首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We tested the hypothesis that, in canine embolic pulmonary hypertension, upstream transmission of increased left atrial pressure (LAP) is inversely related to the level of the pressure intercept (PI) obtained by extrapolation from the linear pulmonary vascular pressure-flow (P-Q) plot. P-Q coordinates were obtained by varying Q through systemic fistulas. Seven group 1 dogs were embolized with autologous blood clot to produce marked pulmonary hypertension and mean pulmonary arterial pressure (PAP), and PI increased from 15 to 41 mmHg (P less than 0.001) and from 8.8 to 31 mmHg (P less than 0.001), respectively. Before and after embolization we assessed effects of increased LAP, produced by inflation of a left atrial balloon, on PAP at constant Q. Embolization depressed the mean slope of this relationship from 0.78 to 0.16 (P less than 0.001). Subsequently, six group 2 dogs were embolized to produce moderate pulmonary hypertension with a mean PI of 22 mmHg. This value was significantly less than PI in group 1 (P less than 0.01). After embolization, the slope of the PAP-LAP relationship was greater in group 2 than group 1: 0.47 vs. 0.16 (P less than 0.01). We conclude that the upstream transmission of left atrial pressure is inversely related to PI and that marked embolic pulmonary hypertension produces an effective vascular waterfall.  相似文献   

2.
We examined the effects of different-sized glass-bead embolization on pulmonary hemodynamics and gas exchange in 12 intact anesthetized dogs. Pulmonary hemodynamics were evaluated by multipoint pulmonary arterial pressure (Ppa)/cardiac output (Q) plots before and 60 min after sufficient amounts of 100-microns (n = 6 dogs) or 1,000-microns (n = 6 dogs) glass beads to triple baseline Ppa were given and again 20 min after 5 mg/kg hydralazine in all the animals. Gas exchange was assessed using the multiple inert gas elimination technique in each of these experimental conditions. Embolization increased both the extrapolated pressure intercepts (by 6 mmHg) and the slopes (by 5 mmHg.l-1.min.m2) of the linear Ppa/Q plots, together with an 80% angiographic pulmonary vascular obstruction. These changes were not significantly different in the two subgroups of dogs. However, arterial PO2 was most decreased after the 100-microns beads, and arterial PCO2 was most increased after the 1,000-microns beads. Both bead sizes deteriorated the distribution of ventilation (VA)/perfusion (Q) ratios, with development of lung units with higher as well as with lower than normal VA/Q. Only 100-microns beads generated a shunt. Only 1,000-microns beads generated a high VA/Q mode and increased inert gas dead space. Hydralazine increased the shunt and decreased the slope of the Ppa/Q plots after 100-microns beads and had no effect after 1,000-microns beads. We conclude that in embolic pulmonary hypertension, Ppa/Q characteristics are unaffected by embolus size up to 1,000 microns.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The mechanism(s) involved in the pulmonary vascular and airway responses to pulmonary microembolism have not been clearly defined. Therefore, we determined the effects of specific prostaglandin and histamine blockade on the hemodynamic and arterial blood gas tension responses to particulate microembolism (200 μ glass beads) in intact anesthetized dogs. The marked increases in pulmonary arterial pressure and pulmonary vascular resistance observed in the untreated dogs were attenuated, but not abolished, following both prostaglandin blockade (with either meclofenamate or polyphloretin phosphate) and histamine blockade (with chlorpheniramine and metiamide) at 5 minutes, and were still attenuated 30 minutes post embolization. Combined prostaglandin and histamine blockade further attenuated, but again did not abolish, the pulmonary vascular responses. Cardiac outputs and systemic arterial pressures were unchanged from control by embolism. The alveolar hypoventilation (decreased arterial oxygen tension and increased carbon dioxide tension) observed in the untreated embolized dogs was prevented only with the prostaglandin inhibitors. Pulmonary microembolism in intact dogs, therefore, appears to induce vasoconstriction mediated partially by prostaglandin and histamine action, and alveolar hypoventilation mediated by prostaglandin, but not histamine, action.  相似文献   

4.
The mechanism(s) involved in the pulmonary vascular and airway responses to pulmonary microembolism have not been clearly defined. Therefore, we determined the effects of specific prostaglandin and histamine blockade on the hemodynamic and arterial blood gas tension responses to particulate microembolism (200 mu glass beads) in intact anesthetized dogs. The marked increases in pulmonary arterial pressure and pulmonary vascular resistance observed in the untreated dogs were attenuated, but not abolished, following both prostaglandin blockade (with either meclofenamate or polyphloretin phosphate) and histamine blockade (with chlorpheniramine and metiamide) at 5 minutes, and were still attenuated 30 minutes post embolization. Combined prostaglandin and histamine blockade further attenuated, but again did not abolish, the pulmonary vascular responses. Cardiac outputs and systemic arterial pressures were unchanged from control by embolism. The alveolar hypoventilation (decreased arterial oxygen tension and increased carbon dioxide tension) observed in the untreated embolized dogs was prevented only with the prostaglandin inhibitors. Pulmonary microembolism in intact dogs, therefore, appears to induce vasoconstriction mediated partially by prostaglandin and histamine action, and alveolar hypoventilation mediated by prostaglandin, but not histamine, action.  相似文献   

5.
Experiments were performed to determine whether activation of the coagulation cascade was required for pulmonary vascular permeability to increase during microembolization of the lung. For 30-45 min air microemboli were intravenously infused (0.05-0.10 ml X kg-1 X min-1) into awake sheep with chronic lung-lymph fistulas and anesthetized mongrel dogs. During embolization the pulmonary arterial pressure increased, and O2 partial pressure (PaO2) fell by more than 20 Torr (P less than 0.01). Subsequently lymph flow nearly tripled without a change in the lymph-to-plasma protein concentration ratio. Partial thromboplastin and prothrombin times, biological activity of antithrombin III, and circulating concentration of 125I-labeled dog or sheep fibrinogen did not change during or following air infusion. In two additional sheep an intravenous infusion of thrombin at 0.6 U X kg-1 X min-1 for 15 min resulted in a 20% decrease in 125I-labeled sheep fibrinogen concentration without a change in pulmonary arterial pressure or PaO2. We conclude that air microembolization can increase permeability to water and protein without a detectable activation of the coagulation cascade in the sheep or dog.  相似文献   

6.
Alterations in the nitric oxide (NO) pathway have been implicated in the pathogenesis of chronic hypoxia-induced pulmonary hypertension. Chronic hypoxia can either suppress the NO pathway, causing pulmonary hypertension, or increase NO release in order to counteract elevated pulmonary arterial pressure. We determined the effect of NO synthase inhibitor on hemodynamic responses to acute hypoxia (10% O(2)) in anesthetized rats following chronic exposure to hypobaric hypoxia (0.5 atm, air). In rats raised under normoxic conditions, acute hypoxia caused profound systemic hypotension and slight pulmonary hypertension without altering cardiac output. The total systemic vascular resistance (SVR) decreased by 41 +/- 5%, whereas the pulmonary vascular resistance (PVR) increased by 25 +/- 6% during acute hypoxia. Pretreatment with N(omega)-nitro-L-arginine methyl ester (L-NAME; 25 mg/kg) attenuated systemic vasodilatation and enhanced pulmonary vasoconstriction. In rats with prior exposure to chronic hypobaric hypoxia, the baseline values of mean pulmonary and systemic arterial pressure were significantly higher than those in the normoxic group. Chronic hypoxia caused right ventricular hypertrophy, as evidenced by a greater weight ratio of the right ventricle to the left ventricle and the interventricular septum compared to the normoxic group (46 +/- 4 vs. 28 +/- 3%). In rats which were previously exposed to chronic hypoxia (half room air for 15 days), acute hypoxia reduced SVR by 14 +/- 6% and increased PVR by 17 +/- 4%. Pretreatment with L-NAME further inhibited the systemic vasodilatation effect of acute hypoxia, but did not enhance pulmonary vasoconstriction. Our results suggest that the release of NO counteracts pulmonary vasoconstriction but lowers systemic vasodilatation on exposure to acute hypoxia, and these responses are attenuated following adaptation to chronic hypoxia.  相似文献   

7.
Daily administration of propranolol to 9 chronically instrumented, trained dogs for 2 weeks caused significant (p less than 0.05) decreases in heart rate (70 +/- 8 to 57 +/- 6 beats/min), cardiac output (3.6 +/- 0.3 to 2.9 +/- 0.2 liters/min), pulmonary arterial pressure (15.7 +/- 0.5 to 10.0 +/- 0.5 mm Hg) and total pulmonary vascular resistance (4.6 +/- 0.6 to 3.3 +/- 0.4 units). Nadolol, a structurally dissimilar beta-adrenergic receptor antagonist, caused a similar decrease in total pulmonary resistance. Acute meclofenamate administration did not return to normal pulmonary arterial pressure and resistance in the dogs chronically treated with beta-adrenergic receptor blockers. We therefore conclude that chronic beta-adrenergic receptor blockade lowered pulmonary arterial pressure and resistance by a mechanism independent of cyclooxygenase. In addition, chronic beta-adrenergic receptor blockade did not affect the potential for hypoxic vasoconstriction.  相似文献   

8.
Pulmonary hypertension (PH) is associated with aberrant vascular remodeling and right ventricular (RV) dysfunction that contribute to early mortality. Large animal models that recapitulate human PH are essential for mechanistic studies and evaluating novel therapies; however, these models are not readily accessible to the field owing to the need for advanced surgical techniques or hypoxia. In this study, we present a novel swine model that develops cardiopulmonary hemodynamics and structural changes characteristic of chronic PH. This percutaneous model was created in swine (n=6) by combining distal embolization of dextran beads with selective coiling of the lobar pulmonary arteries (2 procedures per lung over 4 weeks). As controls, findings from this model were compared with those from a standard weekly distal embolization model (n=6) and sham animals (n=4). Survival with the combined embolization model was 100%. At 8 weeks after the index procedure, combined embolization procedure animals had increased mean pulmonary artery pressure (mPA) and pulmonary vascular resistance (PVR) compared to the controls with no effect on left heart or systemic pressures. RV remodeling and RV dysfunction were also present with a decrease in the RV ejection fraction, increase in the myocardial performance index, impaired longitudinal function, as well as cardiomyocyte hypertrophy, and interstitial fibrosis, which were not present in the controls. Pulmonary vascular remodeling occurred in both embolization models, although only the combination embolization model had a decrease in pulmonary capacitance. Taken together, these cardiopulmonary hemodynamic and structural findings identify the novel combination embolization swine model as a valuable tool for future studies of chronic PH.  相似文献   

9.
The pathogenesis of pulmonary hypertension in patients with chronic obstructive pulmonary disease is not understood. We have previously shown increased levels of mediators that control vasoconstriction (endothelin-1), vascular cell proliferation (endothelin-1 and vascular endothelial growth factor), and vasodilation (endothelial nitric oxide synthase) in the intrapulmonary arteries of animals exposed to cigarette smoke. To determine whether these mediators could be implicated in the structural remodeling of the arterial vasculature and increased pulmonary arterial pressure caused by chronic cigarette smoke exposure, guinea pigs were exposed to daily cigarette smoke for 6 mo. Pulmonary arterial pressures were measured. Intrapulmonary artery structure was analyzed by morphometry, artery mediator protein expression by immunohistochemistry, and artery mediator gene expression by laser capture microdissection and real-time RT-PCR. We found that the smoke-exposed animals developed increases in pulmonary arterial pressure and increased muscularization of the small pulmonary arteries. Gene expression and protein levels of all three mediators were increased, and pulmonary arterial pressure correlated both with the levels of mediator production and with the degree of arterial muscularization. We conclude that chronic smoke exposure produces increased vasoactive mediator expression in the small intrapulmonary arteries and that these mediators are associated with vascular remodeling as well as increased pulmonary arterial pressure. These findings support the idea that hypertension in chronic obstructive pulmonary disease is a result of direct cigarette smoke-mediated effects on the vasculature and suggest that interference with endothelin and VEGF production and activity or augmentation of nitric oxide levels may be beneficial.  相似文献   

10.
We investigated the effects of chronic intrauterine hypoxaemia produced by prolonged partial umbilical cord compression on the circulation shortly after birth in lambs. Vascular catheters were inserted in 10 fetal sheep at 120 to 130 days gestation to measure descending aortic blood gases, arterial pH, and arterial O2 saturation. An inflatable silicone rubber balloon cuff was also placed around the umbilical cord. After recovery and the return of descending aortic blood gases to the normal range, the balloon was gradually inflated, decreasing the PaO2 from 21.2 +/- 3.6 to 17.5 +/- 1.3 mm Hg and the arterial O2 saturation from 57.1 +/- 9.2% to 37.2% +/- 5.2. After 14.3 +/- 3.7 days of partial umbilical cord compression, the lambs were delivered by Caesarean section, instrumented to measure systemic and pulmonary arterial, right atrial and pulmonary arterial wedge pressures, pulmonary and systemic blood flows, and mechanically ventilated. Five normal lambs were also studied. From 60 to 120 min after delivery, when compared to normal lambs, the umbilical compression lambs had an increased pulmonary arterial pressure (P less than 0.05) pulmonary vascular resistance (P less than 0.05), and right atrial pressure (P less than 0.05) with similar arterial blood gases. In both groups, hypoxic ventilation produced an increase in pulmonary arterial pressure (P less than 0.05) which on return to room air ventilation decreased to baseline in the normal lambs but not in the umbilical cord compression lambs (P less than 0.05). Prolonged partial umbilical cord compression produces chronic fetal hypoxaemia and pulmonary arterial hypertension after birth. This may represent a model to study the pathophysiology of persistent pulmonary hypertension syndrome.  相似文献   

11.
Propylene glycol (30%) is the carrier base for pentobarbital sodium in preparations often used in research laboratories. It has caused pulmonary hypertension in calves, and we found it caused pulmonary hypertension in sheep as well. To investigate the mechanism of pulmonary hypertension with propylene glycol, we injected an average loading dose of 30% propylene glycol (0.5 ml/kg) into adult sheep, which was followed by a rise in thromboxane levels (P less than 0.05) in systemic arterial plasma and lung lymph and by a dramatic increase in pulmonary arterial pressure (17 +/- 1 to 35 +/- 4 mmHg, P less than 0.05) and a fall in cardiac output (2.7 +/- 0.5 to 1 +/- 0.2 l/min). Indomethacin pretreatment blocked the rise in thromboxane in lung lymph and arterial plasma and substantially, although not entirely, blocked the rise in pulmonary arterial pressure. Pulmonary intravascular macrophages (PIMS), which are present in sheep and calves, can release thromboxane in response to a stimulus. To test whether PIMS might be the source of the thromboxane and pulmonary hypertension, we injected propylene glycol into guinea pigs and dogs, which are reported to have no PIMS, as well as into newborn lambs, which are not believed to develop many PIMS until the 2nd wk of life. In dogs and guinea pigs there was no response to propylene glycol. In lambs there was a rise in pulmonary vascular resistance but significantly less than in adult sheep; indomethacin blocked this response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Acute and chronic hypoxic pulmonary hypertension in guinea pigs   总被引:1,自引:0,他引:1  
To determine whether the strength of acute hypoxic vasoconstriction predicts the magnitude of chronic hypoxic pulmonary hypertension, we performed serial studies on guinea pigs. Unanesthetized, chronically catheterized guinea pigs increased mean pulmonary arterial pressure (PAP) from 11 +/- 0.5 to 13 +/- 0.7 Torr in acute hypoxia (10% O2 for 65 min). The response was maximal at 5 min, remained stable for 1 h, and was reversible on return to room air. Cardiac index did not change with acute hypoxia or recovery. Guinea pigs exposed to chronic hypoxia increased PAP, measured in room air 1 h after removal from the hypoxic chamber, to 18 +/- 1 Torr by 5 days with little further increase in PAP to 20 +/- 1 Torr after 21 days. Cardiac index fell from 273 +/- 12 to 206 +/- 7 ml.kg-1.min-1 (P less than 0.05) after 21 days of hypoxia. Medial thickness of pulmonary arteries adjacent to terminal bronchioles and alveolar ducts increased significantly by 10 days. The magnitude of the pulmonary vasoconstriction to acute hypoxia persisted and was unabated during the development and apparent stabilization of chronic hypoxic pulmonary hypertension, suggesting that if vasoconstriction is the stimulus for remodeling, then the importance of the stimulus lessens with duration of hypoxia. In individual animals followed serially, we found no correlation between the magnitude of the acute vasoconstrictor response before chronic hypoxia and the severity of chronic pulmonary hypertension that subsequently developed either because the initial response was small and variable or because vasoconstriction may not be the sole stimulus for vascular remodeling in the guinea pig.  相似文献   

13.
Nonocclusive main pulmonary arterial distension produces peripheral pulmonary hypertension. The mechanism of this response is unknown. The effects of total spinal anesthesia on the response were studied in halothane-anesthetized dogs. Before total spinal anesthesia, main pulmonary arterial balloon inflation increased pulmonary arterial pressure and resistance without affecting systemic hemodynamic variables. Both right and left pulmonary arterial pressures were monitored to exclude unilateral obstruction with main pulmonary arterial balloon inflation. Total spinal anesthesia decreased cardiac output and systemic arterial pressures. After total spinal anesthesia, main pulmonary arterial distension still increased pulmonary arterial pressure and resistance. Right atrial pacing, discontinuation of halothane anesthesia, and norepinephrine infusion during total spinal anesthesia partially reversed the hemodynamic changes caused by total spinal anesthesia. The percent increase in pulmonary vascular resistance due to main pulmonary arterial distension was similar before total spinal anesthesia and during all experimental conditions during total spinal anesthesia. The pulmonary hypertensive response is therefore not dependent on central synaptic connections.  相似文献   

14.
Pigs have been reported to present with a stronger pulmonaryvascular reactivity than many other species, including dogs. Weinvestigated the pulmonary vascular impedance response to autologous blood clot embolic pulmonary hypertension in anesthetized and ventilated minipigs (n = 6) and dogs(n = 6). Before embolization, minipigs, compared with dogs, presented with higher mean pulmonary arterial pressure (Ppa; by an average of 9 mmHg), a steeper slope ofPpa-flow () relationships, and higher0-Hz impedance (Z0) andfirst-harmonic impedance (Z1),without significant differences in characteristic impedance (Zc), and alower ratio of pulsatile hydraulic power to total hydraulic power.Embolic pulmonary hypertension (mean Ppa: 40-55 mmHg) wasassociated with increased Z0 andZ1 in both species, but theminipigs had a steeper slope of Ppa/ plots and anincreased Zc. At identical and Ppa,minipigs still presented with higherZ1 and Zc and a lower ratio ofpulsatile hydraulic power to total hydraulic power. The energytransmission ratio, defined as the hydraulic power in the measuredwaves divided by the hydraulic power in the forward waves, was betterpreserved after embolism in minipigs. No differences in wave reflection indexes were found before and after embolism. We conclude that minipigs, compared with dogs, present with a higher pulmonary vascularresistance and reactivity and adapt to embolic pulmonary hypertensionby an increased Zc without earlier wave reflection. These differencesallow for a reduced pulsatile component of hydraulic power and,therefore, a better energy transfer from the right ventricle to thepulmonary circulation.

  相似文献   

15.
Thromboxane (Tx) has been suggested to mediate the pulmonary hypertension of phorbol myristate acetate- (PMA) induced acute lung injury. To test this hypothesis, the relationship between Tx and pulmonary arterial pressure was evaluated in a model of acute lung injury induced with PMA in pentobarbital sodium-anesthetized male mongrel dogs. Sixty minutes after administration of PMA (20 micrograms/kg iv, n = 10), TxB2 increased 10-fold from control in both systemic and pulmonary arterial blood and 8-fold in bronchoalveolar lavage (BAL) fluid. Concomitantly, pulmonary arterial pressure (Ppa) increased from 14.5 +/- 1.0 to 36.2 +/- 3.5 mmHg, and pulmonary vascular resistance (PVR) increased from 5.1 +/- 0.4 to 25.9 +/- 2.9 mmHg.l-1.min. Inhibition of Tx synthase with OKY-046 (10 mg/kg iv, n = 6) prevented the PMA-induced increase in Tx concentrations in blood and BAL fluid but did not prevent or attenuate the increase in Ppa. OKY-046 pretreatment did, however, attenuate but not prevent the increase in PVR 60 min after PMA administration. Pretreatment with the TxA2/prostaglandin H2 receptor antagonist ONO-3708 (10 micrograms.kg-1.min-1 iv, n = 7) prevented the pressor response to bolus injections of 1-10 micrograms U-46619, a Tx receptor agonist, but did not prevent or attenuate the PMA-induced increase in Ppa. ONO-3708 also attenuated but did not prevent the increase in PVR. These results suggest that Tx does not mediate the PMA-induced pulmonary hypertension but may augment the increases in PVR in this model of acute lung injury.  相似文献   

16.
We investigated the acute and chronic effects of left lung autotransplantation (LLA) on the left pulmonary vascular pressure-flow (LP/Q) relationship in conscious dogs. Continuous LP/Q plots were generated in chronically instrumented conscious dogs 2 days, 2 wk, 1 mo, and 2 mo after LLA. Identically instrumented normal conscious dogs were studied at equal time points post-surgery. LLA had little or no effect on baseline systemic hemodynamics or blood gases. In contrast, compared with normal conscious dogs, striking active flow-independent pulmonary vasoconstriction was observed 2 days post-LLA. The slope of the LP/Q relationship was increased from a normal value of 0.275 +/- 0.021 to 0.699 +/- 0.137 mmHg.ml-1.min-1.kg-1 2 days post-LLA. Pulmonary vasoconstriction of similar magnitude was also observed on a chronic basis at 2 wk, 1 mo, and even 2 mo post-LLA. Pulmonary vasoconstriction post-LLA was not due to fixed resistance at the left pulmonary arterial or venous anastomotic sites. Finally, systemic arterial blood gases were unchanged when total pulmonary blood flow was directed to exclusively perfuse the transplanted left lung. Thus, LLA results in both acute and chronic pulmonary vasoconstriction in conscious dogs. LLA should serve as a useful stable experimental model to assess the specific effects of surgical transplantation on pulmonary vascular regulation.  相似文献   

17.
Responses to a selective azaindole-based Rho kinase (ROCK) inhibitor (azaindole-1) were investigated in the rat. Intravenous injections of azaindole-1 (10-300 μg/kg), produced small decreases in pulmonary arterial pressure and larger decreases in systemic arterial pressure without changing cardiac output. Responses to azaindole-1 were slow in onset and long in duration. When baseline pulmonary vascular tone was increased with U46619 or L-NAME, the decreases in pulmonary arterial pressure in response to the ROCK inhibitor were increased. The ROCK inhibitor attenuated the increase in pulmonary arterial pressure in response to ventilatory hypoxia. Azaindole-1 decreased pulmonary and systemic arterial pressures in rats with monocrotaline-induced pulmonary hypertension. These results show that azaindole-1 has significant vasodilator activity in the pulmonary and systemic vascular beds and that responses are larger, slower in onset, and longer in duration when compared with the prototypical agent fasudil. Azaindole-1 reversed hypoxic pulmonary vasoconstriction and decreased pulmonary and systemic arterial pressures in a similar manner in rats with monocrotaline-induced pulmonary hypertension. These data suggest that ROCK is involved in regulating baseline tone in the pulmonary and systemic vascular beds, and that ROCK inhibition will promote vasodilation when tone is increased by diverse stimuli including treatment with monocrotaline.  相似文献   

18.
Acute hypoxia increases pulmonary arterial pressure and vascular resistance. Previous studies in isolated smooth muscle and perfused lungs have shown that carbonic anhydrase (CA) inhibition reduces the speed and magnitude of hypoxic pulmonary vasoconstriction (HPV). We studied whether CA inhibition by acetazolamide (Acz) is able to prevent HPV in the unanesthetized animal. Ten chronically tracheotomized, conscious dogs were investigated in three protocols. In all protocols, the dogs breathed 21% O(2) for the first hour and then 8 or 10% O(2) for the next 4 h spontaneously via a ventilator circuit. The protocols were as follows: protocol 1: controls given no Acz, inspired O(2) fraction (Fi(O(2))) = 0.10; protocol 2: Acz infused intravenously (250-mg bolus, followed by 167 microg.kg(-1).min(-1) continuously), Fi(O(2)) = 0.10; protocol 3: Acz given as above, but with Fi(O(2)) reduced to 0.08 to match the arterial Po(2) (Pa(O(2))) observed during hypoxia in controls. Pa(O(2)) was 37 Torr during hypoxia in controls, mean pulmonary arterial pressure increased from 17 +/- 1 to 23 +/- 1 mmHg, and pulmonary vascular resistance increased from 464 +/- 26 to 679 +/- 40 dyn.s(-1).cm(-5) (P < 0.05). In both Acz groups, mean pulmonary arterial pressure was 15 +/- 1 mmHg, and pulmonary vascular resistance ranged between 420 and 440 dyn.s(-1).cm(-5). These values did not change during hypoxia. In dogs given Acz at 10% O(2), the arterial Pa(O(2)) was 50 Torr owing to hyperventilation, whereas in those breathing 8% O(2) the Pa(O(2)) was 37 Torr, equivalent to controls. In conclusion, Acz prevents HPV in conscious spontaneously breathing dogs. The effect is not due to Acz-induced hyperventilation and higher alveolar Po(2), nor to changes in plasma endothelin-1, angiotensin-II, or potassium, and HPV suppression occurs despite the systemic acidosis with CA inhibition.  相似文献   

19.
Our objectives were to investigate the pulmonary vascular effects of exogenously administered bradykinin at normal and reduced levels of cardiac index in intact conscious dogs and to assess the extent to which the pulmonary vascular response to bradykinin is the result of either cyclooxygenase pathway activation or reflex activation of sympathetic beta-adrenergic and -cholinergic receptors. Multipoint pulmonary vascular pressure-cardiac index (P/Q) plots were constructed during normoxia in conscious dogs by step-wise constriction of the thoracic inferior vena cava to reduce Q. In intact dogs, bradykinin (2 micrograms X kg-1 X min-1 iv) caused systemic vasodilation, i.e., systemic arterial pressure was slightly decreased (P less than 0.05), Q was markedly increased (P less than 0.01), and mixed venous PO2 and oxygen saturation (SO2) were increased (P less than 0.01). Bradykinin decreased (P less than 0.01) the pulmonary vascular pressure gradient (pulmonary arterial pressure-pulmonary capillary wedge pressure) over the entire range of Q studied (140-60 ml X min-1 X kg-1) in intact dogs. During cyclooxygenase pathway inhibition with indomethacin, bradykinin again decreased (P less than 0.05) pulmonary arterial pressure-pulmonary capillary wedge pressure at every level of Q, although the magnitude of the vasodilator response was diminished at lower levels of Q (60 ml X min-1 X kg-1). Following combined administration of sympathetic beta-adrenergic and -cholinergic receptor antagonists, bradykinin still decreased (P less than 0.01) pulmonary arterial pressure-pulmonary capillary wedge pressure over the range of Q from 160 to 60 ml X min-1 X kg-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Cell-free hemoglobin (Hb) exposure may be a pathogenic mediator in the development of pulmonary arterial hypertension (PAH), and when combined with chronic hypoxia the potential for exacerbation of PAH and vascular remodeling is likely more pronounced. We hypothesized that Hb may contribute to hypoxia-driven PAH collectively as a prooxidant, inflammatory, and nitric oxide (NO) scavenger. Using programmable micropump technology, we exposed male Sprague-Dawley rats housed under room air or hypoxia to 12 or 30 mg per day Hb for 3, 5, and 7 wk. Blood pressure, cardiac output, right ventricular hypertrophy, and indexes of pulmonary vascular remodeling were evaluated. Additionally, markers of oxidative stress, NO bioavailability and inflammation were determined. Hb increased pulmonary arterial (PA) pressure, pulmonary vessel wall stiffening, and right heart hypertrophy with temporal and dose dependence in both room air and hypoxic cohorts. Hb induced a modest increase in plasma oxidative stress markers (malondialdehyde and 4-hydroxynonenal), no change in NO bioavailability, and increased lung ICAM protein expression. Treatment with the antioxidant Tempol attenuated Hb-induced pulmonary arterial wall thickening, but not PA pressures or ICAM expression. Chronic exposure to low plasma Hb concentrations (range = 3-10 μM) lasting up to 7 wk in rodents induces pulmonary vascular disease via inflammation and to a lesser extent by Hb-mediated oxidation. Tempol demonstrated a modest effect on the attenuation of Hb-induced pulmonary vascular disease. NO bioavailability was found to be of minimal importance in this model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号