of overlapping cDNA clones, representing the entire structural gene for pig thyroid peroxidase. The protein coding region extends from an ATG residue at base 252 to a termination codon at base 3030, coding for a 100.4-kDa apoprotein of 926 amino acids. The derived amino acid composition agrees well with the experimentally determined amino acid composition of purified pig thyroid peroxidase. Five potential glycosylation sites are present in the protein. Potential membrane spanning regions are present at the amino-terminal end (1-23) and near the carboxyl-terminal end (845-870) of the protein. These data indicate that pig thyroid peroxidase is synthesized as a single polypeptide that is membrane-bound.  相似文献   

6.
A catalytic intermediate, Compound II of peroxidase was detected spectrophotometrically in thyroid microsomes. From comparison with the spectral data on purified thyroid peroxidase, the content of the peroxidase was estimated to be 0.019 nmol per mg of the microsomal protein, being about one-eighth of the amount of cytochrome b5. It was concluded that thyroid peroxidase exhibits the same peroxidase activity for guaiacol or ascorbate in the free and the microsome-bound forms.  相似文献   

7.
We have raised specific polyclonal immunoglobulin G (IgG) against a major lysosomal membrane sialoglycoprotein (LGP107) taken from rat liver and have prepared a conjugate of its Fab' fragment with horseradish peroxidase (HRP-anti LGP107 Fab') as a probe for the subcellular antigen. Electron immunocytochemistry in primary cultured rat hepatocytes showed that LGP107 resided primarily within lysosomes and was associated with luminal amorphous materials as well as limiting membranes. In addition, LGP107 was shown to be substantially distributed throughout the endocytic vacuolar system. The glycoprotein was found clustered in coated pits at the cell surface and localized along the surrounding membranes in endocytic vesicles. When cultured cells were exposed to HRP-anti LGP107 Fab', the antibody which was bound to its antigen within the coated pits was internalized via a system of endocytic vesicles and transported to lysosomes. During 20 min of incubation at 37 degrees C, the HRP tracer appeared at an early stage in small vesicles and moved progressively to larger vesicles, including multivesicular bodies. After 1 h, the tracer could be clearly seen in lysosomes heterogeneous in shape and size. The existence of LGP107 in endocytic compartments and the uptake of anti LGP107 antibody by hepatocytes were not blocked by prior treatment of the cells with cycloheximide and excess amounts of anti LGP107 IgG. These data suggest that LGP107 circulates between the cell surface and lysosomes through the endocytic membrane traffic in hepatocytes.  相似文献   

8.
Summary The fine structural localization of the endogeneous peroxidase activity in the thyroid of the young frog was studied. The reaction product for peroxidase was observed over the peripheral luminal colloid and apical region of the follicular epithelial cell. Most apical small granules and some parts of Golgi lamellae and a few Golgi vesicles were specifically stained. The cisternae of rough endoplasmic reticulum and the nuclear cisternae did not demonstrate any positive reaction for peroxidase activity with difference from that of various cells of mammalia. In this study, only mature peroxidase seems to be positive for its reaction and the enzyme in the rough endoplasmic reticulum is considered to be too immature to react for DAB method in the frog thyroid cell. The relationship between the localization of peroxidase reaction and the site of the iodination of thyroglobulin was discussed.  相似文献   

9.
Human thyroid peroxidase (TPO) has been purified from thyroid microsomes by immunoaffinity chromatography using a monoclonal antibody (mAb) to TPO. The eluted material had a specific activity of 381 U/mg and exhibited a peak in the Soret region. The ratio of A411 to A280 ranged from 0.20 to 0.25. Upon SDS-polyacrylamide gel electrophoresis, the purified enzyme gave two contiguous bands in the 100 kDa region. Further, it has been demonstrated that sera with anti-microsomal autoantibodies from patients presenting Graves' or Hashimoto's thyroiditis diseases were able to bind to purified TPO and to inhibit in a dose-dependent manner the mAb binding to purified TPO. This suggests that TPO is the thyroid antigen termed to date the microsomal antigen.  相似文献   

10.
We have examined the ability of nonionic detergents to solubilize thyroid peroxidase from a porcine thyroid particulate fraction, as measured by the release of peroxidase activity into the supernatant fraction after centrifugation at 105,000 X g for 1 hour and the retardation of the supernatant peroxidase of Sepharose 6B. The parameters of peroxidase solubilization by Triton X-100 have been investigated in detail. Under optimum conditions, 60 to 95% of the thryoid peroxidase and about 50% of the total protein is released into the 105,000 X g, 1-hour supernatant. Under the optimum conditions established with Triton X-100, a series of Brij detergents of different chemical structure were equally effective in releasing peroxidase and protein. The protein patterns of the supernatants obtained with these detergents were similar on sodium dodecyl sulfate-polyacrylamide electrophoresis gels, suggesting that the detergents studied release similar membrane proteins. The Triton X-100 and Brij 58 supernatants were chromatographed separately on Sepharose 6B equilibrated with 0.1% Triton X-100 or Brij 58, respectively. In both cases, 75 to 80% of the peroxidase activity was retarded, thereby indicating that the nonionic detergents effect solubilization of the peroxidase rather than dispersal of nonsedimentable membrane fragments. These studies report the first successful solubilization of thyroid peroxidase by nonionic detergents. Together with previous evidence from our laboratory, these experiments indicate that thyroid peroxidase is an integral membrane protein.  相似文献   

11.
Summary Pseudopod formation in response to thyrotropin can be obtained with porcine thyroid cell monolayers attached to floating collagen gels or collagen-coated Millipore filters, a model system that allows free access to ligands and antibodies to the apical plasma membrane. To obtain new insight concerning the molecular composition of the pseudopod membrane, (1) ligands were used allowing identification of anionic sites (ruthenium red, cationized ferritin) or carbohydrate units (wheat germ agglutinin, WGA) and (2) antibodies elicited against isolated porcine thyroid membranes or dog intestinal aminopeptidase were employed.Wheat germ agglutinin-binding sites, detected by fluorescence and electron microscopy, were heterogeneously dispersed on the apical membrane. In TSH-stimulated cells, the absence of WGA-binding sites was showed on the pseudopod membrane of thyroid cells, in addition to the previously reported absence of anionic sites. This absence of binding appeared to be independent of the conditions of incubation and/or times of stimulation. Aminopeptidase, which is an apical marker in thyroid cells, was redistributed and clustered on the pseudopod membrane in the cells exposed to TSH stimulation.These present findings support the view that the pseudopod surface constitutes a highly specialized microdomain within the thyroid apical plasma membrane during TSH acute stimulation.With the technical assistance of Brigitte Nguyen Than Dao, Laboratoire de Neuroendocrinologie A, U.S.T.L., Montpellier. Preliminary accounts of this study were presented at the XXI-Vème Colloque de la Société Française de Biologie Cellulaire, Montpellier, 1984  相似文献   

12.
Characterization of hog thyroid peroxidase   总被引:2,自引:0,他引:2  
Several fundamental properties of purified hog thyroid peroxidase (A413 nm/A280 nm = 0.55) were investigated in comparison with bovine lactoperoxidase. The Mr of thyroid peroxidase was 71,000. The prosthetic group of thyroid peroxidase was identified spectrophotometrically as protoheme IX after the enzyme was hydrolyzed with Pronase. Optical spectra of oxidized and reduced thyroid peroxidases and their complexes with azide and cyanide were very similar to lactoperoxidase, except that lactoperoxidase had two reduced forms with the Soret band either at 446 or 435 nm, and thyroid peroxidase lacked a reduced form having the 446-nm band. From comparison of their pyridine hemochrome spectra, epsilon mM at 413 nm of thyroid peroxidase was estimated to be 114, being the same as that of lactoperoxidase. The cyanide inhibition for the reaction of thyroid peroxidase was competitive with hydrogen peroxide and the inhibition constant was in rough accord with the dissociation constant of its cyanide complex measured from spectrophotometric titration. Azide inhibited the reaction with an inhibition constant which was about one one-thousandth of the dissociation constant for its spectrally discernible complex. The azide inhibition was not competitive with hydrogen peroxide and decreased as the reaction proceeded. Aminotriazole inhibited the reaction strongly, and the inhibition was augmented during the reaction. These inhibition patterns of azide and aminotriazole were more or less observed in the reaction of lactoperoxidase, but not in the case of horseradish peroxidase. Characteristics of animal peroxidases are discussed.  相似文献   

13.
Pools of sera from patients with Graves' disease or Hashimoto's thyroiditis highly inhibit the binding to human thyroid membranes of one of 19 monoclonal antibodies raised against preparations of human thyroid membranes. This monoclonal antibody reacts with human and bovine thyroid peroxidase and bovine lactoperoxidase but not with human hemoglobin, cytochrome c and other related molecules. These results indicate that the thyroid peroxidase and the microsomal antigen are antigenically related. These data taken together with those from other groups, highly suggest that thyroid peroxidase is the microsomal antigen involved in autoimmune thyroid diseases.  相似文献   

14.
In the hope of localizing thyroglobulin within focullar cells of the thyroid gland, antibodies raised against rat thyroglobulin were labeled with the enzyme horseradish peroxidase or with (125)I-radioiodine. Sections of rat thyroids fixed in glutaraldehyde and embedded in glycol methacrylate or Araldite were placed in contact with the labeled antibodies. The sites of antibody binding were detected by diaminobenzidine staining in the case of peroxidase labeling, and radioautography in the case of 125(I) labeling. Peroxidase labeling revealed that the antibodies were bound by the luminal colloid of the thyroid follicles and, within focullar cells, by colloid droplets, condensing vacuoles, and apical vesicles. (125)I labeling confirmed these findings, and revealed some binding of antibodies within Golgi saccules and rough endoplasmic reticulum. This method provides a visually less distinct distribution than peroxidase labeling, but it allowed ready quantitation of the reactions by counts of silver grains in the radioautographs. The counts revealed that the concentration of label was similar in the luminal colloid of different follicles, but that it varied within the compartments of follicular cells. A moderate concentration was detected in rough endoplasmic reticulum and Golgi saccules, whereas a high concentration was found in condensing vacuoles, apical vesicles, and in the luminal colloid. Varying amounts of label were observed over the different types of colloid droplets, and this was attributed to various degrees of lysosomal degradation of thyroglobulin. It is concluded that the concentration of thyroglobulin antigenicity increases during transport from the ribosomal site of synthesis to the follicular colloid, and then decreases during the digestion of colloid droplets which leads to the release of the thyoid hormone.  相似文献   

15.
The use of a divalent effector molecule improves bispecific antibody (bsMAb) pretargeting by enabling the cross-linking of monovalently bound bsMAb on the cell surface, thereby increasing the functional affinity of a bsMAb. In this work, it was determined if a bsMAb with divalency for the primary target antigen would improve bsMAb pretargeting of a divalent hapten. The pretargeting of a (99m)Tc-labeled divalent DTPA-peptide, IMP-192, using a bsMAb prepared by chemically coupling two Fab' fragments, one with monovalent specificity to the primary target antigen, carcinoembryonic antigen (CEA), and to indium-loaded DTPA [DTPA(In)], was compared to two other bsMAbs, both with divalency to CEA. One conjugate used the whole anti-CEA IgG, while the other used the anti-CEA F(ab')(2) fragment to make bsMAbs that had divalency to CEA, but with different molecular weights to affect their pharmacokinetic behavior. The rate of bsMAb blood clearance was a function of molecular weight (IgG x Fab' < F(ab')(2) x Fab' < Fab' x Fab' conjugate). The IgG x Fab' bsMAb conjugate had the highest uptake and longest retention in the tumor. However, when used for pretargeting, the F(ab')(2) x Fab' conjugate allowed for superior tumor accretion of the (99m)Tc-IMP-192 peptide, because its more rapid clearance from the blood enabled early intervention with the radiolabeled peptide when tumor uptake of the bsMAb was at its peak. Excellent peptide targeting was also seen with the Fab' x Fab' conjugate, albeit tumor uptake was lower than with the F(ab')(2) x Fab' conjugate. Because the IgG x Fab' bsMAb cleared from the blood so slowly, when the peptide was given at the time of its maximum tumor accretion, the peptide was captured predominantly by the bsMAb in the blood. Several strategies were explored to reduce the IgG x Fab' bsMAb remaining in the blood to take advantage of its 3-4-fold higher tumor accretion than the other bsMAb conjugates. A number of agents were tested, including those that could clear the bsMAb from the blood (e.g., galactosylated or nongalactosylated anti-id antibody) and those that could block the anti-DTPA(In) binding arm [e.g., DTPA(In), divalent-DTPA(In) peptide, and DTPA coupled to bovine serum albumin (BSA) or IgG]. When clearing agents were given 65 h after the IgG x Fab' conjugate (time of maximum tumor accretion for this bsMAb), (99m)Tc-IMP-192 levels in the blood were significantly reduced, but a majority of the peptide localized in the liver. Increasing the interval between the clearing agent and the time the peptide was given to allow for further processing of the bsMAb-clearing agent complex did not improve targeting. At the dose and level of substitution tested, galacosylated BSA-DTPA(In) was cleared too quickly to be an effective blocking agent, but BSA- and IgG-DTPA(In) conjugates were able to reduce the uptake of the (99m)Tc-IMP-192 in the blood and liver. Tumor/nontumor ratios compared favorably for the radiolabeled peptide using the IgG x Fab'/blocking agent combination and the F(ab')(2) x Fab' (no clearing/blocking agent), and peptide uptake 3 h after the blocking agent even exceeded that of the F(ab')(2) x Fab'. However, this higher level of peptide in the tumor was not sustained over 24 h, and actually decreased to levels lower than that seen with the F(ab')(2) x Fab' by this time. These results demonstrate that divalency of a bsMAb to its primary target antigen can lead to higher tumor accretion by a pretargeted divalent peptide, but that the pharmacokinetic behavior of the bsMAb also needs to be optimized to allow for its clearance from the blood. Otherwise, blocking agents will need to be developed to reduce unwanted peptide uptake in normal tissues.  相似文献   

16.
The molecular size of microsomal membrane proteins from frozen porcine thyroids before and after solubilization by proteolytic and non-proteolytic techniques has been investigated by means of polyacrylamide-gel electrophoresis in the presence of 1% sodium dodecylsulfate. When thyroid microsomal membrane proteins are solubilized by non-proteolytic methods such as high pH, n-butanol, or deoxycholate, no major change in the electrophoretic pattern compared to untreated microsomes has been observed, thereby suggesting that these non-proteolytic methods are capable of extracting membrane proteins from thyroid microsomes without altering their molecular size. However, treatment of microsomes with protein-solubilizing levels of trypsin (1-5 mug trypsin per mg thyroid protein) results in degradation of all major proteins with a molecular weight greater than 30 000. The high-molecular-weight proteins are particularly susceptible to attack by trypsin. Thus, these experiments indicate that the use of trypsin to solubilize thyroid microsomal membrane proteins, particularly thyroid peroxidase, will result in fragmented proteins and should be avoided if intact membrane proteins are desired.  相似文献   

17.
Binding of aggregated human immunoglobulin G (IgG) on diploid human fibroblasts leads to a rapid depolarization of the cells within 1-2 min. We resolved this membrane potential change into its plasma membrane and mitochondrial membrane components by measuring the transmembrane distribution of the lipophilic tritium-labelled cation tetraphenylphosphonium, [3H]Ph4P+. The responsibility of the plasma membrane for the membrane potential change, induced by binding of IgGs, is demonstrated. The IgG-induced membrane depolarization leads to the induction of prostaglandin E2 synthesis. Aggregated immunoglobulins (IgG) are specifically bound via the Fc portion because only binding of Fc fragments, in contrast to (Fab')2 fragments, leads to a stimulation of prostaglandin E2 synthesis comparable to that mediated by IgGs. Depolarization of the plasma membrane by short incubation of the fibroblasts in high-K+ buffer (5 min) results in a stimulation of prostaglandin E2 synthesis comparable to that mediated by either aggregated human IgGs or Fc fragments. Our previous results on Fc gamma-receptor-mediated antigen-IgG-antibody complex internalization showed that a maximum uptake of these complexes could be detected 60-90 min after binding. Therefore, we conclude that not internalisation but binding of aggregated IgGs to the Fc gamma receptors on human fibroblasts is the stimulus for plasma membrane depolarization leading to an enhanced prostaglandin E2 release.  相似文献   

18.
Highly purified, trypsin/detergent-solubilized thyroid peroxidase (TPO), prepared from pig thyroid tissue, was subjected to reduction and alkylation followed by trypsin digestion. The resulting peptides were fractionated using HPLC. Corresponding carbohydrate positive regions from three separate HPLC experiments were pooled and further chromatography was carried out to yield purified peptide suitable for sequence analysis and complete carbohydrate composition analysis. Four of the five putative sites for N-linked glycosylation were found to carry oligosaccharide units in which mannose and glucosamine were the sole or predominant sugars. Three of the four glycosylations occur at asparagine residues which are likely to be at beta turns or bends. The fifth putative glycosylation site could not be confirmed and may either be poorly glycosylated or escape glycosylation. All of the confirmed glycosylated sites occur in the N-terminal third of the TPO polypeptide chain, in the portion of the molecule believed to be extracellular. The isolation of at least two chromatographic forms of glycopeptide derived from each of the confirmed sites suggests microheterogeneity in the structure of the oligosaccharide units of thyroid peroxidase similar to that observed in many other glycoproteins.  相似文献   

19.
The distribution of endogenous peroxidase and hydrogen-peroxide-producing NAD(P)H-oxidase, which are essential enzymes for the iodination of thyroglobulin, was cytochemically determined in the thyroid follicular cells of propylthiouracil (PTU)-treated rats. Peroxidase activity was determined using the diaminobenzidine technique. The presence of NAD(P)H-oxidase was determined using H2O2 generated by the enzyme; the reaction requires NAD(P)H as a substrate and cerous ions for the formation of an electron-dense precipitate. Peroxidase activity was found in the developed rough endoplasmic reticulum (rER) and Golgi apparatus, but it was also associated with the apical plasma membrane; NAD(P)H-oxidase activity was localized on the apical plasma membrane. The presence of both enzymes on the apical plasma membrane implies that the iodination of thyroglobulin occurs at the apical surface of the follicular cell in the TSH-stimulated state which follows PTU treatment.  相似文献   

20.
Summary The fine structural localization of a peroxidase activity in the rat thyroid follicular epithelial cell was studied by histochemistry at electron microscopic level. The reaction product is recognized chiefly in the cisternae of the elements of granular endoplasmic reticulum and of nuclear envelope. Golgi vesicles or apical small vesicles, mitochondria, and dense granules are sometimes positive for this reaction. The relationship between the fine structural localization of peroxidase and the site of the iodination of thyroglobulin is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号