首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present report focuses on the mechanism(s) involved in the steroid-induced decrease of androgen production in immature African catfish testes that was observed in previous studies. Juvenile animals were implanted with Silastic pellets containing different 11-oxygenated androgens (11-ketotestosterone, KT; 11 beta-hydroxyandrostenedione, OHA; 11-ketoandrostenedione, KA), testosterone (T) or estradiol-17 beta (E2). Control groups received steroid-free pellets. Two weeks later, testis tissue fragments were either incubated with increasing concentrations of catfish luteinizing hormone (LH), or incubated with [3H]-pregnenolone ([3H]-P5) or [3H]-androstenedione ([3H]-A). Tissue fragments were also prepared for the quantitative assessment of Leydig cell morphology. Most of the parameters studied were not affected significantly by implantation of E2. Implantation of all androgens inhibited both the basal and the LH-stimulated androgen secretory capacity in vitro. This was associated with a reduced size of the Leydig cells and loss of half of their mitochondria. The studies on the metabolism of tritiated steroid hormones indicated that steroidogenic steps prior to 11 beta-hydroxylation, probably C17-20 lyase activity, were affected by all androgens. Although the effects of 11-oxygenated androgens and T on Leydig cells were mostly similar, previous work showed that only the 11-oxygenated androgens stimulated spermatogenesis, suggesting that distinct mechanisms of action are used by 11-oxygenated androgens and T. These mechanisms, however, seem to merge on the same target(s) to impair Leydig cell androgen production. Such a negative feedback mechanism may be of relevance in the context of the decline in androgen secretion per milligram testis tissue that accompanies the first wave of spermatogenesis in pubertal African catfish.  相似文献   

2.
Homogenates of estrogen-responsive mouse Leydig cell tumors (T 124958-R and T 22137) or 28- and 120-day-old mouse testes were incubated with [3H]progesterone or [14C]4-androstene-3,17-dione in the presence of NADPH, and progesterone metabolism and enzyme activities were estimated. The growth of T 124958-R tumor transplanted in BALB/c mice was markedly stimulated by estrogenization of host mice, but the growth of T 22137 tumor was evidently suppressed by the estrogenization. The major C21-17-OH-steroids and C19-steroids formed from progesterone by both tumors and the testes of immature mice were 5 alpha-steroids, such as 3 alpha,17-dihydroxy-5 alpha-pregnan-20-one, 5 alpha-androstane-3,17-dione, androsterone, 3 beta-hydroxy-5 alpha-androstan-17-one and 5 alpha-androstane-3 alpha,17 beta-diol. In contrast, the major steroids formed by the testes of adult mice were testosterone and 4-androstene-3,17-dione, and no or little 5 alpha-steroids were produced. 5 alpha-Reductase activities in both tumor cells (40-50 nmol/l X 10(8) cells per h) were also found to be approx. 5-6 times higher than that in Leydig cells of adult mouse testes (8 nmol/l X 10(8) Leydig cells per h), though 17-hydroxylase activity was much higher in the Leydig cells of adult testes (730 nmol/l X 10(8) Leydig cells per h) than in both tumor cells (1-7 nmol/l X 10(8) cells per h). Furthermore, the presence of significant amounts of endogenous androsterone and/or 5 alpha-androstane-3 alpha,17 beta-diol was demonstrated in both tumors by radioimmunoassay. The present results demonstrate for the first time that C19-5 alpha-steroids are major C19-steroid products (immature type of testicular androgen production) in Leydig cell tumor lines.  相似文献   

3.
We have examined the effects of Sertoli cell-secreted proteins (SCSP) on [3H]thymidine incorporation by purified preparations (greater than 96%) of rat Leydig cells to determine whether Sertoli cells influence DNA synthesis in these cells in vitro. Incubation of Leydig cells isolated from testes of rats of ages 16 to 90 days with SCSP (Mr greater than 10,000) induced significant dose-, time- and age-related increases in [3H]thymidine incorporation by the cells. A dose-response curve to SCSP showed that as little as 0.2 micrograms SCSP/ml consistently induced a small but significant increase (31% and 10% above control; P less than 0.001) in [3H]thymidine incorporation by Leydig cells isolated from immature (26 days) and mature (70 days) rats, respectively. The maximum response (230% and 48% above control) was obtained with a concentration of 18 micrograms SCSP/ml in cells isolated from immature and mature rats, respectively. Hydroxyurea, a specific inhibitor of replicative DNA synthesis, significantly (P less than 0.001) inhibited both basal and SCSP-induced [3H]thymidine incorporation in Leydig cells from immature and adult rats without affecting the viability of the cells. Incubation of immature rat Leydig cells in SCSP for 48 h also stimulated a 3-fold increase in cell number. The component of the crude SCSP which stimulated Leydig cell [3H]thymidine incorporation is trypsin-sensitive, heat-stable, and adsorbs to a heparin-agarose affinity column but not to concanavalin A-Sepharose. The secretion of this factor(s) by Sertoli cells is stimulated independently by FSH and testosterone. These results demonstrate for the first time that cultured Sertoli cells secrete a protein(s) which, in vitro, stimulates rat Leydig cell replicative DNA synthesis.  相似文献   

4.
5.
Evidence for the presence of androgen receptors in human Leydig cells   总被引:2,自引:0,他引:2  
Localization of androgen receptors (ARs) in the human testis Leydig cells was examined with an AR assay and Northern blot analysis. Leydig cells, highly purified on a Percoll gradient, were used for the experiments. AR concentration in the total cell extract containing both the cytosol and nuclear fractions in Leydig cells was measured using [3H]methyltrienolone. ARs in Leydig cells showed a high affinity for [3H]methyltrienolone and the Kd and Bmax of the receptors were 1.24 nM and 11.7 fmol/mg protein, respectively. Northern blot analysis, using a 32P-labeled full-length human AR complementary DNA (cDNA) detected a 9.5-kb hybridizing band in the total RNA extracted from Leydig cells. These data can be interpreted as evidence of the existence of ARs in human Leydig cells.  相似文献   

6.
Characterization of beta-adrenergic binding sites on rodent Leydig cells   总被引:1,自引:0,他引:1  
A radioligand binding technique was used to study beta-adrenergic binding sites on rodent Leydig cells. Beta-Adrenergic binding sites were found on Leydig cells in both the rat and mouse. Binding of [3H]CGP-12177 [4-(3-t-butylamino-2-hydroxypropoxy)-[5,7-3H]benzimidazole-2-one] to purified rat Leydig cells was found to be saturable, temperature and time dependent, stereospecific, and readily reversible by the beta-adrenergic antagonist propranolol. Scatchard analysis revealed the presence of high-affinity sites with an apparent dissociation constant (Kd) of 0.79 +/- 0.22 nM and maximal binding capacity (Bmax) of 1716 +/- 245 sites per rat Leydig cell. Competition of various beta-adrenergic agonists and antagonists with [3H]CGP indicates an order of potency of L-isoproterenol greater than epinephrine = salbutamol greater than norepinephrine greater than D-isoproterenol and dl-propranolol = ICI 118,551 much greater than atenolol, respectively. These observations suggest that the binding sites are predominantly of the beta 2-receptor subtype. Incubation of freshly isolated rat Leydig cells with luteinizing hormone (100 ng/ml) caused consistent stimulation of androgen production, but only occasional stimulation by the beta-agonist isoproterenol (10 microM) was observed. However, these cells consistently responded to the beta-agonist after 3 h in primary cultures. These findings indicate that rodent Leydig cells possess beta-adrenergic binding sites and point out a possible dissociation between receptor recognition and physiologic response.  相似文献   

7.
The effect of luteinizing hormone (luteotropin) and cycloheximide on specific protein synthesis in rat testis Leydig cells has been investigated. Proteins were labelled with either I114C]leucine, [3H]leucine or [35S]methionine during incubation with Leydig-cell suspensions in vitro. Total protein was extracted from the cells and separated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. No detectable increase in the synthesis of specific proteins could be observed after incubation of Leydig cells with luteinizing hormone for up to 1 h. However, after a 2h incubation period, an increase in [35S]methionine incorporation was observed in a protein with an apparent mol.wt. of 21000 (referred to as 'protein 21"). When, after labelling of this protein with [35S]-methionine, Leydig cells were incubated for another 30min with cycloheximide, no decrease in radioactivity of this protein band was observed, indicating that it does not have a short half-life. However, another protein band was detected, which after incubation with cycloheximide disappeared rapidly, the reaction following first-order kinetics, with a half-life of about 11 min. This protein, with an apparent mol.wt. of 33000 (referred to as "protein 33"), was found to be located in the particulate fraction of the Leydig cell, and could not be demonstrated in other rat testis-cell types or blood cells. No effect of luteinizing hormone on molecular weight, subcellular localization or half-life of protein 33 was observed. A possible role for protein 33 and protein 21 in the mechanism of action of luteinizing hormone on testosterone production of Leydig cells is discussed.  相似文献   

8.
Puberty in the male is dependent upon the elevated production of testosterone by the Leydig cells. LH affects this increase in testosterone output by increasing the total number of Leydig cells in the testis and by stimulating the steroidogenic pathway in these cells. Since Leydig cell proliferation is a prerequisite for the onset of puberty, we have examined the ability of LH and growth factors known to be present in the testis to promote DNA synthesis. Leydig cells were isolated from 21-day-old rats, cultured in serum-free medium for 48 h to become quiescent, and then treated with LH and growth factors for 18 h. [3H]Thymidine incorporation into DNA was assessed over the subsequent 4-h incubation period. Cells in control cultures incorporated low levels of [3H]thymidine into DNA and were stimulated after treatment with LH (100 ng/ml). Insulin/insulin-like growth factor-1 (IGF-1) and transforming growth factor-alpha (TGF-alpha), previously localized in Leydig cells by immunohistochemistry, also stimulated [2H]thymidine incorporation into DNA. The responses of the Leydig cells to maximum levels of insulin and TGF-alpha were dependent on the cell density. Insulin and TGF-alpha alone and in combination increased the number of cells labeled with [3H]thymidine, as assessed by autoradiography. TGF-beta, known to be secreted by Sertoli cells, also stimulated DNA synthesis under basal conditions, but the maximum response was significantly lower than that achieved in the presence of TGF-alpha.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
By means of high performance liquid chromatography and gas chromatography-mass spectrometry it has been found that 5 alpha-androstane-3 beta,17 beta-diol sulfate and 3 beta-hydroxy-5 alpha-androstan-17-one sulfate (epiandrosterone) are major secretory steroids of the mature boar testes. These same compounds were similarly identified in culture media when porcine Leydig cells were incubated with androstenedione as substrate. In addition, they were seen as the principal secretory products when [3H]androstenedione and [3H]testosterone were used as substrates; and their presence was greatly reduced by an inhibitor of 5 alpha-reductase (N,N-diethyl,4-methyl-3-oxo-4-aza-5 alpha-androstane-17 beta-carboxamide). Greater quantities of 5 alpha-androstanediol than epiandrosterone were noted in all instances. These findings provide further evidence of the versatile activity of the boar testes in steroidogenesis.  相似文献   

10.
R B Myers  T O Abney 《Steroids》1991,56(2):91-96
This study was conducted to examine interstitial cell proliferation in the testis of the ethylene dimethane sulfonate (EDS)-treated rat. Initial autoradiographic studies demonstrated a peak of [3H]thymidine incorporation by interstitial cells at 2 and 4 days post-EDS treatment. Subsequent studies were designed using in vivo pulse labeling regimens in an attempt to identify interstitial cell proliferation associated with Leydig cell regeneration. Rats were injected with [3H]thymidine at days 2 and 4 post-EDS and were killed 6 hours later or at 30 days post-EDS. Although cells labeled at 2 and 4 days post-EDS appeared to undergo subsequent division, the Leydig cells visible at 30 days post-EDS were not labeled. In a second study, rats were injected with [3H]thymidine at days 10 and 20 post-EDS and were killed either 6 hours later or at 24 days post-EDS. In the 10-day post-EDS group, interstitial cells were labeled at both the 6-hour and 24-day time points; however, Leydig cells present at 24 days were not labeled. In contrast, the testes of rats that were killed at 20 days post-EDS (6 hours labeling period) contained Leydig cells that displayed grains over the nucleus, thus suggesting that Leydig cell proliferation had occurred. In addition, a high number of the Leydig cells observed at 24 days post-EDS were labeled, suggesting that they arose from divisions occurring during the 20- to 24-day post-EDS period. These studies demonstrate that interstitial cell proliferation occurs in several stages following EDS treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The steroidogenic capacity of purified immature porcine Leydig cells in culture was studied over several days. The cells were obtained by fractionating crude testicular interstitial cell suspensions on a discontinuous Percoll gradient (d = 1.037, 1.042, 1.052, 1.098 g/ml), and characterized by specific binding of 125I-human chorionic gonadotropin (hCG), testosterone (T) and cyclic adenosine 3':5'-monophosphate (cAMP) production in response to hCG, and the enzymatic determination of delta 5-3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) activity. The Leydig cells were recovered in a density band between 1.052-1.068 g/ml and grown in a chemically defined medium (Mather et al., 1981). In the absence of hCG, T production was low throughout the 6 days of culture. However, in response to hCG (10 mIU/ml), the cultured Leydig cells showed a progressive increase in T synthesis, which reached a maximum at Days 3-4. 8-Br-cAMP (1 mM) induced a comparable rise in T production to that obtained with hCG throughout the culture period. In contrast, 8-Br-cAMP induced a near maximal increase in dehydroepiandrosterone (DHEA) production from Day 1. This paper demonstrates that purified immature porcine Leydig cells in primary culture are a valuable model to study the ontogeny of Leydig cell function.  相似文献   

12.
The results of the measurement of 19-nortestosterone in the testiscular artery and vein of the stallion, the very low levels of this steroid in the peripheral blood of geldings and the similar patterns of increase in the peripheral levels of 19-nortestosterone and testosterone after hCG stimulation, show that 19-nortestosterone, like testosterone, is essentially synthesized in the testis. This testicular origin was confirmed by the ability of testicular tissue to synthesize 19-norandrogens from [4-14C]androgens in vitro. 19-Nortestosterone was 50% conjugated in the peripheral blood and almost entirely conjugated after biosynthesis in vitro. The sequence of appearance of steroids in the peripheral blood after a single injection of 10,000 IU hCG suggests that, in the equine testis, 19-norandrogens are produced by a specific C10-19 desmolase (estrene synthetase), stimulable by hCG. 19-Nortestosterone was aromatized into estradiol-17 beta by stallion testicular microsomes. The affinity of the aromatase for 19-nortestosterone was very low compared to that for testosterone. At low and presumably physiological levels, and at a high testosterone/19-nortestosterone ratio, testosterone did not inhibit 19-nortestosterone aromatization by more than 53%. Thus, 19-nortestosterone may be aromatized in vivo in the testis in spite of the endogenous concentrations of androgens. However, the low velocity of 19-nortestosterone aromatization by testicular microsomes at roughly physiological concentrations suggests that 19-norandrogen aromatization may only participate slightly in the testicular estrogen production. These results suggest that in the equine testis, two aromatizing enzyme systems may exist: one which aromatizes both androgens and 19-norandrogens, and a minority system more specific for 19-norandrogens.  相似文献   

13.
The effect of transforming growth factor beta on testicular steroidogenesis was studied by using a model of immature porcine Leydig cells cultured in a chemically defined medium. Leydig cells were cultured in the presence of human or porcine purified TGF beta and the following parameters were measured: cell proliferation, LH/hCG binding, and hCG-stimulated steroid hormone productions (DHEA, DHEAS and testosterone). Whereas TGF beta from the two sources had no effect on Leydig cell multiplication, it markedly inhibited LH/hCG-stimulated DHEA and DHEAS in a time- and dose-dependent manner. The maximal inhibitory effect of this peptide on LH/hCG binding (65% decrease), hCG-stimulated DHEA (77% decrease) and DHEAS (92% decrease) productions was observed with 2 ng/ml for 48 h of treatment. In contrast, TGF beta exerted a biphasic effect on hCG-stimulated testosterone production: stimulating (110% increase) until 2 ng/ml and inhibiting (35% decrease) for higher concentrations. [125I]TGF beta was cross-linked to Leydig cells using disuccinimidyl suberate; cells affinity labelled with [125I]TGF beta exhibit a major labelled band of approx 280 kDa, which has the properties expected from a TGF beta receptor. These data demonstrate that TGF beta is a direct potent regulator of Leydig cell steroidogenic function and its effects are probably mediated via a specific receptor.  相似文献   

14.
In a previous study, we reported the presence of 11 beta-hydroxyandrostenedione and 11 beta-hydroxytestosterone in testicular vein blood from mature male pigs. Since C19 steroids with an oxygen function at C11 have not been recorded as products of steroid biosynthesis in normal mammalian testes, we have examined their possible production in purified preparations of porcine Leydig cells. Both androstenedione and cortisol were added as substrates in studies using cell incubations of Leydig cells from mature boars (greater than 8 months old). Steroids were recovered from media by solid-phase extraction and separated by reversed-phase high performance liquid chromatography. Peaks corresponding to retention times of authentic standard steroids were seen for both 11 beta-hydroxyandrostenedione and 11 beta-hydroxytestosterone from each substrate. Generally, lesser amounts of C19 11-oxosteroids were noted also. Definitive confirmation was made by gas chromatography - mass spectrometry for 11 beta-hydroxyandrostenedione in the media.  相似文献   

15.
The interactions of [3H]estradiol, [3H]testosterone and [3H]progesterone with soluble proteins from porcine and calf liver were studied. The specific binding of [3H]progesterone and [3H]testosterone in calf liver cytosol seems to be due to serum transcortin or its intracellular precursor (analog). Contrariwise, the specific binding of [3H]progesterone observed in porcine liver cytosol was absent in the serum. This binding was characterized by slow association and dissociation dynamics, moderate affinity for the [3H]-ligand and a high binding capacity. The structural determinants of the ligands were studied by competitive inhibition of the [3H]-ligand binding. The delta 4-3-keto group in the steroid A-ring was found to be the most important determinant. An intensive metabolism of [3H]progesterone was observed during its incubation with cytosol (data from thin-layer chromatography). A 3H-metabolite (presumably, 20 beta-dihydroprogesterone) was predominant in the bound ligand fraction. The data obtained suggest that proteins of a steromodulin type are widely distributed in the mammalian liver.  相似文献   

16.
Steroid metabolism by avian ovarian cells during follicular maturation   总被引:1,自引:0,他引:1  
The profiles of steroid hormones produced by ovarian cells from the domestic hen were examined. Theca cells from the immature, small white follicles (SWFT), the third largest (T3), and largest (T1) preovulatory follicles, and the ruptured, postovulatory follicle (POFT) were incubated for 3 h at 37 degrees with [3H] progesterone (Prog) or [3H] pregnenolone (Preg). Granulosa cells from the largest preovulatory follicle were incubated with [3H] Preg or were coincubated with theca cells and [3H] Preg. The production of specific steroid metabolites was determined on the basis of coelution of radioactivity with known standard compounds, using an isocratic high-pressure liquid chromatography (HPLC) technique. Granulosa cells converted 93% of [3H] Preg substrate to Prog. More Prog was utilized by T3 cells than by T1 and SWFT cells, either when [3H] Prog was the substrate or when coincubated with granulosa cells and [3H] Preg. The major metabolites of Prog were androstenedione, 17-hydroxyprogesterone, and an unidentified compound with an elution time of 53 min. The POFT cells metabolized [3H] Prog to the same extent as T3 cells did, but their profile of steroidogenesis favored production of the unidentified 53 min metabolite. SWFT cells utilized the least amount of [3H] Preg substrate. The results point to marked changes in enzyme activities in theca cells during maturation and following ovulation.  相似文献   

17.
Porcine skin nucleoplasmic extract (PSNE) was shown to alter the incorporation of [3H]thymidine into DNA of selected porcine, bovine, and human cell populations in culture. PSNE stimulated incorporation of [3H]thymidine into DNA of porcine and bovine dermal cells an average of 300 and 200% of control value, respectively. When porcine and bovine epidermal cells were exposed to PSNE the treatment inhibited [3H]thymidine incorporation into DNA by an average of 48 and 45%, respectively. Similar inhibitions were observed for porcine and bovine kidney, porcine lung, and human KB cells. Thus, the effect of PSNE on the incorporation of [3H]thymidine into DNA of various cultured cells was either stimulatory to dermal cells or inhibitory to a variety of other cell types, including skin epidermal cells. The stimulatory and inhibitory effects of PSNE were abolished by heating PSNE for 5 min in boiling water before its addition to cell cultures. This suggests that macromolecular structure is important in the action of PSNE. This project was supported by a grant from the Research Advisory Board, University of Nevada, Reno, NV.  相似文献   

18.
We tested the possibility of using LH and thyroxine (T(4)) to restore the testicular steroidogenic ability in aged Brown Norway rats. Three-, 6-, 12- (n = 8 per group), and 18-mo-old (n = 32; 3M, 6M, 12M, and 18M, respectively) rats were used. The 18M rats were divided into four groups (n = 8 per group) and implanted subdermally with Alzet mini-osmotic pumps containing saline (control), LH (24 microg/day), T(4) (5 microg/day), and LH+T(4) (24+5 microg/day), respectively, for 4 wk (to 19 mo [19M] of age). Testis volume and absolute volumes of many testicular components were unchanged with advancing age and treatments, except for the blood vessels (occasional thickening), lymphatic space (increased), and Leydig cells (decreased with age but increased to the 3M level with LH and to the 12M level with both T(4) and LH+T(4), respectively). The number of Leydig and connective tissue cells per testis was unchanged with aging and treatments. The number of macrophages was significantly higher in treated rats. The average volume of a Leydig cell was significantly decreased in 12M and 19M control rats. However, LH and LH+T(4) restored it to the 3M level, and T(4) restored to the 12M level. The steroidogenic ability of Leydig cells in vitro decreased when aging from the 3M to the 19M level, LH and T(4) enhanced it to the 12M level, and LH+T(4) raised it to the 3M level. Serum LH was unchanged from 3M to 12M rats, significantly reduced in 19M control rats, and raised above the 3M values with both LH and LH+T(4) treatment and above the 19M (control) values with T(4) treatment; the latter values were lower than the 3M level. Serum T(4) and tri-iodothyronine (T(3)) were highest in 3M and 6M rats and declined in 12M and 19M control rats; the latter group had the lowest levels. In all treated groups, T(4) and T(3) levels were significantly above those of 19M control rats but were lower than those of 3M through 12M rats. Serum testosterone was unchanged from 3M to 12M rats but was reduced in 19M control rats. Both LH and T(4) significantly raised these values above the 19M control levels, but they were still lower than the 3M through 12M levels. Additionally, LH+T(4) significantly raised the serum testosterone levels to those of 12M rats, but these values were significantly lower than those of 3M and 6M rats. These findings show that with 24+5-microg dose of LH+T(4) per day for 4 wk, a 100% recovery of the average volume of a Leydig cell and its steroidogenic ability in vitro and a 73% and 300% restoration of serum testosterone levels compared to 3M and 19M control rats, respectively, could be achieved in aged Brown Norway rats. A 100% reversibility (compared to 3M rats) in serum testosterone levels appears to be possible with adjustments in the LH and T(4) doses in the LH+T(4) treatment.  相似文献   

19.
Monoclonal antibodies to testosterone T were produced using testosterone 19-O-carboxymethyl ether (T19C) and testosterone 19-hemisuccinate (T19H) immunogens. All antibodies were characterised with iodinated derivatives of both T19C and T19H. Monoclonal antibodies derived from the T19C immunogen had similar titres and assay sensitivities with both T19-tracers. In contrast antibodies derived from the T19H immunogen bound the homologous but not the heterologous tracer. Individual antibodies showed a wide variation in cross-reactivity with 5 alpha-dihydrotestosterone, DHT (4.4-100%), androstenedione AN (0.5-100%) and progesterone, Po (0.08-5.4%). One antibody 3F11 derived from a T19C immunogen gave 50% displacement of tracer with 180 pgT/tube and low cross-reactivity of 12% with DHT, 3.0% with AN and 1.1% with Po. In general, assay sensitivity and antibody specificity were poorer with an [125I]-histamine conjugate of T-3-carboxymethyloxime than with T19 tracers. Radioimmunoassays for T in extracted human serum were developed with [125I]T19C as tracer and monoclonal antibody 3F11 (T19C immunogen) and rabbit antiserum T19H3R1 (T19H immunogen). Sensitivities of the extracted assays were 43 and 20 pg/tube respectively and results correlated well with those obtained after chromatographic separation of testosterone (r = 0.97 for both antibodies). We conclude that 19-linked derivatives of T are highly immunogenic for the production of specific testosterone antibodies. Selection of the appropriate iodinated tracer is essential to achieve optimal titre, assay sensitivity and specificity, since these characteristics vary widely with individual monoclonal antibodies, and classical bridge recognition is not observed.  相似文献   

20.
The vitamin D3 metabolite obtained from the incubation of 3-[(cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate (CHAPSO)-solubilized chick kidney mitochondria with 25-hydroxyvitamin D3 (25-OH-D3) was identified to be 5(E)-19-nor-10-oxo-25-hydroxyvitamin D3 (5(E)-19-nor). The production of 19-nor was dependent on time and on protein concentration, but was not dependent on the pH of the incubation. 19-Nor was not formed in the absence of protein or when protein had been heat-treated following detergent solubilization. 19-Nor was not further metabolized to any other product upon incubation with the CHAPSO-solubilized proteins. No 19-nor-10-oxo derivative of 1,25(OH)2D3 was formed when 1,25(OH)2D3 was used as substrate in the incubation. Kinetic analysis showed a substrate saturation with an apparent Vmax of about 4.1 pmol/min.mg and S0.5 of approximately 1.3 x 10(-6) M. The production of 19-nor was not restricted to the CHAPSO-soluble protein fraction of kidney mitochondria but was also found in both the CHAPSO-soluble and -insoluble fractions of chick liver mitochondria and CHAPSO-treated bovine serum albumin (BSA). 19-Nor production by detergent-treated BSA also showed saturation kinetics with a similar S0.5 and an apparent Vmax which was about 5-fold higher than that obtained with CHAPSO-solubilized mitochondria. The evidence suggests that the formation of 19-nor is not mediated by a traditional enzyme, but does require protein. A mechanism for the conversion of 25-OH-E3 to 19-nor is proposed, in which the naturally-occurring 5(Z)-25-OH-D3 substrate binds to protein, isomerizes to 5(E)-25-OH-D3 and is oxidized by hydrogen peroxide to 5(E)-19-nor via a dioxetane intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号